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We consider the physical effects responsible for the momentum distribution parallel to the
beam of nuclides arising from projectile fragmentation. A simple model relates the widths

of these distributions to separation energies and an absorptive cutoff radius rather than Fer-
mi momentum. A one-parameter successful treatment of these widths is explored.
Coulomb distortions are found to dramatically influence the observed widths at low bom-

barding energies, leading to a reduction of width with decreasing energy. A simple model

for isotope yields from fragmentation reactions is presented and compared with high energy
data.

NUCLEAR REACTIONS Projectile fragmentation of '~C, '60, ~ Ne,
E=2 GeV/nucleon and E=10—20 MeV/nucleon; parallel momentum

distribution width; isotope yields.

I. INTRODUCTION

Several simple characteristics are apparent in
heavy ion reactions in which the projectile ion un-
dergoes fragmentation. One of the most striking of
these is the peak in the momentum distribution of
the fragments near the beam velocity. In this paper
we reexamine the essential physics responsible for
these peaks, and study the variation of the widths of
these peaks with fragment types, projectile, and en-

ergy. We will show that many of the general
features of both high energy' (2 GeV/nucleon) and
medium energy (10 MeV/nucleon} fragmentation
reactions are well accounted for by simple models
for the essential physical features of the reaction.

Let us briefiy review the elements of projectile
fragmentation theory. The simplest mechanism for
these events is represented by the diagram in Fig. 1

which shows a process in which the observed frag-
ment has no interactions with the target. The pro-
cess involves a virtual breakup of the projectile fol-
lowed by subsequent interaction of the removed part
with the target. In this process the momentum dis-
tribution of the fragment is determined by the vertex

~
V(kF) ~, which in turn is determined by the

ground state projectile wave function. This mechan-
ism is sensitive to the Fermi momentum PF of the
projectile, a quantity also obtainable from electron
scattering. Indeed, it is commonly assumed that the
observed widths of the momentum distribution are
determined by Fermi momentum Pz. A simple
model developed by Goldhaber predicts that the
width of the fragment momentum distribution

parallel to the beam, oII, is proportional to the mean
momentum of the projectile nucleons and hence
directly proportional to the Fermi momentum Pp.
Furthermore, Goldhaber showed that the propor-
tionality involves the mass of the fragment, since,
for uncorrelated particles, the relationship of the
momentum of the fragments to that of the nucleons
depends only on this quantity. The relationship is
embodied in the following expression for the parallel
momentum width:

1/2
Ap(Ap —Ap)

(Ap —1)
(1.1}

FIG. 1. Schematic diagram for projectile fragmenta-
tion process.
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where ap=Pp/V 5 and A~ and Ar are the fragment
and projectile mass numbers. Equation (1.1)
predicts that the dependence of cr~~ on fragment

1

mass should follow a parabola peaked at Az ———,Ar.
The experiments with 2 GeU/A ' 0 projectiles re-
ported in Ref. 1 provide rough agreement with the
parabolic behavior with a best fit op ——86 MeV.
There is, however, a great deal of scatter of data
about the prediction.

The process associated with the diagram in Fig. 1,
however, is unable to account for the following: (a)
the differences in widths associated with nuclides of
the same mass', (b) the discrepancy between harp and
PF/v 5, where PF is obtained from electron scatter-
ing experiments', (c} the observed difference between
o'~~ and 0& (Ref. 4); (d) the apparently anomalously
small values of op observed at lower energies; (e} the
variation of harp with bombarding energyz; and (f) the
isotope yields from the fragmentation process. In
this paper we present a simple model which deals
with each of these shortcomings.

In Sec. II absorption is added, in a qualitative
way, to the simple model presented above. The
consequence of this change is discussed, and the
model is applied to parallel momentum widths from
high energy reactions. In Sec. III the question of
fragmentation at lower energies is treated and the ef-
fect of Coulomb distortion examined. Section IV
deals with predictions of isotope yields from frag-
mentation, and comparison is made with the high
energy data. Finally, in Sec. V basic conclusions are
summarized.

to establish PF. Consider the plane wave fragmenta-
tion process symbolized by the diagram in Fig. 1.
We wish to modify the cross section expression asso-
ciated with this diagram to include the effect of ab-

sorption. For simplicity let us first consider the pro-
cess in which a single nucleon is removed. For the
projectile described by an independent particle
model, the vertex for virtual dissociation of the pro-
jectile,

~
V( k }~, is given by

(2.1a)

(2.1b)

where the wave functions P~(r) represent nucleon
orbits of the projectile. When there is strong absorp-
tion, one must introduce an absorption factor in the
integrand of Eq. (2.1b). This removes the contribu-
tion for small r. Thus, instead of using the Fourier
transform of the full wave function for the vertex
function, in Eq. (2.1a), one must use the Fourier
transform of a cutoff portion of the wave function.
While the Fermi momentum is related to the form-
er, it is not to the latter if the cutoff is at a suffi-
ciently large radius.

Let us examine the essential features of absorption
through a simple model. Consider a wave function

z(r} which describes the relative separation be-
tween the observed fragment (F) and the removed
portion of the projectile (R). In fact, we only need
to know the portion of this wave function outside of
the absorption region, i.e., far from the center, where

II. PERIPHERAL MODEL

In this section and the one that follows we
develop a model for projectile fragmentation which
introduces, in a qualitative way, two essential
features missing from the approach taken by Gol-
dhaber in Ref. 3. One of these features, namely,
Coulomb distortion, is only significant at lower
bombarding energies and is dealt with in the follow-
ing sections. The other feature, which is important
for all bombarding energies, is the subject of this
section. Let us call that feature "fragment sur-
vival. " The requirement of survival dictates that the
fragment avoid substantial contact with the
target —in other words, the collision must be peri-
pheral. In the language of the optical model, ab-
sorptive distortion must be extremely important.

Even when the peripheral nature of the fragmen-
tation reaction is treated only qualitatively, one
finds that the Fermi momentum in the projectile can
play little role in determining the fragmentation
width. The effective absorption prevents the sam-

pling of the entire nucleus, which would be required

z (r) e I'"/r,

p=')/2mrPs ~

(2.2a)

(2.2b)

with m, the reduced mass and E, the separation en-

ergy
To obtain the width of the fragmentation momen-

tum distribution parallel to the beam direction (tak-
en as z here), we must evaluate

V(k~~)- fe ~ F(rq, z)g(r~, z)dzdrj (2.3)

where F(r) damps the central portion of the in-
tegrand.

In Fig. 2 we show a schematic sketch of the mag-
nitude

~

F(r )g(F)
~

for z=o with the perpendicular
direction labeled rj In order to.evaluate Eq. (2.3),
we require the z dependence of FP. Because of the
absorption indicated in Fig. 2, we expect to find:the
largest contribution to the integrand near the point
rz ——xo and z=0. We thus expand r to lowest order
in z about this point to obtain
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FIG. 2. Schematic plot of ~F(r}g(r}
~

for z=0 as a
function of rj.

F(r)1((r)-
—pz /2xp2

e

(1+z /xo )'~ f(rj) . (2.4)

1+2 P 1

2Xp PXp
(2.6)

The approximate form of Eq. (2.4) permits a separa-
tion of the integration variables in the Fourier in-

tegral, Eq. (2.3},and provides

(2.5)

with

The expressions for 0~~ in Eq. (2.8) depend on two
primary features, E, and xp, i.e., the cluster separa-
tion energy and the cutoff radius related to the frag-
ment size. One can easily obtain ground state
separation energies from mass tables. This sets a
lower bound on E,. On the other hand, the frag-
ment will be observed if the process leads to any of
its particle-stable excited states. This possibility
provides a range and upper value for E,. To deal
with xp in a systematic way, let us assume that for
each fragment with mass number Ar, xp ——r+F'
where rp is parameter-independent of the fragment
type.

We have examined the fragmentation data of Ref.
1 which involve about 40 different fragments. Us-

ing the upper limit for E„we find that a single
value of rp-1.2 accounts well for both carbon and
oxygen projectile data. Note that while the predic-
tions are for primary distributions without initial or
final state inelasticity, the data include possible
inelasticity and products of secondary decay. The
value of rp 1.2 is als——o obtained if we consider those
fragments which are not likely to be the product of
secondary decay.

The predicted values of o~~ for the fragments of
' C are shown in Table I, along with the experimen-
tal values of Ref. 1 and the Goldhaber prediction for
which op is set to give the single nucleon removal
width. The agreement between prediction and data
is excellent. Similar results are shown for the frag-
rnentation of ' 0 in Table II. For these the agree-
ment is qualitative, but not as good as for carbon.

P(r)-

which gives
1

p 1+ zy 1

2xp v'I +/ }Mpxp
+

where p is given by Eq. (2.2b) and

y =ZiZ2e /xpE, .

(2.7)

(2.8)

We associate this width with the parallel momentum
distribution arising in the fragmentation process.
Note that in this approach o j (not treated here) is, in
general, different from 0

~~
and depends in detail on

the shape of the absorption.
We can modify the expression for 0~~ obtained in

Eq. (2.6} to include the lowest order effect of the
Coulomb potential on the bound state wave function
tail. This is accomplished through a Wentzel-
Kramers-Brillouin (WKB} approximation to the
wave function,

—[2m (E +Z1Z2e2/r~ jl/2r

Isotope
o~~ exp'
MeV/c

o
~~

theory o.
~~b Goldhaber

MeV/c MeV/c

11C

1PC

9C
11B

1PB

8B
1PBe

'Be
78e
'Li
'Li
'Li
'Li

103+4
121+6

147+21
106+4
134+3

151+16
129+4
133+3
145+2
161+9
159+7
144+2
127+7

103
125
149
102
120
154
124
128
143
146
152
142
149

103
138
161
103
138
175
138
161
183
161
175
183
186

'Reference 1.
Equation (2.8) with rp ——1.2.

'Goldhaber (Ref. 3) with o'p= 103.

TABLE I. Widths of the momentum distributions
parallel to the beam for fragments from "Cprojectiles.
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TABLE II. Widths of momentum distributions parallel
to the beam for fragments from ' 0 projectiles.

Isotope

15p
14p

13p
15N

14N

N
12N

14C

13C

12C

11C

10C

'c
B

12B

11B

10B

SB

Be
"Be
"Be
'Be
Be

'Li
7Be
'Li
8Li

7Li
'Li

0.
~~

exp'
MeV/c

94+3
99+6

143+14
95+3

112+3
134+2

153%11
125+3
130+3
120+4
162+5
190+9

166+10
163+8
160+2
175+7

175+22

197+20
159+6
166+7
166+2

188+15
166%2

188+15
170+13
167+4
141+7

or~~ theoryb

MeV/c

94
113
141
94

112
120
146
114
121
109
142
154
172
137
145
142
147
168
153
162
155
150
157
172
157
172
169
158
159

o
~ ~

Goldhaber
MeV/c

94
128
151
94

128
151
168
128
151
168
179
188
192
151
168
179
188
194
168
179
188
192
192
192
192
192
194
192
188

'Reference 1.
"Equation (2.8) with rp =1.2.
'Goldhaber (Ref. 3) with 0'0=94.

We shall make further comments on this difference
in the discussion in Sec. IV which deals with isotope
yields.

In recent detailed calculations for single-particle
removal, Hiifner and Nemes reached conclusions
similar to ours with regard to the importance of ab-
sorption. Their work has been limited to a specific
reaction and rests on the construction of the Wigner
"distribution" function W(R, k) for interpretation.
The approach here is global in nature with emphasis
on the qualitative features perceived essential. - It
seems to us that the most straightforward interpre-
tation of the physics may be clouded by the con-
struction of the Wigner function, since the interpre-
tation of this function is itself murky and since con-
struction of this function requires knowledge of the
wave function everywhere, even in the absorbed re-

0.8I'F
(2.10)

We can thus understand the similarity between the
predicted magnitudes for o~~ from the two ap-
proaches. The parabolic fragment mass dependence,
explicitly found in Ref. 3, arises here implicitly as a
result of the fact that E, is roughly proportional to
the mass number of the removed portion of the pro-
jectile times the separation energy of the single nu-
cleon.

III. LOWER ENERGY FRAGMENTATION

In the preceding section we were concerned with
the interpretation of high energy data, where one
might expect the process of projectile fragmentation
to be most pronounced. At what energy does the
process become important? This is a topic of
current interest and debate. With the measurement
of narrow widths crp at 10—20 MeV (Ref. 2) it has
been suggested that the simple fragmentation widths
are not seen at these energies. This conclusion is
based on the presumption that the asymptotic oo is
of the order of 90 MeV/c, i.e., that expected from
the Fermi energy (P~/v 5 ). In the peripheral model
discussed above, harp defined in Eq. (1.1) has no par-
ticular physical meaning. Marked variations in this
quantity are observed for specific fragments. Be-

gion. At the level of the simplifying assumptions
made above, the formalism of Hiifner and Nemes
reduces to one similar to ours for the case of single
nucleon removal.

Let us now examine why the nonabsorptive, plane
wave approach can give results similar to those of
the peripheral approach taken here. This must arise
from the relationship between Fermi energy EF and
separation energy E,. For nuclear matter it is ar-
gued that the average binding energy and the separa-
tion energy are equal. This requires that one intro-
duce an effective mass m~. If one takes m~=0. 5,
the ratio of EF/E, is 4 to 5. For light, finite nuclei
one empirically finds that E~/Es is 2 to 3.

Consider the expression in Eq. (2.6) for the
momentum width associated with single neutron re-
moval. If we define the ratio of separation energy to
Fermi energy, E, /E~, as P, then we can express o

~~

in terms of this quantity:

PF' 25 1
0(( = ' ~p+ . (2.9)

xoPF xo~s
J

For the fragment coming froin '60 the value of
xpPp is approximately 4, and p is approximately 0.5
when excited states are included in E,. With this
numerical value Eq. (2.9) provides the following re-
sults:
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cause of the widespread use of crp in the literature,
however, we will discuss widths o'~~ (the physically
meaningful quantity) in terms of this reduced quan-
tity harp by defining harp

(A~ —1)

(Ap)(Aq —Ap)
(3.1)

At lower energies we must consider a second im-
portant distortion, that due to the Coulomb force.
This force will have the effect of reducing the width
of the parallel momentum distribution at the detec-
tor. This is seen by the following simple schematic
demonstration.

Consider a high energy beam with emission along
the beam direction. Take v; and vf to be the veloci-
ty of the emitted fragment before and after accelera-
tion from the Coulomb field. The two velocities can
be written as

vs=vs+'9t ~

vf ——vpf+ If

(3.2a)

(3.2b)

where vp; and vp& are the velocities of the centroids
of the fragment distributions and r7; and
represent deviations from these centroids before and
after Coulomb acceleration. The centroid velocities
are related by the Coulomb energy shift Ec,

2 2 2EC
~pi =Vp (3.3)

Upi
CTf =0'g

~pf'
(3.4)

If the fragment and the projectile have the same
charge to mass ratios,

crf =or(1 —Ecp/Ep)' (3.5)

where Ep is the beam energy and E&p is the kinetic
energy reduced due to the Coulomb potential for the

The observed distribution in uf is assumed to come
from an original fragmentation distribution in U&,

which we take to be Gaussian with width 0;,
—gI /2a'2 2

e

The initial and final velocities are related by the
Coulomb shift, so we obtain from Eqs. (3.2) and
(3.3)

+ 22g; vp&+'g& =2'gf'vpf+gf

For g; and gf along vp, and g; ««Up;, we have

fj; ='g//(Up;/Upy) .

2/2~ 2 /2(cr;upI/up )
Thus e ' ' becomes e ' " ' and the
observed width of is given by

TABLE III. Widths cap for momentum distributions
parallel to the beam for '60 fragments from i Ne projec-
tiles at various energies.

E/nucleon

20
14.5
11.0
7.5

0'p

49
41
37
34
26

'From Eq. (2.8) with Coulomb corrections.

incoming projectile. A calculation which exactly
treats the Coulomb distortions by taking classical
trajectories for the fragments produced at the edge
of the target nucleus displays qualitative agreement
with the results of the simple estimate given in Eq.
(3.4).

Now let us examine those recent data which show
great deparatures from Op-=90. We specifically con-
sider the data ' for Ne+ ' Au~' 0+X,

in the range from 7 to 20 MeV/nucleon.
First note that one would expect small values for

clap due to the low separation energies for a clusters.
In fact, in ' 0+ Pb~' C+ X at 2 GeV, a value
for ac of 67 MeV/c is extracted from the data, while
peripheral model calculations would predict a width
of about 60 MeV/c.

When the peripheral model is applied to Ne
with rp set at 1.2 (the value required for the frag-
ments in ' 0 and ' C experiments), we predict
op ——49 MeV/c for Ne~' 0. If, in addition, we
consider the Coulomb distortion, we predict the
variation op with beam energy shown in Table III.
Note that both the magnitude and the variation with
energy are in agreement with the data of Ref. 2.

For the case of Ne~' C the peripheral model
predicts o.

p ——57. Using the same Coulomb reduc-
tion as for the ' 0 fragments we obtain the widths
given in Table IV. These values are also in good

E/nucleon

20
14.5
11
7.5

CTp

57
47
43
40
30

'From Eq. (2.8) with Coulomb corrections.

TABLE IV. Widths op for momentum distributions
parallel to the beam for '20 fraginents from i Ne projec-
tiles at various energies.
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agreement with the observations. The ratio of
widths for 'zC and ' 0 fragments is predicted to be
1.163. This ratio is what is found experimentally
for all the energies greater than 10 MeV/nucltxin.

Finally, let us examine the results for carbon frag-
ments from oxygen projectiles reported by the
Berkeley group. As noted above, the peripheral
model predicts a value for cro of 60 MeV/c before
Coulomb distortion. The Coulomb modifications
give the predictions shown in Table V, which are in
good agreement with the results of Ref. 7.

In closing this section, we draw three conclusions:
(a) the agreement between the peripheral model pre-
dictions and experimental data is remarkable at en-
ergies in the range of 10—20 MeV/nucleon; (b) the
small size of pro is no indication of the absence of a
simple fragmentation process; (c) the observed ener-

gy variation of pro between 10 and 20 MeV/nucleon
is similar for the three cases discussed above, and
this variation is consistent with that expected from
Coulomb distortion.

IV. ISOTOPE YIELDS

In this section we extend the peripheral model in
order to qualitatively predict nuclide yields arising
from projectile fragmentation processes

For the model of projectile fragmentation we have
been considering, we would expect the isotope yields
to be characteristic of the projectile but not the tar-

~

~

~

~

~

~et. In experiments with ' 0 at 2.1 GeV/u and ' C
C at 2.1 and 1.05 GeV/u, I.indstrom et al. em-

ployed a wide range of target nuclei. Their analysis
of the data assumed that the cross section could be
written as

F
~PT YPFT &

where I', F, and T refer to the projectile, fragment,
and target, respectively. They report yz -=A~' and
claim that this supports the view that the reaction is
occurring at the surface. They also present a set of

rh

sn
K

II

-2
0

I

fO

21LXO

I

f5

FIG. 3. W [=in{yeux&&'/Sp)] vs 2ppxs for fragments

from '~C. yp from Ref. 5.

QF it (r)=~Sag—p s(r), —

where gp s is normalized to unity and Sp (Ref. 9)
is a spectroscopic factor.

factors yp from data on all of the targets. These
factors provide the relative yield of fragments from
a given projectile.

We now extend the peripheral model discussed in
the previous section so as to be able to predict the
relative values of yp

We assume that the fragment (F) and part re-
moved from the projectile (R) are described by the
relative wave function

TABLE V. Widths harp for momentum distributions
parallel to the beam for ' C fragments from ' 0 projec-
tiles at various energies.

~ ~
~ 0 ~

0

E/nucleon CTp
0—

20
14.5
11.0
7.5

60
48
46
42
31

'From Eq. (2.8) with Coulomb corrections.

-2
0

I

[0
2p. xo

I

20

FIG. 4. %[=In(ypxp /Sp)] vs 2ppxp for fragments
from 'sO. yp from Ref. 5.
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—2LM FxP
NF e /xp„

and express the normalization in Xz as follows:

2jtlF R
F

2

Rc
(4.5)

Here R, is a central radius, less than xp, whichF F
provides the normalization. This form for NF
would arise for a wave function constant up to
r =R„exponentially falling for r ~R, . Combining
Eqs. (4.3)—(4.5), we obtain

—2PF(xo —8 )
F cF

Spe
Pp OC (4.6)

Xp Rc2

Let us further assume that R, varies only with theCF

fragment size AF', so that R, is proportional to

xp . Let us take this proportionality factor equal to
(1 b) and in—dependent of fragment mass,

Rc =(1 b)xo— (4.7}

With Eqs. (4.6} and (4.7) we obtain
—2PFxo b

F
F e

yp 0(:Sp
xp (1 b)— (4.8)

F 3
YP+OF8'—= ln

Sp

b(2pzxp ) ——ln(1 —b)+const . (4.9)

A plot of W versus (2pFxo ) for the fragments of a

given projectile would provide a straight line with
slope b if the model outlined above were valid. - As
seen in Fig. 3, this is indeed the case found for the
' C results —the projectile where the width predic-
tions were best. The results for ' 0, displayed in
Fig. 4, show a strong correlation but more scatter
than in the case for 'zC. From the slope of the
curve in Fig. 3 we find b=0.4 or R,„=0.6xp„. The

In this expression everything but b is assumed
known: IJ,F is obtained from separation energies;
xp =1.ZA p

' and S~ is constructed from Eq.f
(4.4b).

It is convenient to consider the following equation
for the function

(=lnyi~Xo, '/S'~—)

which arises from Eq. (4.8):

same value of slope seems consistent with the ' 0
results.

Let us return to Eq. (4.8) and set b=0.4 in order
to obtain predictions for yp. This follows with the
choice of a single overall normalization factor.

The predictions for yp for both the ' 0 and the
' C projectiles have been generated. These are plot-
ted versus isotope in Figs. S and 6. For comparison
the experimental data (yi ) from Ref. 4 are also indi-
cated. The results are remarkably good for the ' C
case. For ' 0 the largest deviations come where one
might expect secondary decays to be important in
populating the isotopes yields. The fact that the
width predictions were less good for ' 0 is also con-
sistent with yield coming from secondary decay.

V. CONCLUSIONS

We have reexamined the high energy fragmenta-
tion process incorporating the feature of fragment
survival or peripherality. This approach suggests
that the separation energy E„and not the Fermi
momentum I'~, is crucial in determining the parallel
momentum widths. %e can achieve general agree-
ment between predictions and experimental data by
setting one parameter, ro, to the value 1.2 fm. We
are currently examining ways of obtaining more
meaningful primary distributions which take ac-
count of inelasticity. These distributions should be
compared with Eq. (2.8) to determine ro. Prelimi-
nary results indicate a single value in the range
2grp &1.2 may be consistent with these modifica-
tions. This will be the subject of a subsequent re-
port.

%e have applied the peripheral model to data at
lower energies (10—20 MeV/nucleon). In these
cases, it is important to incorporate the effect of
Coulomb distortion. This leads to agreement with
the observed narrow widths. The inclusion of
Coulomb distortion also provides a simple explana-
tion for the energy variation of the widths between
10 and 20 MeV.

Finally, with additional assumptions, we have ob-
tained predictions of the isotope yields from high
energy reactions which are consistent with experi-
mental data. The agreement between theory and ex-
periment is best when the momentum widths are
best predicted —a gratifying correlation.
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