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Separable representation of the nuclear proton-proton interaction
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We propose a separable representation of the nuclear part of the proton-proton interac-
tion in angular-momentum states l =0, 1, and 2. This representation yields an accurate fit
to all experimental data currently accepted for elastic proton-proton scattering. The form
factors of the separable potentials are represented by simple functions in momentum space
(and also in configuration space). This makes it possible to treat the Coulomb distortion of
the nuclear interaction exactly and to derive the corresponding proton-proton transition ma-
trix in closed analytic form. Our model thus provides an adequate and convenient starting
point for rigorous calculations on few-body systems with charges.

' NUCLEAR REACTIONS Separable potential proposed for p-p system;
Coulomb distortion of nuclear interaction treated exactly; closed analytic

formulas for transition matrix given.

I. INTRODUCTION

Experimentally the proton-proton (p-p) system
has been studied extensively. This has led to very
accurate phenomenological data. The analysis of
these data has produced reliable phase shifts, which
have undergone only minor changes during the last
decade or so. Indeed, predictions of the latest
phase-shift analyses do not very much differ from
what was obtained already in 1969 by MacGregor
et al. ' or Seamon et al. , despite the fact that the
data base has been augmented considerably. 3 Only
the methods employed in the newer phase-shift anal-
yses became more refined in one way or another.
Still the results by different groups, such as Amdt
et al. , Bystricky et al. , Bugg et al. , and Amdt
and VerWest, are very similar for all p-p partial
waves. Therefore, we can now safely rely on well-
determined phenomenological p-p phase parameters.

A principal difficulty in the theoretical treatment
of p-p scattering is the long range of the Coulomb
interaction. This, in particular, causes the off-shell
p-p T-matrix elements (as a function of the off-shell
momentum variables) to have branch-point singular-
ities at the on-shell point. But the physical on-shell
amplitude can be expressed by matrix elements of

the T operator between suitably defined Coulombian
asymptotic states.

If the short-range (purely nuclear) part of the p-p
interaction is described by separable potentials with
rational form factors, the T-matrix elements can be
found in closed form. 9 ' The problem was previ-
ously also solved by numerical treatment' or by in-
voking approximations. ' ' Most of the early separ-
able models give only poor fits to experimental data.
An exception is the Graz separable potential, '

which reproduces p-p observables more or less satis-
factorily. '7 In the original work by the Graz
group' the Coulomb distortion was treated approxi-
mately (only to the first order in the fine-structure
constant). Subsequently the physical on-shell ampli-
tude was calculated exactly by numerical means. '

Recently analytical expressions of the various
Coulomb-modified transition-matrix elements for
the Graz separable potential were also derived. '

The original Graz potential falls short in repro-
ducing the 'So effective-range parameters and in fit-
ting the P- and D-wave data. The purpose of the
present work is to provide a new separable potential
which meets the demand of a rigorous and precise
description of the p-p interaction in all partial waves
with l(2. The resulting model is an appropriate

515 1983 The American Physical Society



SCH%EIGER, PLESSAS, KOK, AND van HAERINGEN 27

starting point for calculations on few-body systems,
which rely on an integral-equation approach.

In Sec. II we recall some formulas necessary to
calculate Coulomb-modified nuclear phase shifts
and low-energy parameters. In Sec. III we present
our new separable potential. There we also give
analytical expressions needed for the on-shell T ma-

trix and we compute phase shifts as well as
effective-range parameters. Results are compared to
the latest p-p phase-shift predictions by Amdt and
VerWest. Under the assumption of charge symme-

try we give an outlook on the neutron-neutron (n-n)
system. Section IV concludes the paper with a short
dlscusslon.

t„=V,+V,G, t,g . (2.2)

n

V i= g I gi;&~i;(gi I, (2.3)

Eq. (2.2) can be solved algebraically to yield

~csl g I gli &'rlij (glj I
(2.4}

The resolvents Go and G, correspond to the free and
the pure Coulomb Hamiltonians, respectively. The
structure of the above equations remains the same
after partial-wave (pw) decomposition.

If V,i is an n-term separable potential acting in
the pw space I,

II. FORMALISM The n )& n matrix rf is defined via its inverse,

A. Coulomb-modified
nuclear scattering amplitude

and phase shifts

The total potential V= V, p V, is the sum of the
Coulomb potential V, and the short-range nuclear
potential V, . According to the Gell-
Mann —Goldberger two-potential formalism, '9 the
total T operator can be written as T=T, +T„,
where T, is the Coulomb T operator and T„ is then
defined by

V;, =(1+r, G, )i„(1+G,r, ) . (2.1)

The operator t„satisfies a Lippmann-Schwinger
equation with short-range driving terms,

c —'
(ol )ij=(~l bj (gli I Gcl I gij & ~

where Ai is the diagonal matrix with elements Ai;5,j.
The Coulomb-modified form factors

~

gi'; & are given

by

I gfi & = ( I +T iGoi)
~ gi; & . (2.6)

In order to calculate Coulomb-modified nuclear
phase shifts 5„i one has to know the physical on-
shell matrix elements of T„i They can. be obtained
from Eq. (2.4) by sandwiching between Coulombian
asymptotic states

~

kl Do+ &, which are related to the
Coulomb scattering states

~

kl+ &, via

(kl+&, = ~klan+&+Goi(k +i0)T»(k +iO) ~kin+& = ~kloo+&+Gpi(k'+iO)V, i ~

kl+&, .

Then one has

(2.7)

(2.8)

(2.9)

fi
( kl a) —

~
T,»(k'+ i 0)

~

ki co + &
=— f,»(k),

7TP

where f,»(k} is the Coulomb-modified nuclear scattering amplitude. The relation to the phase shifts 5„i reads

f2
«t5-i«) —i =—exp[2i«(k)] (ki~ —

~
&,»(k'+io)

~
kl ~+ &

rrji, k

with Oi representing the pure Coulomb phase shift.
In Eqs. (2.1)—(2.6) we suppressed the dependence

on the (generally complex) energy variable E in the
T operators, the resolvents, the propagators ~', Bnd

the Coulomb-modified form factors ~g'&. In Eqs.
(2.7)—(2.9} we used the shorthand notation k +i 0
for the energy A' k /2p, +i0, where p is the reduced
mass. Further details about the formalism can be
found in Refs. 8, 11—13, and 20. %e remark that &»(k ) =k '+'cot5»(k) (2.10)

the sign conventions for A, and r may differ in dif-

ferent papers.

B. Effective-range expansion

For low-energy scattering by a short-range poten-
tial V, the effective-range (ER) function
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plays an important role. Under certain conditions
on the potential V, this ER function is real analytic
at k2=0,

E,l(k )=—1/a, l+ , r,lk—+ (2.11)

E,gl(k )= k +'C

&( [2yH(y) +Co [cot5„1(k) i]—j,
(2.12)

where H (y ) is related to the digamma function P,

H(y)= P(iy)+(2iy }

where the scattering length a,l and the effective
range r,l are real. '

If the potential is V= V, + V„ the ER function
has to be modified and may be taken as

III. SEPARABLE REPRESENTATION
OF THE NUCLEAR p-p INTERACTION

IN S, P, AND D PARTIAL WAVES

In Sec. I we already indicated that the Graz poten-
tial' is a separable model which provides a reason-
able description of the p-p interaction. The fit to ex-
perimental data, however, suffers from two main de-
ficiencies:

(i} it fails in reproducing So low-energy parame-
ters accurately;

(ii) the medium- and high-energy behavior of its
phase shifts is not satisfactory, especially in the I'&

and 'D2 partial waves.
At present a separable potential which meets the

following requirements is in demand:

(1) It allows for an accurate reproduction of all

currently well-established p-p data;

—ln[ —iy sgn(s)] . (2.13}
(2) it is of low rank;

2K/
1

(2.14a)

In our notation the Coulomb potential is

V, (r)= 2s/r, so that —y = 2ps/(fi —k) (note that s
is negative for Coulomb repulsion). The coefficients
C are defined by

(3) its form factors are relatively simple functions
amenable to rigorous analytical treatment.

Vi = I gl1 )~1 1(gl1 I
+

I gl2) ~12(g12 I
(3.1a)

Consequently such a potential should be a proper
tool for application in charged few-body problems.
According to these intentions the best choice turned
out to be

l

C,-'=n I+",
n=1

(2.14b) with

The modified ER function E„l(k ) has been proved
to be real analytic in the neighborhood of k =0 for
certain local ' and nonlocal potentials. The
Taylor-expansion coefficients are related to the
Coulomb-modified effective-range parameters a„l
and T&zl'.

pl
( ~ )=I i gll

(
2 p 2)1+1

p + /11

1+2
+yl&

( 2+13 2)1+2 ' (3.1b)

E„l(k )=—1/a„l+ , r„lk +—(2.15)

From Eqs. (2.4), (2.5), (2.9), and (2.12) we observe
that a„l and r„l can be found by investigation of the
low-energy behavior of the objects (gl; ~

G,l ~gli),
(k100 —~gl';), and H(y). The expansion of H(y)
and —for simple rational form factors —also the one
of (kl 00 —

~
gl';) are easily at hand. ' Expansion of

the inproducts (gl; ~
G,l ~ gli ) needs more effort. In

the next section we investigate their low-energy
behavior for a particular choice of form factors.

l+2

2 1+2
Il + 121

l+4
y12

(
2 p 2)1+3

(3.1c)

For this type of form factor it is still possible to
derive analytical formulas for the on- and off-shell
elements of the Coulomb-modified nuclear T opera-
tor T„l of Eq. (2.4). As a consequence the phase
shifts 5„1(k) as well as the effective-range parame-
ters a„l and r„l can also be calculated including the
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Coulomb-distortion effect to all orders in the fine-
structure constant. For this purpose one only needs
to know explicit expressions for

for i,j=1,2. For the first term in the form factor of
Eq. (3.1b),

(g„~ G„(k'+I'0)
~ g,, &

(kI ~
~ g,', (k'+I 0) &

pl
&P I gIII &:=

p +p

the pertinent analytical result is known to be' '
(3.2)

(klao —(giII(k +i0)&=,(kl ~gpi&=e '(CI ) '/2CoB 'r(k ~gIII&,

where B =(P+ik)/(P ik—) Th. e corresponding inproducts can also be found in the literature

(3.3)

(g~I ~
G,I(k')

~ gIII & —
2 2I I . . 2I+I 2Fi(1 Iy I iy+I+2 ~B)np 2l+1 2l (I+1+iy)

2 (a ik)(P— ik—)(a+P) '+' (3.4)

where 2 =(a+ik)/(a ik)—Th.e remaining form factors in Eqs. (3.1) can also be treated analytically. Indeed,
(p ~gI; & (i =1,2) can be written as a linear combination of (p

~ gIII & and its derivatives with respect to p.
Hence (gI; ~

G,I ~ gII & and (kl ao —
~ gf; & (ij =1,2) can be written as linear combinations of (g~i ~

G,I ~ gIII &,
(kl oo —

~ gIII &, and their derivatives with respect to a and p.
As an example we give corresponding results obtained by first-order differentiation. Defining

1 1 8
&P lgIIIII&:= —

2 I+1 (P lgIII&=&P lgy(&/(P'+P')

we find (suppressing the dependence on k +i 0)

(3.5)

ky

&klm —
~ gIIIII & = (I +1)P

k'+P' &ki m —
~

gI'Ii &, (3.6)

r

Kp 21+1 2l 1

k'+l3' ~' 2" ' . 2(i+1)P(~+P)"+'

+ +
(I ly &g~l I GcI I giil&

ky
(3.7a)

1 np 2l+1 2l (I+1)(cI2+ap+p2+k )+ky(a+p)
d I gIIIII —

(k2+~2)(k2+P2) P 22I —1 I (21+2)2&P(&+P)21+3

ky
(I + 1)u

1+
I 1

&g I IGI lgiII&I+1 (3.7b)

For the derivative of the hypergeometric function we used

d . . 1
2Fi(l, iy I;iy+I+2—;z)= I (iy+I +1)+[(iy l)z (iy+I+—1)] 2FI ( l, iy I;iy—+I+—2;z))I .

ck z(1—z)

(3.8)

Let us now consider the low-energy behavior according to Eq. (2.12). We already mentioned that the low-
energy expansion of H(y) and (kl oo —

~ gII & is relatively easy. Therefore, we concentrate on the inproducts
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TABLE I. Sp effective-range parameters.

rl-n
S

n-n
S

(fm)

Separable
potential

Experiment
(Refs. 26 and 27)

—7.81

—7.828%0.008

2.75

2.80+0.02

—19.23

—18.6%0.5

2.85

2.83+0.11

(gii ) G,i ~ gij }.The principal role is played by the term (g~i ( G,i ~ giii }of Eq. (3.4). A tedious calculation re-
veals that at k =0

&g i I G.i(o)
I gpi &

~p,

22laP(a +P )2I + 1 l

21

2ky —+-
a p

( —2l)„—

1 1
2ky —+-

a p
(21)!

21+1

e r —+—I 02ky —+—1 1 1 1

a p
' a p

(3.9}

CJl

~20
(I}

0

-20-

5001000 200 300 400
M,~,

FIG. 1. Separable potential results for 'So Coulomb-
distorted nuclear phase shifts compared to predictions of
the phase-shift analysis by Amdt and VerWest (Ref. 7).

Note that ky&0, a &0, p&0, and that the ima-
ginary part of this object vanishes. For a=P and
2p, =f2=1 the above expression is in agreement with
the corresponding one in Ref. 24.

For the evaluation of the effective range we re-
quire the term linear in k of (g~i ~

G,i ~giii}. It
turns out that the pertinent imaginary part vanishes.
Therefore, it is sufficient to study its real part. The
hypergeometric function occurring in Eq. (3.4) can
be reduced to iEi( l,iy; I+iy;AB) The expa.nsion in
powers of k for the real part of the latter hyper-
geometric function exists in the literature. 'i Collec-
tion of the appropriate results leads to analytic ex-

pressions both for the Coulomb-modified scattering
lengths a„i and effective-range parameters r„i of
our potential (3.1}.

Using the closed formulas for the on-shell matrix
elements of T„i and the low-energy parameters
a„I o and r„I o we determined the open parameters
of the separable potential. For this purpose we em-

ployed a least-squares minimization technique to fit
the latest phenomenological p-P phase shifts by
Amdt and VerWest (energy-dependent solution) up
to E~,q ——500 MeV. In the 'So partial wave we addi-
tionally imposed the constraint that the effective-
range parameters a„and r„were reproduced in
agreement with modern experimental data.

For the most important partial wave requiring an
exact treatment of the Coulomb distortion, namely,
the 'So state, we provided the potential (3.1}to be of
rank 2. This led to a perfect fit of the phenomeno-
logical phase shifts over the whole energy range up
to E~,t, ——500 MeV and to an accurate reproduction
of the low-energy parameters a„and r„(s Feieg. 1

and Table I).
Among the P waves only the Po state demanded

a rank-2 potential (the corresponding phase shift
changes sign at Ei~b =200 MeV). The Pi and Pi
states could already be described by an ansatz of
rank 1 (}(,i ——0). Also for the P waves the fit to
phenomenological data is observed to be quite satis-
factory (see Figs. 2—4). The partial wave Pi was
treated as if it were uncoupled. This assumption
seems to be well justified in view of the smallness of
the mixing parameter e2.
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FIG. 2. Same as Fig. 1 for Po.
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FIG. 4. Sameas Fig. 1 for P2.

400 500

For I =2 only the 'D2 partial wave was to be con-
sidered. Also here a rank-1 potential was sufficient.
The quality of the fit may be seen from Fig. 5.

It is interesting to study the influence of the
Coulomb distortion on phase shifts 5„i and
effective-range parameters a„i and r„i, the
Coulomb-distortion mechanism is known to be the
most iinportant electromagnetic effect modifying
the short-range nuclear interaction also on the lev-
el of polarization observables. ' Our formalism al-
lows us to reveal this influence by simply switching
off the Coulomb field. Then all quantities labeled
"cs" become purely nuclear ones. For scattering
phase shifts the Coulomb-distortion effect is ob-
served to be quite important only in the lowest par-
tial wave 'So and there predominantly at low and
moderate energies, E~,b &20 MeV (see Fig. 6). Be-
cause of the occurrence of the centrifugal barrier,
the Coulomb distortion becomes less significant or
even negligible for higher partial waves' (Fig. 7).

Obviously the Coulomb distortion also has an
essential influence on the 'So effective-range param-
eters. Among the on-shell data these parameters,

especially a„, are most sensitive to electromagnetic
effects. Therefore, they constitute a decisive cri-
terion for the validity of charge symmetry. In Table
I we have quoted purely nuclear effective-range
parameters a, and r, predicted by our new separable
potential. We calculated them by switching off the
Coulomb interaction and correcting for the different
reduced mass of the n nsystem-. Therefore, the cor-
responding values can be regarded as n neffecti-ve-
range parameters (under the assumption of charge
symmetry and neglecting all further electromagnetic
effects}. It is seen that n nlow--energy parameters
thus obtained from the separable p-p potential are
also in good accordance with the latest experimental
data. Therefore, the purely nuclear part of the
separable potential, i.e., the ansatz (3.1} together
with the parameters of Table II, can safely be em-

ployed for describing the n-n system. The corre-
sponding n nscatterin-g phase shifts result by sub-
tracting the Coulomb-distortion effect Ai (Figs. 6
and 7) from the p-p phases 5„& (Figs. 1—5):

(3.10)

-10

—-20
Fo

Lfl
O

30

-40-
100 200 300

E„(Mev)

FIG. 3. Same as Fig. 1 for P~.

400 500
0
0 100 400300

EL(~ev)

FIG. 5. Same as Fig. 1 for 'D2.

500
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I I I I I I I I I I II'

10 100 1000
E (MeV)

FIG. 6. Coulomb-distortion effect 6,=5~—5, for 'So.

Here the correction for the different reduced mass
turns out to be negligible. Because of the lack of ex-
perimental data, no comparison to n nphe-nomena-
logical phase shifts is possible at the present time.

IV. CONCLUSION

We presented a separable potential for the nuclear
art of the p-p interaction in the partial waves 'So,

Po ~ 2, and 'D2. Our model is capable of precisely

fitting recent phenomenological phase shifts up to
E~,b-500 MeV, while it also reproduces accurate
effective-range parameters in the 'So partial wave.
The problems associated with the r ' tail of the po-
tential were treated rigorously. Thereby it was pos-
sible to derive closed analytic expressions for all
relevant quantities, and in particular for the
Coulomb-modified nuclear transition matrix. Hence
the Coulomb-distortion effect was treated exactly in
phase shifts 5„1 as well as in low-energy parameters
a„I and r 1. In agreement with farmer findings, it
turns out that this effect is quite important and
must not be neglected in the 'So state (at low and
moderate energies); only for higher partial waves can
it be considered negligible. By subtracting the
Caulomb distortion from p-p quantities a reasonable
description of the n nsy-stem could also be provided.

Since our ansatz for the separable potential is of
low rank and amenable to analytic treatment, it
should be well suited for use in few-body calcula-
tions of charged-hadron systems. Under the as-
sumption of charge symmetry (and neglecting fur-
ther, less important, electramagnetic effects) the n-n

system can be treated at the same time via its purely
nuclear part. We note that a complete separable
representation af the whole nucleon-nucleon system
can be constituted by supplying the neutron-proton
(n-p) interaction by our previously pubhshed separ-
able n-p potential. 9 This model uses an ansatz of
the same type as in Eqs. (3.1) and is fitted ta n-p
phenomenological phases resulting from the same
phase-shift analysis by Amdt and VerWest. 7

Parameters

TABLE II. Numerical values of potential parameters.
In our system of units the dimensions are (P}=fm
(y)=fm, and (A, )=MeVfm ' '+"

Partial wave

'So PIi ——0.8131678
pI2 ——1.288 463
P2I ——7.496 476
p22=1.661 389

yi ——2.698 168

yg
——0.327 0664

A, ) ———17.87 098
A,2= 82 710.93

3p Pii ——0.8322894
PIg ——1.262785
PPI =2.645783

yi ——6.397468
y2 ——-0.0
A, ) ———12.10082
A,2 ——27 7071.8

-0.4-

10 100 1000
E (MeV)

FIG. 7. Same as Fig. 6 for Po ~ 2 and 'D2.

3p

3p

1D

PI) ——0.9713441
PIg =2.180297

PII =1.977127
P I2 ——3.147 108

PI i ——2.522 169
P I2 ——1.651 999

yi ——31.979 81
A, i ——59.892 49

yi ——5.242 138
A, i ———1477.246

y) ———0.266 832 5
A, ) ———918408.7
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