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Virtual photon spectrum in second-order Born approximation

P. Durgapal and D. S. Onley
Ohio University, Athens, Ohio 45701

(Received 19 August 1982)

We have evaluated expressions for E1 and M1 virtual photon spectra for relativistic

electron scattering in second order Born approximation and included the effects of finite nu-

clear size and charge. The scattering amplitude can be evaluated analytically provided the

elastic and inelastic form factors contain only poles. We have observed that the virtual pho-

ton spectrum is insensitive to details of both form factors over a wide range of electron ener-

gy and depends only on the nuclear rms radius and transition radius. The integral over the

physical momentum transfer is performed numerically. We have evaluated spectra for elec-

tric dipole and magnetic dipole radiation for electron energies in the range 10—200 MeV

and compared with distorted wave calculations. Except for low energy and high Z, our re-

sults compare well. A range-of-validity plot is given for each multipole, distinguishing re-

gions of electron energy and mass number where the second order calculation is adequate

and also those where the first order term alone would be sufficient and where the conven-

tional long wavelength limit is applicable. Comparison with data on the excitation of the

16.3 MeV isobaric analog state in 4sZr yields excellent agreement with no adjustable parame-

ters.

NUCLEAR REACTIONS Inelastic electron scattering, virtual photon

method, second order Born approximation.

I. INTRODUCTION

The idea of virtual photons' is that the effect of
the electromagnetic field of a charged particle pass-
ing near a nucleus or other target is considered to be
equivalent, to the incidence of a burst of radiation.
The spectrum of these virtual quanta is widely used
in the analysis of electrodisintegration data to relate
them to the corresponding photodisintegration pro-
cesses. If or'(co) is the photoabsorption cross section
for photons of energy ro and multipolarity rl (r be-
ing the label E or M for electric or magnetic), then
the integrated cross section for electrons of kinetic
energy E, is assumed to be of the form

E
a, (E, )=f g or'(r0)N"(E„co)

In order to use this expression we need to know the
virtual photon spectrum N'(E„ro).

The earliest quantum mechanical calculations of
the virtual photon spectrum were done using the
plane wave Born approximation (PWBA) and the
long wavelength limit. The authors of Ref. 2 give
explicit expressions for E 1, E2, E3, and M 1 spec-
tra which have been widely used. We refer to these
as the conventional spectra. Coulomb distortion ef-

fects on the electron wave function were taken into
account by Gargaro and Onley, who showed that
these result in an enhancement of the virtual photon
spectrum in comparison to the conventional spec-
trum, which increases with the atomic number Z
and also with multipolarity l. Reference 3 also uses
the long wavelength limit or its equivalent in that
the nucleus is considered to be of negligible exten-
sion.

The assumption of a point nucleus in the distorted
wave calculations becomes questionable where the
wavelength of either electron or photon would be-
come comparable with the physical nuclear radius.
Some estimates of corrections due to finite nuclear
size were made within the framework of PWBA by
Barber and Schotter, and the results indicate that
the effect of finite size is to decrease the virtual pho-
ton spectrum; these calculations are limited to elec-
tric type transitions only. Further, the use of
PWBA in first order means that Coulomb distortion
effects are neglected, and since the two effects may
clearly interfere, a simple sequential application of a
finite size correction from one calculation and a fin-
ite charge (Coulomb) effect from the other would be
incorrect.

In order to correct for both finite size and
Coulomb distortion we have included form factors
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for both elastic and inelastic scattering and carried
out calculations in second order Born approxima-
tion (SOBA). The method adopted is similar to the
one developed by Cutler for Coulomb excitation
and later used by Bergstrom for magnetic transi-
tions. Both these authors have neglected the mass
and energy loss of the electron in their calculations,
which would be out of the question for our calcula-
tions.

In Sec. II we have derived an expression for the
differential cross section applicable with any elec-
tron wave function. In Sec. III we consider first or-

der calculations. It consists of two parts; in the first
we derive expressions for the conventional spectrum
for a general value of the multipole and in the
second we make a study of finite size effects of the
nucleus to determine to what extent the shape of the
spectrum depends on the specifics of the inelastic
form factor. In Sec. IV we derive an expression for
the virtual photon spectrum for E 1 and M 1 radia-
tion in SOBA, which is compared with distorted
wave calculations and with some experimental re-
sults in Sec. V. The Appendix contains a number of
integrals necessary to obtain the results of Sec. IV.

II. THE DIFFERENTIAL CROSS SECTION

(4)

P, (r ') = —e5(r, —r ')

and

The interaction matrix element is given by

Hfg=(JfMfff ~ f d rd r'[p„(r)G c(r r')p, (—r ') —j „(r) GT(r —r ') j,(r ')]
~
it)(JiMi), (2)

where the caret indicates an operator, J(Mi (JfMf) are the angular momentum quantum numbers of the initial
(final) nuclear states, p; (pf) designate the initial (final) electron states, p„(r) and j „(r) are the nuclear charge
and current operators, and p, (r ') and j,(r ') are the same for the electron. Gc and Gz are the instantaneous
scalar and retarded tensor Green's functions:

G (~ ~i) q iq(r —r)
(3)2B'

G ( i) I 1 dq iq(r —r)
2&2 q2 i02

where I is a unit dyadic and co is the energy exchanged. On substituting

j,(r ')=—ea5(r, —r '),
where a is the Dirac spinor operator, in Eq. (2), and integrating over the variable r', we get

Hfi =—
iq (r —r~)

2 (JfMfpf ~ f d'q f d'r
2' 2

lq (r-r )j„(r) ae
—N

2 2

For the first or scalar term we employ the expansion

rp„r e'q'=4m' Ml q Y~ q
lm

and for the second or vector term

ee' 'a j„r =4m. —i a qXYll q T~~ q + a Yll q Tlm q
lm

(9)

(12)

where Yii(q ) are the vector spherical harmonics, and Mi (q) and Ti' (q) are the Coulomb and the transverse
nuclear multipole operators:

Min(q)=i'f d'r p„(r)J'i(qr)Y( (i') (10)
l

T~~(q)=
' f d'r j „(r) V—X[J'i(qr)Y(i(r")], (11)
q

Ti (q)=i f d r j „(r) [J'i(qr)Yii(r)] .
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Here ji(qr) is the usual notation for the spherical Bessel functions. Substituting the expansions of Eqs. (8) and
(9) in Eq. (7), and separating nuclear and electron parts in each term of the interactiori matrix element, we have

l

Ha= — f d'qg C(J;,Jf,l;M;,Mf,m), [Rc(q)FP (q)]

iFr (q) ~ Er (q)
El Ml

+ 2 z [Rr(q) q&&Yii (q)l — [Rz(q) Yii (q)], (13)—N —N

where C(J;,Jf1;M;,Mf, m) are the Clebsch-Gordan coefficients. ' In Eq. (13) we have introduced the follow-
ing notation for those matrix elements which involve the electron wave functions and electron operators:

Rc(q)= X f d'r. 4f'e (14)
SPlnS

Rz(q)=g f d r,Pfae
spins

and the nuclear form factors Ec(q) and Ez'(q) are related to the reduced matrix elements

Ec(q) =
iran

&Jf I IMi(q) I I
J')

(2Ji + 1)'r
(16)

and

„,&Jf I I &i (q) I I
Ji & .

(2Ji+ 1)'r
(17)

The labels C and 2 in Eqs. (13)—(17) distinguish Coulomb (or longitudinal) from transverse contributions. For
the differential cross section we need the square of the interaction matrix element averaged over incident ely-
tron and nuclear spin directions and summed over final spin directions, i.e.,

X, l&sl'=~~1 X —,'X IHrl'.
l +iMy S(Sf

The smn over nuclear spins can be done using closure relations' and the sum (18) takes on the form

2 Fc(q)Ec(q') i EP(q)FP(q') zi
ss|~ n'(2l +1)

l
q'q' (q' —~')(q' —~')

Fz (q)Fz (q') ~i iFc(q )Fr (q)+. . . , XT'+2Re . . . XEc
(q —~ )(q' —~ ) q' (q —a) )

Ec(q')FT '(q), iFz (q )Ff (q)—2R~
2 2 ~ XMg +2Re

2 2 2 2 XMEqt 2(q2 ~2) (q' —~ )(q' —co')

(18)

(19)

The dependence on the angular coordinates, electron spins, and the magnetic quantum number m has been col-
lected in the kernels Xwhich are labeled to distinguish the Coulomb, transverse, and interference contributions:

X,'= f dQqdQq g [Rc(q)~i (q)][Rc(q')I'i (q')]
m

Xr'= f dQqdQq Q [R&(q) Y*,(q)][Rr'(q') Y,(q')],
m

X~=fdQ, dQ, g [Rz(q) Y,(q)][Re(q')I'i (q')]

X' ~ =f dQqdQqg [Rz(q) Y~(q)][Rz(q').Y (q')] .

(20)
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In this expression we have introduced the abbreviation Y, which is interpreted as follows:

Ysr(q) =Yii(q»

Yx(q)=qXYii(q) .

The differential cross section is now given in terms of the sum (19) by

do'I E2p2 Ei —
z

I
JIr

I

'
dQ (2~) pi spms

III. THE SPECTRUM OF VIRTUAL PHOTONS IN PWBA

(21)

(22)

If we assume the electrons to be represented by plane waves, then the electron wave function will have the

' 1/2

J
(23)

where m, is the electron mass, Ez (pz) its energy (momentum), and u, (p~) represents a four component column
matrix corresponding to the two positive energy solutions of the Dirac equation. " In our case we shall distin-
guish initial and final states by using the subscripts i(f) instead of s and the quantities Ei,p, (E2,p2) for the
energy and momentum. On inserting the wave function of Eq. (23) in the Eqs. (20) for the kernels we get

Xc—— g YP (Z)I'( (2)
~
uf(p2)u;(pi)

~

', (24a)EE y2 g4

e {2n') 5(h q)5(h —q') ~—
T=E E 2 4 ~~f+ 7 ~i~i 7 ~f ~

E&E2 y
(24b)

The sums over final electron spins f and average over initial spin i are straightforward. Further, the sums over
the magnetic quantum numbers m cause the interference terms to vanish and the differential cross sections for
the Coulomb and transverse contributions are then found to be

doc' P2 I
+c(~)

I

'
=4ira

4 (E~ dP), —
Pi

der p2 (~max ~ )(~ ~min ) 1

dQ pi 26~(dP —co ) (b —r0 )

(25a)

(25b)

where b, and 5;„are the kinematical limits to the momentum transfer b„E~=Ei+E2, and a is the fine
structure constant.

The cross section integrated over solid angle is then related to the virtual photon spectrum N'i(E„co) by di-
viding by the photoabsorption cross section, ' and the result is

N'i(E ai) =o''(co (2~}
~

p,i(~)
~

g
(26)

(28a)

While the spectrum for magnetic transitions is purely transverse, that for electric transitions contains both a
Coulomb and a transverse part:

N '(E„co)=Nz (E„m), {27a)

N (E„co)=NP(E„co)+N (E„co) . (27b)

In order to find N '(E„co) and NT (E„co)we substitute Eqs. (25) and (27) in Eq. (26) and equate the longitudi-
nal and transverse parts. We change the variable of integration from scattering angles to momentum transfer
squared, LL, and integrate between kinematic limits; we then get the expressions

E 2 g2 (y/ g (2
N (E„co)=— f d(b, )2~ p) ~min

/
Fz'(co }

f

2
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~'

max 2 (~max & )(& &min ) 2 I
Fz''(4)

4~ p a 2 g2(g2 ~2)2 (g2 2)
I

Frl( ) I

2 (28b)

The conventional spectrum is derived from the first order spectrum by taking the long wavelength lim-
it which is equivalent to retaining the lowest order terms in the expansion of the form factors Fc(q}, Fz (q),
and Fz (q) in powers of q, namely,

I Fc(q) I' l

IFPI(a) } I2 l+1 a)

I
Fr'(q) I'

I
F2'(to)

I

'

(29a)

(29b)

Ep P1+P2
1n

&P ) P1 —P2

E 2 E 2

ln(g ) — ln
Pt &Pi

l 1 Ep'

l+1 p2 / —1

P2
N '(E„co)=

Pi+12 P2

Pi
Nz I(E„co)=-

7T Pi —P2

g2I —2 g2I —2
max min

21—2

2l 2l
1 ~max ~min

N '(E„to)= 2'
I

I —1 (Q+ Q+. )
NT (E„ri))= 2 2[EI +E2 —2(l —1)m, ] 21n(g)+ g

where l'=l —1 for ~ =E and l'=1 for ~ =M. Substitution from Eqs. (29) in Eqs. (28) and subsequent integra-
tion then yields the results

g2l —4 g2l —4 g2l —2 g21 -2
max min

2i-2
N

E)E2+P )P2 —m,

IIi, (EI —E2}
(30)

In this limit, the expression for magnetic transitions can be obtained from the transverse electric term as a
consequence of Eq. (29); the relation is

NMI(E ~)=Ng" +"(E„~). (31)

A rough criterion for the validity of the long wavelength limit is qR„„,« l, and since it is evidently more ap-
propriate for high I states it is interesting to see how the virtual photon spectrum behaves as a function of /.

Figure 1 shows the conventional spectra for electric transitions El for l from 1 through 20, for 100 MeV elec-
trons. In the low photon energy region the major contribution comes from the Coulomb term and the virtual
photon spectrum which behaves as co

2'I " rises sharply (infrared catastrophe). Near the end point the
Coulomb contribution becomes negligible in comparison to the transverse contribution and all curves approach
zero in the same fashion.

The merit of the conventional spectrum is that it is independent of all nuclear properties and indeed the idea
of a spectrum of virtual photons is not useful if its shape is strongly dependent on the model chosen for the
transition charge and current densities. We have studied the finite size effects of the nucleus to determine to
what extent these results are model specific. One of the models we have used is that introduced by Helm'2 and
later elaborated by Rosen et a/. ' and the present authors, '5 which takes into account the main features of the
nuclear shape and its collective motions and has simple form factors with adjustable parameters. The other
model we use is the modified form of the exponential distribution' which has both simple form factors and
simple charge and current densities. Form factors used for the Helm-type model are from Ref. 15 and Eqs. (3),
(8), and (15).
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3x IQ C onventionol

' 1/2

(43}

and the E1 transition radii by

R c (R 2+ 5g2)1/2

RE (R 2+5 2)l/2

(44)

(45)

a33xlQ-

-2
Qx IQ—

I I I

4 6 8

PHOTOhl ENERGY' (MeV)

IO

We first evaluate the virtual photon spectrum for
M 1 transitions, by substituting the form factor of
Eq. (32) in Eq. (28b). Figure 2 shows the effect of
finite size on an M 1 spectrum at different energies.
The upper part of this figure shows that at low ener-
gies such as 10 MeV nuclear size does not produce
an observable effect for the spectra for mass num-
bers A = 1 and A =240; both coincide with the con-
ventional spectrum. On the other hand, the lower
part of Fig. 2 shows that at higher energies such as
100 MeV, inclusion of finite size causes a depression

3x IQ
I I I I

20 40 60 80
I

IOO

PHQTQN ENERGY cu (MeV)

FIG. 2. The M 1 spectra of virtual photons emitted by
10 and 100 MeV electrons incident upon targets of mass
numbers A =1 and A =240, calculated in PWBA with the
finite size effects included and compared with the corre-
sponding conventional spectra. Helm model form factors
with g =0.3 fm, It =0.87 fm for A =1 and X=6.85 fm,
g =0.8 fmi for A =240.
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I
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I
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3x lO

5 6 7

10
(5—16m}

0
(42)

For the Helm model, the transition radius for the
M1 transition is given by

is governed by the value of the transition radius and
thus we expect its value to govern the behavior of
electron cross sections at suitably low energy. For
incompressible flow, relation (35) between the form
factors also implies R„=R«so that electric transi-
tions can be characterized by a single radius.

For the modified exponential distributions we
find that the transition radii for all three (Coulomb,
transverse electric, and magnetic) cases, all have the
same expression for a transition of multipolarity
1=1.

3 x lO
I

zo
I

go
I

60
I

80
I

!00

PHOTON ENERGY au (MeV)

FIG. 3. The upper part of the figure shows current
component for three different distributions, the Helm
model, a degenerate Helm model (skin thickness g=0),
and a modified exponential shape [e "P(er)]. They all
have the same transition radius, R t, ——4.21 fm. The lower
part shows the M1 virtual photon spectrum correspond-
ing to Rt, ——4.21 fm for electrons of kinetic energy
E,=100 MeV.
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Conventiono I

Unconstrained ~Coincident
Constrained

Constrained

Unconstra i

Conventional
---- Constrained
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3x IQ
I i i I

. 40 80 I20 I60

PKOTON ENERGY cu(MeV)

i

200

FIG. 4. Comparison of E1 virtual photon spectra us-

ing Eqs. (33) and (34) with R =R, g =g (constrained) and

R&R, g&g (unconstrained). The values of the parame-
ters are R =4.21 fm, g =1 fm, R =3.57 fm, g =0.8
fm2, and E,=200 MeV.

in the virtual photon spectrum in comparison to the
conventional value. Figure 3 compares the effect of
three different distributions, the Helm model, a de-

generate Helm model with zero skin thickness, and a
modified exponential distribution. All the three dis-
tributions, shown in the upper part of Fig. 3, have
the same transition radius. The lower part shows
the virtual photon spectra corresponding to these
distributions and, interestingly enough, they coin-
cide. From this and many similar examples we con-
clude that at these energies, irrespective of the de-
tails of the form factor, if we keep the transition ra-
dius constant, we get the same virtual photon spec-
trum.

We can make similar observations in the case of
electric transitions, but now we have both a charge
and a current distribution contributing. One case of
particular interest is the effect of tying the two dis-

3x IO

40 80 I 20 I 60

PHOTON ENERGY ~ (MeV)

I

200

FIG. 5. E1 virtual photon spectra using constrained
(R =3.57 fm, g =0.8 fm ) and unconstrained (R =4.21
fm, g2=0, R =3.57, g =0.8 fm2) forms of Eqs. (33) and
(34). The transition radii in the two cases are the same.
The kinetic energy of incident electrons is E,=200 MeV.

tributions to one another by the constraint of Eq.
(35). Taking an E 1 transition and using form fac-
tors given in Eqs. (33) and (34) with R =4.21 fm
and g~=1.0 fm, we compare the effect of setting
R,g to the same values against making them 20%%uo

smaller. Figure 4 shows how the spectra for the two
cases are different. However, if we adjust the
parameters so that the transition radius in the two
cases is the same, then we get coinciding virtual
photon spectra as shown in Fig. 5. Hereafter we use
relation (35) for simplicity, although a complete
analysis should take account of both transverse and
Coulomb transition radii as independent parameters.

IV. THE SPECTRUM OF VIRTUAL PHOTONS IN SOBA

In this case we admit that the electron is moving in the Coulomb field of the nucleus and modify the elec-
tron wave function in Eq. (23) accordingly. The Green's function for electrons of energy Ej, and momentum

PJ~ 1S

e'" i'-' '
G ( r, r ')=(i a 7 EJ Pm,)——

(2n ) (p
~ k2 ia)— —. (46)
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and the Coulomb potential of the nucleus, also conveniently written as a Fourier transform, is

dq geUc(r)= 4—ne Z I 2F(q ) (47)
(2m. } q +z(,

In Eqs. (46) and (47) a and A, are small positive quantities which will ultimately be set equal to zero; F(q) is the
elastic form factor of the nucleus and Z its charge number. The wave function for the electron, correct to first
order in Uc, is now (Ref. 7}

ip . s e2Z, (2E, +a k)e'"'F(k )
p, (r)=e z 1+ d k

2n (k2+A2)(k2+2k pz
—ia)

me

E)V

' 1/2

us(pz} i (48)

which when inserted in Eqs. (14) and (15) for Rc( q) and Rz ( q) and combined with Eqs. (20), yields the follow-

ing expressions for the kernels correct to second order Born approximation (SOBA):

(2ir) ignis 5(h —q') 5(b, —q) 0 aZ F[(Z—q) ]
V'E E 52 b2

(2ir)™s 5(h —q'} 5(b, —q) 0 aZ F[(b, —q) ]
V EiE2 5, 5 2n. (5—q}2+F2

(2m)™ s aZ 5(b,—q') F(b, —q)'
V2 E E 2 2 g2 z (g t}2+F2

5(b,—q) F[(Z—q')']
(b, q') +—A,

f
2Ei —a (b, —q)

Sz =gguya Y,(q}
m i,f 1

u;u; a Y,(Z)u&+i. t. ,

where the superscript "0'* indicates the first order contribution and is the same as Eqs. (24), and

2Ei —a (b —q)
& (2l+1)Sc——g g ug u;u; uz Pz(q 6}+i.t. ,

Z1 4n.

(49)

(50)

(51)

2Ei —a (2—q)
Szi igg ——Y~ (Z)uza Y@(q)

~ f Z1
u;ug uf+1.t. ,

2Ei —a (b, —q)
Sz2 —— i+g—YP (q)uZ

m i,f 1

Zi q (p——i p—2 )+—2q p2 ilr . —

-+
u;u; a.Ys(h)uz+i. t. , (53)

(54)

In Eqs. (50}—(53} the abbreviation i t corres.p.onds to an "interchanged term" obtained from the first term by
making the following interchange:

q~ —q,
(55)

p1~p2, E1~Eg .
The entire dependence on electron spins and magnetic quantum number "m" is contained in the functions S,.
The sums over electron spins are straightforward but require some special techniques. " The m sums take dif-
ferent forms for electric as compared with magnetic transitions, so we need to,assign the "value" E or M to r
before carrying out these sums. In doing these sums we take the unit vector b, to be along with z direction and
pi, p2 to be in the x-z plane; the various sums are tedious but straightforward and all detail~ are given in Ref.
6. The result is

Sc=
2 [Ei«z —~ )—(Eip2+E2pi} (~—q)]Fi(q ~)+i t. ,

(2l+1)
Smm, Z1

(56)
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(2l +1)
~TM

8m'm, Zi

E
(p1 p2—+5 ) E—1E E—P2'q+E25 q+2E1p2 P((q 6)

I ( p2 q —p2,q b )( 4E—1p2, E—6+E qq b )+
Pi'(q ~}

+(E2qb, Eq—p )(1—(q 2) ) j [1(q+)2]1/2

2E1 ~t (q 5)+
l l 1

I2(P2'q —p2xq'~)' —p2 '(1 —(q'~)') j „-, +1t»+1 [1—(q 2)'] (57)

(21+1)
TE 2

(E2& Ep~—) +(2E1p2'+E ~'+ ', E ~p-~ E1E—')q

E b, AE2—2E»~+, p2 q+
2

(q'~)' —
2

qp2(q'P2)(q'~ Pi(q ~)

+ I(4E,p2, '+E 5'+E bp2. E,E ' —E~p, q+—E26, q)(1 (q 2)')—
l l+1

P1'(q 8)
4E1(p2 q —p~q ~}'j—

(1 (q.g)2)1/2

+ I(q(E p2, E2b, )+[4E—, (p2„' p»') E„h—p2, ](q—8) +(4E,p2,+E b, )p2 q2 1~1

+i.t. ,

+qbE (q b}'—E p2q(q. &)(q p2))(1 —(q ~)')

P&2(q Q)—sE,q Z(P2q p~q q} j—
1—(q S)2,

r

—(2l+1) 1

sn'm Z1 [l(1+1)]'/ 2
(1—(q 8) ) 2E,E P2,+ (b, E)+p2, q —b, ——hp2 q

J

—q 6(p2.q p2,q Z}(2E1E~ —62+ q Z )—P1'(q 2}
[1 (q Q}2]1/2 (59)

(2l +1) 1 2

S~m 'Z, [l(l+1)]»2 2
(b, E~ )(1—(q 2) ) +—I2E1E&—2(hp2 —q.p2) g +g.qj

P1'(q 2 )
X(P, q —p2 (q 5})

[1 (y,j )2]1/2
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where E =E& —E2.
These relations together with Eqs. (49) yield expres-
sions for the kernels for Coulomb, transverse, and
interference terms expressed as integrals over the
solid angle dQ&. In the above equations, we use
series forms' for the Legendre and associated
Legendre functions Pi(x) and P~ (x): F„[(b,—q) ]

(b, —q) +A,

1

(b, —q)2+A, 2

is most convenient for analytic purposes. We could
handle any form factor with singularities restricted
to poles in the q plane but find the choice of F(q}
not especially critical in this problem. With this
form factor we can write the combination

PP(x)=(1—x ) / Pi(x),2 m/2

E(I/2)
Pi(x)= g akxi

k=0

(61)
+ O(A, 2)

(&—q)'+y'

(63)

where

( —1) (2l —2k)!
2' k!(l—k)!(I—2k)!

and E(n} means "integral part of n."
For the choice of elastic form factor we find the

Yukawa form factor

and the term 0 (A, }can be dropped since we take the
limit A, ~O. On inserting the set of relations
(56}—(63) in Eqs. (49), we find that any of the in-
tegrals over solid angle of the form

F b,
Iq —— Oq 2 2

Re Sg, 64
(b, —q) +A,

where S, can be Sc, Sz~, Sz@, SI~, or SI2, can be
expressed as a difference of two similar integrals:

2

Fz(q )=
2 2, y= Yukawa parameter2=- y

e'+r' '

(62)

Ig R——e[I((A,}—I((y)] .(21 +1)
Smm,

(65)

The integral Ii(P), P =A, or y, when expressed in its
simplest form, looks like

l+2
Ii(P)=

y g (~nlgn+~nlgn )+CIJ+Dl +i.t.y n n (66)

I'i=q' pi' p2',—a(P—}=q'+~'+P', (67)

where &«, Bn&, Ci, and Di, besides being functions of the kinematic parameters E„E2,pi, p2, q, and Q, are
also dependent on p and the coefficients ak of Eq. (61). The quantities g„, /, and J are the solid angle in-
teg rais:

dQ
1+@""+ iC'P2

g(P)= f dQ,
1+k2q 2

J(P)= dQq
(1+kiq p2)(l+k2q 6)

where

2' 2 2qb,
ki —— . and k2(P) =-

Vi ill — n (P)

A11 these integrals can be evaluated analytically. The integral g„can be expressed as the sum

E(n/2) 1 a l(Q p2)n 2™ m
( 1)m —k

un=2~ g 2m, [1—(~ p2)'] g, , g(n —2k},
m o

22m a —2m)fml k p kf yi k!

(6g)

(69)

(70)

(71)

(72)
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where

and

1 1

k) n

V& V& +2qp2
ln

2qp2 V~ —2qp2
(74)

The integrals / are found to obey the recurrence relation

I 1—( —1)"J—A'-1 2m

kq n

with

1+kg
/p(P }= ln

2 —
2

The expression for the integral J is simply

n V, n(P) (q —b, )V2+y Vt+2q(p~ q +uq +v)'~

q(p~ q +uq +v}'~ (q —5 )Vq+y V~ —2q(p, q +uq~+v)'~~

~2=q +xi —p2
2 2 2

u (13}= »'Pi'+O—'(Pi'+P~')

v (»=p ~'~'+&'f ~'(pl'+p2') (p i' p2')—''(}+p2—'0'

(76)

(77)

(78)

With an arbitrary value of the angular momentum l, the expressions at this point start to get rather complicat-
ed and our present investigation is limited to E1 and M 1 transitions.

A. Spectrum for M 1 transitions

For magnetic dipole transitions, the result of evaluating integral I, of Eq. (64) is

3
IM 2 ~ gM

64m, q
(79}

where

=r'Io~= E2 E1 q ~min
1n

p2 pl q +~min

E2 E) q —b mIL+ ln
I 2 J1, 0+~max

+ fE (pi —pz )—E 6 ] 2ln (q —&)'+y'
(q +~)'+y'

(q +K)q +K2) Eg E) q —5;„E~ E, q —5,„+ ln — — + 1n
&(q' —&') P2 Pi q+~ ~ P2 Pi q+~ .,

(E]q4+K3q2+K4) (q' —b 2) V2+y2V$ +2q (p [2q~+ uq 2+v)'~2

&(p~ q +uq +v) ~ (q —& )V2+y2V~ —2q(p&2q4+uq2+v)' 2

(E2q +K3q +K~) (q b)V~+y V2+2q—(p2 q4+uq +v)'~
ln

~&p2'q'+uq'+v (q' ~')Vi+y'Vz 2q(p»'q'+u—q'+v)'" (80}
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with

Ki ——2[6, +2(pi +p2 —E )],
K2=5 [5 +4(Pi +P2 E~—)] 4(P—i P2—)

K3 ——ElKl +Epy

K4 Ei——K2+y [Epb, +2Egn(pi p2 —)+4Ei(2p2 En&—)]+Eiy (81)

In Eq. (&0), the quantities u, u are the same as those defined by Eq. (78) but with P =y, and the quantities with
an overbar, u, iT, Ki, K2, etc., are interchanged terms, i.e., they are given by the expressions for the corre-
sponding u, v, Ki, K2, etc., subject to the interchange of Eq. (55). Hereafter we shall use the overbar ex-
clusively to indicate interchanged terms.

The expression for the square of the matrix element then reduces to

FM 1( )FrM i(
(IIM1~2 d d i 2 '2 r q r q XM1r (82)

(2n } me 5(h —q')5(b, —q) p
BA 2 EE 4 T

yields the expression in first order. The second term

(2n }s 3
corr g 64E E

5(b, —q') nZ 1

g2 2 2 QM- q'
yields the second order correction to the matrix ele-
ment which we now write as

where the kernel can be written as a sum of two
terms

Ml Ml Ml+T +BA ++corr s

the first of which

I

tual photon spectrum involves yet another integra-
tion of the matrix element over the physical momen-
tum transfer 5 which in general must be performed
numerically. Thus, if we perform the q integral of
Eq. (85) also numerically, then our final expression
for the virtual photon spectrum will involve a dou-
ble numerical integration, one of them over an infin-
ite range. Although in principle this is possible,
things get somewhat clumsy. Therefore, it is a de-
cided advantage to evaluate the integral WM analyti-
cally. This can be achieved only by making an ap-
propriate choice for the inelastic form factor.

In Sec. III we observed that the virtual photon
spectrum is insensitive to the details of the inelastic

IH '
I

'= IHa~'
I
'+~rM

where

a (2m) aZ Ff' (6)
V2 m2 (CO —b, )

(83)

The q dependence of the correction part ATM is re-
quired explicitly for the integral

Ff '(q)
q I (85)

N

with InM given by Eq. (80). We notice that at the
origin of the complex q plane, the argument of each
of the logarithmic terms becomes unity so that
(InM )& p=0, and the integrand of the q integral in
Eq. (85} vanishes. All q integrals are to be evaluated
in the complex q plane shown in Fig. 6. There are
simple poles at q =+co,+b, and four branches in the
positions shown, to which must be added any singu-
larities in the factor Fz.

Before deciding the mode of integration for the
integral WM we recall that the evaluation of the vir-

b min

- Amex -6m)n

-6 -ly

, FIG. 6. Complex q plane.

-ly
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S. Spectrum for E1 transitions

The expression for the E 1 virtual photon spectrum can be obtained by the same sequence of steps as used for
the case of M 1 transitions, but is more complicated because we have contributions from transverse electric,
Coulomb, and interference terms. The transverse electric form factor is given by

P'z (q)= (1+C2q }
(+ 2+2}4

and the Coulomb form factor is obtained using relation (35). The square of the matrix element for electric di-

pole transitions can be expressed as

=
I
&ax'

I +~TE+~c+~l (95}

(97)

where the first term can be identified with the first order matrix element, and Ar@, Ac, and Al give the contri-
butions of the transverse electric, Coulomb, and interference terms to the second order correction and are given

by expressions similar to Eq. (84), namely:

a (2n) aZ +r (~)
4EE 2 2 2 2 2 E' (96)

V n b(ro —b)
a (2ir) aZ PT

Ac ——

4E1E2 y2 ~2 2N 2+2

a (2~)' az P'r"(~)
(98)V' n' roh' (+2 ~ 2}

E~ E)+ WE(&,„)
pz p]p2 p&

+
p2 pi

E2 E) I'E(h, „)
p2 pi

+2(Pi' —P2') I'E(&;„)—

where for the transverse contribution, WE can be expressed as

E2 E)
WE —NE y CO

— — WE(h;„)

Eg E)
+E(&;„)

Ep E)+ +E(&,„)+4&(2&E ~E) (~E++E)— (99)

where WE, O'E, 9'E, etc., can be written in terms of the integrals defined by the set of Eqs. (87)—(90):

SE C2E~P (2,b„co )——+ [Ez —C2Esr(pi —p2 )]P ( l,h, co ) Esr(pi p—2 )W(0, h—,co },
8'E(y) = 6&(O,y, co)+—(1—C25 )P (l,y, a) )+C2P (2,y, ri) ),
O'E C2Ep9 (2)+——[Eq —C2EM(Pi —P2 )]&(1)—Ear(Pi —P2 )&(0)

WE(y)=9'(Oy, ~)+C2P (l,y, ~0),

9'E(y) = li C2 H(3,y)+ (l i +C2l2) P (2 y)+ (l2+ C2l& )9'( l,y)+ lz 9'(0 y),
P'E ——ls&(0)+(l5+C2ls)W(1)+(14+ C215)W(2)+C2l4&(3),

and the quantities l ~, l2, etc., depend on kinematic parameters and are given by

l, =26~—E~

l2=2[~ 3~ EM +4~ (Pi +P2 } (Pl P2 } 1

12 —— 6[6, Esr +2(pi p2 —)1—
l4=Ei [li —2(pi' —P2'}]
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15 ——E][12+4&'(p$'—p2')]+y [25'(E]+Ep) E—p(p/' p—2') 2—E/EM'] y

ls ——E)[ls —2h (p) —p2 )] y—[2E)EM b +Ebb, (p( p2—) 2E—)(p) p2—) ]
r'—[EADEM EM(pl p2 )] .

27

In order to write an explicit expression for the integral Kc we need to define additional integrals:

D(k) = d ln
o (a2+q2)4 (q +Q)2+y2

(100)

Pc(ky)= I dq ln
{a +q ) q+y

dq
' (q b)V2—+y V)+2q(p) q +uq2+v)'~2

(a +q ) (p~ q +uq +u)' (q —b )V2+y V~ —2q(p~ q +uq +U)'~2

(101)

(102)

The results of integration for various values of the integer k are given in the Appendix. In terms of these in-

tegrals, if we introduce the notation

Wc(y) =Wc(O,y)+ C2P c( l,y),
Sc——6 P c(0,5)+(1+C2b, )Wc(l, h)+C2P c(2,5),
&c=(b +y )D(0)+I 1+C2(h +y )JD(1)+C2D(2),

@c{y)=—is&(O,y, b, ) —(l, +C2ls)P (l,y, h)+(1 —C,l, )W(2y, h)+C2&(3,y, b),
~c=lo&c(0)+(l9+C2lo)&c( 1)+( E& + C2l9) Pc(—2)—C2E, Pc(3),

with

17 2(E~ 6)——, —

ls b, (2' 6——), —

l9 E)!7 Ey—— —

lo=Eils+r (2EI E~ EMh )+E2y—

then the expression for Wc is given by
~ ~

E E,~c=&z y' — ~c(~min)—
E

+ ~c(~ -) + '{—2&c+~c)
PiP2

E2

pz

pi

E) E2 E)&c(~;.)+ + @'c(~ -)—(~c+&c)
P2 Pi

(103)

The contribution of the interference terms, Al, Eq. (98), contains the integrals Wlx and Wlc. Of these, the con-
stituent integrals of Wlz are similar in nature to those of WM and W@. Thus if we define

&,x =(6'~y')&(0)+ [1+C2(h'+ y')]&(1)+C2&(2),

9'IE bP (O, b,co)+(1+C——2b, )P (l, h, co)+C P2(2, b„o2),

@IE{y)=[2'(pI' p2 ) EM—(~'+r')V (O,y, ~)

+ [EM +C2 [2E (pi p2 ) EM(b, +y )—j ]P ( l—,y, co)+C2EMW(2 y, co),

PIE —l3 F(0)+(i2+C2&2 )W( 1)+(i & + C2i2 )&{2)+i~C2&(3)

with



27 VIRTUAL PHOTON SPECTRUM IN SECOND-ORDER BORN. . . 539

i i E——t (Ep+2E, ),
l2 ———[2E, I2Eib, '—Ej,(p, '—pg ) ]+y (2h Ej—g' 2E—iE~ )],
i3=Eih [Emb, 2E—p(pi pr —))+y [b EM 2E—i'(pi pr —)] Er—Eriry

then the integral WIE can be expressed as

piP2

E2 E)
@'rz(~ .)

E2
+ &rz(~ -}

p&

E, E)
2Eri —+ WM(h; )+

P2 P& pi

E2 E) 2EMEp
M(~max)+ (2+IE +1E} ~IE++IE

P2
max

(104)

On the other hand, the constituent integrals of Wrc are similar in nature to those of Wc, Eqs. (100}—(102). In
terms of the integrals of Eqs. (100)—(102},if we introduce notation

&rc D(0)+C——zD (1),
@'rc(y) =[2Eri(pi pz )+—EM(~'+y')P c(o y}

+[ Erir+Cqt—2'(pi pq )+EM—(h +y )I ]Pc(1,y) —CREME c(2,y),

~rc =& 5~c(0)+()4+C2l 5 )~c(1)+(EADEM+ C2l 4)~c(2)+CzE i EM &c
with

then

E2 + @'rc(~ .)
P2 Pi

E E]
@'rc(ii .}2J IC=&E

P2 pi

E2 E) ~c(a;.}-
p&

E2 E) ~c(~ .'}
P2 P&

—2Eph
P2

i4 —[2Ei I——2Eii) +Er (pi —pz )l+y'(2~' —Erir')]

is ——Eih (2E, +Ep)+2E,E~E (pi pz }+y [2E—iEr, (h p, +pr }+—b, EM ] ErEMy—

+4Esr Eq b (2'(h) S'rc )+Arc —Prc— (105)

In te™sof the integrals Wz J c ~rz, and J rc the expression for the virtual photon spectrum in second or-

der Born approximation for electric dipole transitions can be written as

a co 1 max

N '(E„co)= zi2'rr pi ( Fz (Q7 ) (
min

1 1 1 1
WE + Wg+ WIE+ Wlg 6dh .

N 2co 5 —cg)

(106)
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V. RESULTS AND CONCLUSIONS

The evaluation of the integrals J ir, Wz, etc., has
involved rather extensive manipulations, and in or-
der to check these expressions we also performed the
same integrations by numerical integration for
selected values of the parameters. The two modes of
integration have provided a vital check on one
another.

Since our calculation takes account of charge ef-
fects of the nucleus to order aZ only, we have com-
pared our second order calculations with three other
approximations, the distorted wave Born (DWBA),
the plane wave Born approximation (PWBA), and
the conventional long wavelength method. In
DWBA (Ref. 19) the size and charge corrections are
taken into account, in principle, to all orders in aZ,
but the results are restricted by computational diffi-
culties. By PEA we mean that produced by the
first order term only and accounting only for the
finite size of the nucleus. The conventional method
produces results independent of both size and charge
of the nucleus.

In the results that follow we are using primarily
the form factors of Eqs. (36) and (37) with the value

of @=0.1 so that the value of the parameter a in Eq.
(42) is

a= (107)

%e have related the transition radius to the root-
mean-square radius by

R„=1.27R~s, (108)

where R~, itself is determined from the mass num-
ber A of the nucleus

R =(—)' 1.12A ' +mlS 5

1.75
A

. (109)

The Yukawa parameter of Eq. (62) is related to R
by

vSy=
R rms

(110)

Instead of the differential cross section da /dQ
we display the relative cross section, defined for
magnetic transitions by

(Q 2 +2)(+2 Q 2)

pi 2+2(Q& &)& (Qi i)

so that in first order this should reduce to
~IEz (b)

I
according to Eq. (25b). Figure 7 shows

the M 1 relative cross section evaluated using second
order and distorted wave calculations (DUELS)
(Ref. 21), and compared with the form factor
squared. %e observe that there is good agreement
between the second order and distorted wave calcu-
lations.

%e have chosen two nuclei, qua and 48 Cd, to il-

lustrate the second order results. The choice of nu-

clei is largely arbitrary; we avoid the very light nu-

clei where the effects we are discussing are small

and the heaviest nuclei where we are not confident
the second order approximation applies (a point
which will be discussed later). Figure 8 presents the
effective M l. virtual photon spectra for a range of
electron energies for 20Ca and 4II Cd. Around 10
MeV, the finite size does not contribute and The

correction is mainly due to the charge; consequently
the corrected spectrum lies well above the conven-
tional spectrum. Around 40—50 MeV the charge
and the size corrections neutralize each other and
the second order results almost coincide with the
conventional spectrum. At 100 MeV the size effect

E, = IOOMeY, OCa Tatget

ILJ

0
I-

LLI
K

lFT (4) l for Ml

x x x x 2nd Order Calculation

+Ace Distorted Wove (DUELS)

30 50 70 90 I IO I 30 I 50 l70

MOME N TUM TRANS FER, ~ ( Me V /c)

FIG. 7. Comparison of PWBA form factor arith

SOBA and DWBA relative cross sections for M1 transi-

tions. The target nucleus is 20Ca and incident electron en-

ergy E,=100 MeV. The values of the parameters are
a =264 MeV, y=141 MeV.
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FIG. 8. M 1 virtual photon spectra evaluated in SOBA
compared with the corresponding DWBA results. For
20Ca the incident electron kinetic energies are 10, 40, and
100 MeV and for 48 Cd the kinetic energies are 10, 50, and
100 MeV.

has taken over and the spectrum is below the con-
ventional value. In all three cases we see that the
second order and the distorted wave results compare
very well for 20Ca. However, this agreement is not
quite as good at higher Z and low energies, as can be
seen from the spectrum for &s Ca at 10 MeV. There
is still fairly good agreement between second order
and distorted wave results at 50 and 100 MeV. We
note that where the distorted wave calculation gives
different results it is larger than the second order
contribution. By contrast, for E 1 spectra shown in
Fig. 9, not only do SOBA and DWBA spectra coin-
cide for 2cCa and 4s Cd, but the difference between
SOBA and DWBA results at 10 MeV is not quite as
drastic as it is for the M1 spectrum. In either case
we observe that with increasing electron energy the
agreement between SOBA and DWBA results be-
comes better.

The charge correction tends to zero with an in-

IX
2 x lo

I

I i I I I I III&

IP

PHOTON ENERGY ~ (MeV)

I I I I I I II
lp

FIG. 9. Same as Fig. 8 but for E1 virtual photon spec-
tra.

crease in electron energy and we are left with an in-

creasingly important finite size correction. At ap-
propriately high electron energies (depending on Z)
the first order spectrum is entirely adequate; neither
second order nor distorted wave calculations pro-
duce any appreciable corrections.

In the spirit of the observations made in Sec. III,
we expect to find that the corrected virtual photon
spectrum is insensitive to the shapes of the charge
and current distributions over a wide range of ener-

gies and depends only on the root-mean-square and
transition radii. For this we have used the distorted
wave calculations for the same nuclei and for the
same energies as in Figs. 8 and 9, but using charge
and current densities derived from a Fermi distribu-
tion, we find the same agreement between second or-
der and distorted wave results. This is true even for
heavy nuclei; Fig. 10 illustrates the model indepen-
dence of the E1 virtual photon spectrum for elec-
trons of kinetic energy 100 MeV scattered from a
92 U target.

We have carried out these comparisons for a wide
variety of electron energies using several nuclei and
have summarized our results in a range of validity
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FIG. 11. Range of validity for E1 virtual photon spec-

tra evaluated using conventional method, PWBA, SOBA,

and DWBA.

PHOTON ENERGy ~{May)

FIG. 10. The upper part shows two different ground
state charge densities, both corresponding to the same

R,=5.64 fm, and two transition charge densities, both
with Rt, ——7.18 fm. The lower part shows that with the
different distributions we still get the same spectrum.
The parameters correspond to a 92'U target.

plot. Figure 11 presents such a plot for E 1 spectra.
For very light nuclei at low energies the convention-
al spectra evaluated using plane wave and point nu-
cleus approximations yields reasonably good results.
This is a consequence of the fact that for very light
nuclei at low energies there is virtually no overlap of
electron and nuclear wave functions. This region is
depicted by dots in Fig. 11 (region 1). For light nu-
clei at moderately high energies and for heavier nu-
clei at very high energies, it is sufficient to consider
only the first order Born approximation (region 2 of
Fig. 11}. In the remaining region we need to include
both the size and charge of the nucleus. It can be
further divided into two regions; the first, depicted
by horizontal lines in Fig. 11, gives the region in
which the second order results agree with the dis-
torted wave results to an accuracy of 2%, and the

second, marked by vertical lines, gives the region
where we cannot do without distorted waves. In
Fig. 12 we show the same for Ml spectra. Al-

though the second order Born approximation has
some limitations where the Coulomb distortion is
very strong, where it is valid it has several advan-

tages.
We can pursue second order calculations for arbi-

trarily high energies and extreme values of c0, both
high and low, and still get consistent results. The
distorted wave program involves several double in-
finite sums; consequently it suffers from conver-

gence problems in some regions. At high energies it
is further limited by the number of partial waves
that must be used. Also in comparison to the dis-
torted wave program very little computer time is

1 1

consumed (from» to» of the CPU time for the
distorted wave program). The second order results
can be also used for other leptons such as the
muons, by simply replacing the electron mass by
the lepton mass.

Owing to the difficulties encountered by the dis-
torted wave program at high energies, it is some-

' times difficult to separate the validity range. In Fig.
12 we show, by leaving a cross-shaded region, where
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we had difficulty marking a boundary for the region
of applicability of the second order results.

In a recent experiment Dodge et al. measured
the cross section for the excitation of the 16.3 MeV
1 isobaric analog state (IAS) in 4oZr with both real
and virtual photons in the energy range 17 to 105
MeV. Since this is a very narrow state it is an op-
portunity to study the virtual photon spectrum at
fixed energy co but variable electron energy Ei.
Such a plot is called an isochromat. The open cir-
cles in Fig. 13 show the virtual photon spectrum as
an isochromat, extracted from their data. The solid
line in Fig. 13 represents the same spectrum evaluat-
ed from our second order results, and we can say
that the agreement could not be better.

The second order calculations presented in this
work take the finite size and charge of the nucleus
into account simultaneously, thus providing an im-
provement over all published calculations for the
virtual photon spectra. Distorted wave calculations
which include the size and charge effects simultane-
ously have been done in a preliminary form by On-
ley' and are used to help check and establish the
range of validity of the second order calculation. To

some extent the second order calculations have
helped in tuning the distorted wave program (for ex-
ample, in determining the conditions necessary to
ensure convergence). The second order expression is
free of singularities and does not involve infinite
sums or infinite integrals; consequently it yields very
consistent results. In the range of validity graphs
(Figs. 11 and 12), we see that the existence of second
order results removes the critical need for extending
the distorted wave programs to higher energies
where it plunges into computational problems.

%'e would welcome experiments measuring the
excitation of narrow states of known spin and parity
as a function of electron energy. These effectively
are a measurement of the virtual photon spectrum.
Similar experiments comparing excitation by elec-
trons and positrons or muons of both signs of
charge would be particularly helpful in establishing
the charge dependence of the spectrum.

Calculations reported here are incorporated in a
FORTRAN program named SOVPS and run the Ohio
University IBM 4341 computer. Copies are avail-
able from the authors, although full documentation
of the program and extension to higher multipoles
will be, we anticipate, the subject of a later commun-
ication.
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APPENDIX

The integrals &(k), W(k,y,g), D (k), P q(k,y), W(k), and Wc(k) defined in Eqs. (87)—(89) and (100)—(102)
have been evaluated by contour integration. We give only the results here. For details see Ref. 6.

&(0)=—
2 2 2 4 arctan y

~2(a 2+~ 2)4 5+co
+arctan y + arctan

2%

a co
J

2ir(4a +6a co +4a co +ai ) a+yarctan
a 8{a2+~ 2)4

b, . 33 9(a +y) 3(a +y)2 —52
12as{a2+co2}[52+(a+y) ] 2a a[A, +(a+y) ] [5 +(a+y} ]

6 a(a+y) 3(3a2—co2)+a2+~2 /2+(a +y)2 (a2+~2)2 (Al)

arctan
(a +co ) &+ +arctan y

m 24a u+yarctan
12a 3 (a 2+r02)4 (a'+r0')[&'+(a +y)']

3(a +y) 3(a +y)' —62 3

2a a[6 +(a+y} ] [dP+(a+y)2]2 (a2+co2)

4a 2a (a +y)
(a +co ) b, +(a+y)2 (A2)

&(2)=— 7TN
arctan

(a +ai ) lL+N
+arctan y

2 4arc an
(a +~ ) ~ (a'+co')[5'+(a+y)']

3 3(a +y} 3(a +y)' —5'
a[4'+(a+y) ] [6 +(a ~y) ] (a2+co2)

4a 2a (a +y}
(a'+m') [6'+(a+y)'] (A3)

r

n'(4a6+6a4g2+4a2g4+g6} a
arctan

a 8(a 2+g2)4 y
wy

2 24a (a +g )(a2+y2)
t'

2a a +y (a +y ) a2+g2 a2+y2 (a2+g2)2 (A4}

where
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g&P8='
0 otherwise,

24a . a en y(15a4+10a2y2+3y4)~ lryrg =
3 2 2 4

' al'Ctall
24a (a +g ) y 2 2a2(a2+y2)3(a2+g2)

6y(2a'+y'} 3y(3a' —g')
(a2+y2)2(a2+g2)2 (a2+y2)(a2+g2)3

(A5)

r

P {2,y,g}= 2 2 4
arctan-24ag a

(a'+g')'
em y(3a~+14a2y +3y }

2 2(a2+y2)3(a2+g2)

3y (a2+ 3y 2) 12ya

(a 2+y2)2(a 2+g2)2 (a 2 +y2)(a 2+g2 )3
(A6)

r

P (3,y,g) = 2 4
arctan-ma 2'' a

24 a (a2+g2)4 y

any(. 3a +10a y +15y )

2 2(a2+y2)3(a2+g2)

3y(5a +7y2) 12ya

(a 2 iy 2 )2(a 2 +g 2 )2 (a 2+y 2 )(a 2 +g 2
)3

P {4,y,g) ==
2 2 4 arctan
6g' a

6 (a+g} y

3a3y(9a + 1ly ) 3a'g
4(a2+y ) (a +g ) (a +y )(a +g )

r

D (0)= arctan —arctan=2~ a+y
a

gray(. 33a "+82a y +57y )

2 8(a'+y')'(a'+g')

9(a+y) [3{a+y}'—~'1
12a'[5 +(a+y} ] 2a a[6 +(a+y) ] [4 +(a+y) ]

3 3(a+y) 3(a+y) —4
12a [5 +(a+y) ] 2a a[6 +(a+y) ] [b, +(a+y) ]

D(2)=—

(1 )
~y 3 3 3a'-y'

4a 3(a 2+y2) 2a2 a 2+y2 (a 2+y2)2

~ (2 )
~ 3 3 (3a'-y')

24a(a +y ) 2a a +y (a +y )

3 3(a+y) [3(a+y)2—5 ]
12a [b,2+(a+y}'] 2a' a [62+(a+y)'] [b,2+(a+y)']'

r

n a ey 33 9 3a —yPc O,y =— arctan —+as y 24 5(a2+y2) 2 2 a2+y2 (a2+y2)2

(A7)

(A8)

(A9)

(Alo)

(Al 1)

(A12)

(A13)

(A14)

24(a+y) &m a+y (a+y}
The expressions for the integral W(k) for different values of k can be expressed in the form

W(k) =2r [9P(k)+A(k)],

(A15)

(A16)
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where

1 6 t1 t2 t3
R(k) = — &3+ + 2 + 3

arctan
6 B 9'2

4 S2 S3 Jcfpt 4 1 Ss WQC 7S)+@+ 2+ 3 +~ S4+@+
I L

2J3fpa d( 2
~a d2

2
~—2a + (A17)

where Wp(k), M&(k), W2(k), and &3(k) are different for different values of k:

tl a~2d2+~1(4pl a +d2)+4~0PP1

t2 —— 3J3r—/a d2 3J3f—pad2(4p) a +12),
t3 =5&pa d2

s) =3&2(t"—2a 9)+3&]a[2(4a +9 )+K(w —2a 9 )]+J3fpd

S2 3~2~a 2 3~la [~ 9d2+~(4pl a +d2} K~a d2)]+~0~2 ~

S3—9&)I a d2 +Mph—'3,

S4=3~3ad 3(~—2a29)+Wpds

Ss 3&&d&~——a d2+Mpd'6,

d'~ ——2(16a +9')+K[~—2a (8a2+39')]—2a K ——(~—2a29'), (A18)

d'2 ———4a [3~P& +49'(2P& a +d2)+4a d2]+2Ka [2~(2P& a +d2)+3a 9'd2] 2~a d2 K———

3—a d2[91 (4p~ a +d2)+20a 9'd2 5KI a d2]—
d'4 ———15~a d2

d'5 ——d~[~ —2a (8a +39')]—2a (Kd, —4)(~—2a29'),

d'6 2a 1~[2~(2pt ——a +d2)+3a 9'd2] 2~a d2(Kd~ ——4),
8'7 ———Sd)~a d22,4

n =a'+2 '(pi'+P2')+(pi' P2'}'—
K=4(a +p~ +p2 )/q,

g4+2g2(a 2 ~y2)+ (a 2 y2)2

~ [a (p1 p2 )] (y'+a')(—P I' P2') a'y—'+a'—
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dt ——4(a —y +5 },
d2 =~'(2pi'+y')+2pi'a' y'(pi'+P2—');
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for k =0:

for k =1:

1

16a 5(g 2+~ 2)

5a +3'
16a (a +co )

29a +32a co +11'
16a7(a +co )

(4a6+6a co +4a co +~ ) .
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'
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—( 1 la +4a co +a) ) 1
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J3fp= 2 216a(a +co )
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N
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The values of %(k) for different values of k are the following:
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b, + 1
(b ) b}—

(a2+~2) a2+~2 (a2+~2)2 (a2+~2)3

8F(2}= ab4+ b—3+ b2+ 2 2 2 (b~ b)—1 2 a) 1 1

a +co a +co a +co (a +co )

8f (3)= 1 a4b4-
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2 (a2+~2) (g2+~2}2 g2+~2
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2 2
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a2+co2 a +co2 a +co a +co (a +co )
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1 2
b, = arctan
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2

+2y 3 3(nu, +2b,'y')
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The expressions for the integrals Wc(k) can also be written in the same form as Eq. (A16), i.e.,

W (k)=m [SF(k)+A(k)]

with 9F(k) given by Eq. (A17); the only quantities that are different are the &0(k), M&(k), &2(k), &3(k), and
the 8F (k); these are now, for k =0,

for k =1,

1 3 11

16a 16a 16a
d3f ] = q d3f2= a' '

1 1 1Mp=
16 ' '

16 4 '
16 ' ' W3 ——0;
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for k =2,

for k =3,
a 3 5Zap= y M]= ~ J3f2= —

q de 3=0 y16 '
16 '

16a
'

1 1 b2 b3
85 (0)= (bp —b i )— — b4-a' a' a4 a'

%(1)=b4, 0'(2)=bq a b4—, 8F(3)=bz —2a bs +a b4 .
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