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Cross sections and analyzing powers are presented for '2C(7,p)!*C elastic scattering at
122 and 160 MeV. The data cover a large angular range (up to 0,,=154°) and extend to
lower energies an earlier, similar measurement at 200 MeV. The complete data set is
analyzed in the framework of the optical model. Besides the standard Woods-Saxon poten-
tial, nonstandard radial shapes for the central and the spin-orbit potentials are investigated.
Although the number of free parameters for the nonstandard potential is substantially re-
duced from the standard potential, it provides an improved fit to the data and a description
of 2C(p,p)2C scattering with a simple monotonic energy dependence in the region 100—200
MeV. The characteristic features of the nonstandard potential are reproduced by micro-

s~opic theories.

NUCLEAR REACTIONS “C(7,p), E,=122, 160 MeV, 6,,,=6"—154°;
measured o(6) and 4(0); optical-model analysis, including data at 200
MeV, nonstandard potential shapes, energy dependence of optical poten-

I. INTRODUCTION

As early as 1966, Elton' suggested that the optical
potential for proton-nucleus scattering at medium
energies differs in shape from the customarily used
Woods-Saxon (WS) form. A clear experimental ver-
“ification of this proposal was seen recently>? in
2C(p,p)2C elastic scattering at 200 MeV. It also
has been established that the sensitivity to deviations
from standard potential shapes is enhanced by in-
clusion of scattering data at high momentum
transfer.> The main departure from the standard
WS shape occurs in the real central potential which,
in the nuclear interior, is found to be less attractive
than near the surface. This phenomenological find-
ing is in fact expected theoretically, following either
of two quite different approaches. In the first, the
proton nucleus interaction is evaluated in a nonrela-
tivistic framework* starting from an effective
nucleon-nucleon (NN) interaction.® Here, the shape
modification of the potential in the interior region
arises from the antisymmetrization of the
projectile-target system. In the second approach, the
nucleon-nucleus scattering is described by the rela-
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tial.

tivistic Dirac equation. The Dirac potential can be
constructed from a simple NN force as would arise
from the exchange of effective scalar and vector
mesons, but is often parametrized phenomenologi-
cally in terms of WS forms. Here, the shape modifi-
cation arises in the transformation of the Dirac po-
tential to a phase-equivalent Schrédinger potential.
The result that a nonstandard optical potential is
required to explain proton elastic scattering from
12C at 200 MeV calls for an extension of such mea-
surements to other energies in order to derive a
phenomenological energy dependence of such a po-
tential which then in turn can be compared with
theoretical expectations. In this paper, we present
cross section and analyzing power measurements for
2C(p,p)12C elastic scattering over the full angular
range up to 0, =156° at the additional energies of
122 and 160 MeV. The experimental procedure and
the data are discussed in Sec. IIA. Computational
techniques are explained in Sec. IIB. The various
potential options for the optical model analysis con-
sidered in this work are introduced in Sec. III, while
the analysis of the available data at all three energies
(122, 160, and 200 MeV) is presented in Sec. IV.
Conclusions and final remarks are given in Sec. V.
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II. TECHNIQUES
A. Measurements

The measurements reported here were carried out
using the polarized proton beam from the Indiana
University Cyclotron Facility (IUCF). The beam in-
tensity on target was varied from a few to about 100
nA depending on scattering angle (and target thick-
ness) in order to achieve reasonable counting rates
and electronic deadtimes. The beam polarization
(typically 70%) was measured using a technique
described in Ref. 6. Several self-supporting targets
were used, ranging in thickness from 2 to 132
mg/cm?. The thickest target was enriched in '*C.
The same targets were used in this experiment as in
the earlier measurement®?® at 200 MeV, providing a
consistent absolute normalization for all three data
sets mentioned in this paper. The actual bombard-
ing energies for the present investigation were
T=121.9 and 159.6 MeV.

The experimental setup, i.e., the magnetic spec-
trometer and the associated focal plane detector ar-
rangement, and details about angular acceptance,
beam charge integration, and the measurement of
electronic deadtime during the data acquisition,
were completely analogous to the 200 MeV experi-

ment and are described in detail in Ref. 2.

Corrections for deadtime losses (5—10 %) and for
the finite angular acceptance of the spectrometer
(1—2 %) were applied to the data. Where necessary,
background arising from accidental coincidences be-
tween the focal plane detector elements was deter-
mined from the spectrum below and above the elas-
tic peak and subtracted. The experimental uncer-
tainties of the data contain the statistical error (in-
cluding the statistical error of the background sub-
traction, where applicable), an error resulting from
an uncertainty in setting the scattering angle
(+0.05°), and an estimated error for incomplete
charge collection at scattering angles 0, <24°
where a small Faraday cup inside the scattering
chamber was used. Not included is the absolute nor-
malization uncertainty of the cross section dominat-
ed by imprecise knowledge of the target thickness,
which is estimated to be 5—10 %.

The results of the present experiment are
displayed as solid circles in Fig. 1. Cross sections
are given relative to the Rutherford cross section as
defined in Eq. (4) below. Numerical values of the
experimental results are available on request from
IUCF. Also displayed in Fig. 1 are measurements
obtained previously at 200 MeV (open circles, Refs.

T=160 MeV
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FIG. 1. Cross section and analyzing power angular distributions for 2C(p,p)!?C elastic scattering at 122, 160, and 200
MeV. The solid circles represent the present measurements, the open squares are from Ref. 7, and the open circles are
from Refs. 2 and 3. The three curves using different parametrizations of the optical potential are discussed in the text.
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2 and 3) and at forward angles at 122 MeV (open
squares, Ref. 7).

B. Computations

The optical model calculations presented here
were carried out using the code SNOOPY8.® In addi-
tion to using the relativistic center-of-mass wave
number
]

_2AVs —MUcp+UP]  1U41)

2
[+

dp
In the above equations m, M, z, and Z are the
masses and charges of the projectile and target,
respectively, T is the laboratory kinetic energy,
s =(m +M)?+2MT, p=kr, a is the fine structure
constant, 8 the projectile laboratory velocity, and

Uc is the Coulomb potential. The corresponding
Rutherford cross section has the form

Orun(0)=(7 /2k)*sin=%6/2) . 4)

(‘/E _M)Z_mZ p2

In calculations with the optical model at medium
energies, care has to be taken regarding the ap-
propriate choice of the step size in the integration of
the differential equation. Too large a step size leads
to unreliable results for the very small cross sections
at high momentum transfer. This error is caused by
the truncation of the Taylor series used to describe
the solution locally; it thus depends on the method
of integration used and becomes more critical for
shorter wavelengths, i.e., increasing energy. For the
present calculations a maximum step size of smaller
than 0.05 fm was found necessary. The matching of
the wave function of the scattered proton to the
external, nonrelativistic Coulomb wave functions
(but with relativistic values for the arguments 7 and
p) was done at r=10.5 fm.

III. OPTIONS FOR POTENTIAL
PARAMETRIZATIONS

A. Standard parametrization

The nuclear optical potential U(r) in Eq. (3) con-
sists of complex central and spin-orbit terms. Cus-
tomarily, the following parametrization is used to
describe U (r):

U(r)=Vrfr(r)+iWfw(r)
+ A2 VioBRsol P +iW o8wiso( P15 L,
(5)
where

fi(r)z[l-{—exp{(r_riAl/S)/ai}]_l ©

[

k=(M/Vs)[T(T +2m)]"” (1)
and Coulomb parameter
n=zZa/B , 2

the potential in the radial Schrodinger equation was
scaled by an energy-dependent factor to account for
relativistic effects,>’ resulting in

Fy(p)=0 . (3)

and
gi(r=(1/r)(d /dr)[1+exp{(r —rjd'7)/a;}17" .
(7)

In this parametrization, all four potentials which
contribute to U(r) are of Woods-Saxon (WS) form
or derivatives of WS forms. Almost all proton opti-
cal model calculations to date have been carried out
with this prescription for the radial dependence of
U(r); the calculations in this paper using this
parametrization will be labeled STANDARD.

Recently, as mentioned in the Introduction, evi-
dence has been mounting that the radial shape of at
least parts of the standard potential has to be modi-
fied in order to improve the description of proton
elastic scattering data at medium energies. The two
possible modifications which we believe are most
important are introduced in the next two subsections
(III B and IIIC).

B. Modified real central potential

For medium energy proton scattering, the real
part of the central potential is less attractive in the
nuclear interior than near the surface. This was first
suggested by Elton’s analysis' of **Fe(p,p)*°Fe
scattering at 185 MeV, but only recently has clear
experimental evidence been found? for such a feature
of the potential in 'C(p,p)'?C scattering at 200
MeV. We note that microscopic derivations of the
optical potential for finite nuclei,* or based on realis-
tic nuclear matter calculations!® in a local density
approximation, predict the same qualitative
behavior for this potential. Phenomenologically, in
order to allow for the appropriate flexibility in the
description of the real central potential ¥ fr(r) in
the nuclear interior, we substitute in Eq. (5) the ex-
pression

Vefr(N=Vg1fr1(r)— Vel fraoN]?, (8)

where the form factors fr(r) and fr,(r) are again
given by Eq. (6). Note that the imaginary central
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potential is unaffected by this change and is still of
the standard WS form as is expected microscopical-
Iy*1° in the energy region investigated here. The
shape modification in Eq. (8) introduces three new
parameters. Calculations using this double Woods-
Saxon form we denote by DWS.

C. Semimicroscopic spin-orbit potential

If the effective NN spin-orbit interaction is of suf-
ficiently short range (compared to nuclear dimen-
sions), it has been shown!! that any microscopically
derived nucleon-nucleus spin-orbit potential is pro-
portional to (1/r)(d /dr)p(r), where p(r) is the point
nucleon density of the target nucleus. Since the
long-range one-pion exchange component is missing
in the NN spin-orbit force Vg, it is reasonable to
expect that Vg is a sufficiently short-range interac-
tion. On the basis of this argument, we introduce a
new parametrization for the spin-orbit part of the
potential U(r) [Eq. (5)], where the form factors
8rsolr) and gw(r) are replaced by a common,
parameterfree gus.(r), while the complex strength
will be treated phenomenologically,

8Rrsolr) =8wso(r)
=gumso=(1 fm®)-(1/r)(d /dr)p(r) . (9)
Here, 7 is in fm and p(r) in fm 3, such that
X, 28 (r)=(2 fm?)g (r)

is dimensionless. The nuclear point density p(r) for
12C that we used in the present calculations has been
obtained in the framework of the single-particle
shell model constrained to match the experimental
charge density'? and neutron and proton removal
energies. The resulting p(r) was found to be well ap-
proximated by a sum of two WS forms as follows:

p(r)=0.195[1+exp(2.04r —4.32)] !

—0.037[1+exp(3.57r —2.29)]"',  (10)

where 7 is in fm and p(r) in fm~3. The density as

given by Eq. (10) is displayed as the solid line in Fig.
2. Also shown is a fully microscopic calculation®!®
(short dashes) of the spin-orbit potential using the
matter density p(r) as given by Eq. (10) and an ef-
fective NN interaction'* based on the Hamada-
Johnston potential. This may be compared with the
radial shape of g,(7) given by Eq. (9), arbitrarily
normalized (dashed line in Fig. 2). It is obvious that
the latter indeed is a very good approximation of the
shape of the microscopically derived spin-orbit po-
tential. Calculations using the representation given
in Eq. (9) for form factors of the spin-orbit potential
will be denoted by MSO. We point out that the
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FIG. 2. Point-nucleon density of 2C as described by
Eq. (10) (solid curve), microscopically derived spin-orbit
potential (short dashes), and the Thomas form of the
point density [Eq. (9), dashed curve, arbitrarily normal-
ized] as a function of the radius. The scale on the right
margin refers to the solid curve.

MSO parametrization, with the fixed spin-orbit po-
tential geometry, contains four fewer parameters
than the STANDARD potential.

IV. INTERPRETATION OF THE MEASUREMENTS

A. Fitting procedure and results

For each of several options to describe the optical
potential, the model parameters have been adjusted
to fit the cross sections and analyzing power data at
122, 160, and 200 MeV. The objective criterion used
for the quality of fit was the usual sum of squares of
deviations, X%, Cross sections and analyzing powers
both contributed to X* weighted according to their
experimental error. The total number of data points
(cross section and analyzing power) at the three en-
ergies 122, 160, and 200 MeV were (53 + 52),
(41 + 41), and (43 + 38), respectively. In the final
fits to the data, the overall normalization of the
cross section was allowed to vary, resulting in
corrections of at most 9%.

Three potential options were investigated in de-
tail. The first was the usual WS parametrization
with 12 free parameters (STANDARD). In the
second option the semimicroscopic spin-orbit form



factor has been used (MSO), and finally, in addition
to this, a double WS shape was taken for the real
central potential (DWS + MSOQ).

The total reaction cross section oz was not used
to constrain the fit, since its weight relative to the
rest of the data has to be chosen arbitrarily. Instead,
we have compared (see Fig. 3) the oy, predicted by
the best-fit calculations, with the available experi-
mental data.!>~17

B. Standard parametrization

First, we discuss the fits to the data employing
the standard WS parametrization of the optical po-
tential with 12 free parameters as defined in Sec.
IIIA. The purpose of this is, on one hand, to gen-
erate a basis on which to judge the shape modifica-
tions discussed in the following sections and, on the
other hand, to be able to compare with previous op-
tical model analyses of '2C(p,p)'’C elastic scattering
data which cover a much smaller angular range. No
attempt was made to obtain a smooth energy depen-
dence of the parameters. The “best-fit” parameters
at each of the three energies are listed in Table I.
Calculations using this parameter set are shown in
Fig. 1 and labeled STANDARD. The main diffi-
culty with the STANDARD parametrization is its
inability to account for the structure of the differen-
tial cross section at angles 6 > 80° (see Fig. 1). In
addition, the predicted total reaction cross section is
much too large at all three energies.

Several standard optical model investigations of
2C(p,p)'2C elastic scattering have previously been
carried out at 122,'® 156,'° and 185 MeV,!8202! and
in the energy range 50—160 MeV.26 It is remarkable
that even at scattering angles 0 < 80° there are gen-
eral problems in simultaneously accounting for cross
section, analyzing power, and total reaction cross

T I T
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FIG. 3. Total p+'2C reaction cross section oz as a
function of the bombarding energy. Experimental values
(Refs. 15—17) are compared with values calculated using
the three potential options discussed in the text with
parameters as given in Tables I—III.
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TABLE 1. Best-fit parameters obtained with the
STANDARD parameter option (Sec. III A), correspond-
ing to dashed curve in Fig. 1. The geometry parameters r
and q are in fm and the potential strengths in MeV.

T=122 MeV T=160 MeV T=200 MeV

Vr 15.13 7.39 7.67
R 1.316 1.353 1.355
ag 0.550 0.435 0.498
w 11.16 37.70 29.50
rw 1.360 0.609 0.830
ay 0.593 0.881 0.817
Ve 4.10 3.12 3.12
Rso 0.858 0.871 0.869
QRso 0.483 0.546 0.558
W —1.40 —3.89 —3.11
Fwso 0.810 0.815 0.872
awso 0.442 0.567 0.522
X, (total) 9960 4810 3740
X4% (total) 16100 6470 3020

section. This results in a certain arbitrariness in
choosing -a preferred set of parameters. For exam-
ple, at 185 MeV, the best-fit values quoted in the
literature'®2%2! range for the strength of the real
central potential from 7.78 to 18.0 MeV, for the im-
aginary central potential from 6.2 to 25.7 MeV, for
the real spin-orbit potential from 2.1 to 4.1 MeV,
and for the imaginary spin-orbit from zero to —3.8
MeV. The fact that these parameters are so ill-
determined is a clear indication of the inadequacy of
the standard parametrization for describing proton
scattering in this energy region.

C. Semimicroscopic spin-orbit potential

In Sec. III C we discussed the justification for re-
placing the standard form factor for the spin-orbit
potential by a Thomas form [Eq. (9)] of the nuclear
point density distribution p(r), thus eliminating the
geometry parameters for the spin-orbit potential. In
this subsection we test the use of this option in an
otherwise standard potential by again optimizing the
fit to the data at all three energies independently.
The best-fit values of the remaining eight free
parameters are listed in Table II. Calculations using
this parameter set are labeled MSO in Fig. 1. The
improvement in X? (a factor of 1.4 relative to the
STANDARD set at all three energies) is substantial,
considering the reduced number of free parameters.
The agreement of the calculated total reaction cross
section with the measured values (Fig. 3), except at
160 MeV, is also improved. This indicates that
modifications of the radial shape for the spin-orbit
potential are just as important as nonstandard
shapes for the central potential.
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TABLE II. Best-fit parameters obtained with the MSO
parameter option (Sec. IIIC), corresponding to dotted
curve in Fig. 1. Units are the same as in Table 1.

T=122 MeV T=160 MeV T=200 MeV

Vr 15.09 9.40 7.61
R 1.338 1.463 1.337
ag 0.598 0.651 0.480
w 7.20 17.01 17.88
rw 1.328 0.706 0.981
aw 0.758 1.095 0.702
Vet 17.64 17.32 9.77
W2 —6.44 —6.70 —11.59
X.? (total) 4740 4720 2960

X4 (total) = 13600 3350 2030

The spin-orbit form factor is given by Egs. (9) and (10).

One possible reason for the inferiority of the
standard spin-orbit form may be the fact that the
derivative of a WS shape f(r) at r=0 is nonzero,
which causes a singularity in

[(1/r)(d/dr)f ()], <o -

For a small nucleus like *C this leads to an unphys-
ical distortion of the normally surface-peaked spin-
orbit interaction. The spin-orbit potential intro-
duced in Eq. (9), in principle, is finite at r=0, al-
though if an analytic expression is used for p(r) this
may be only approximately true. The new shape ex-
hibits a change in sign inside of 1 fm for '2C, due to
the central depression in p(r) (see Fig. 2). To illus-
trate these differences, the best-fit spin-orbit poten-
tials for the STANDARD and the MSO option are
compared in Fig. 4.

D. Double Woods-Saxon form
for the central real potential

In this subsection we investigate the consequences
of nonstandard shapes for the central potential. The
particular choice of parametrization as the sum of
two WS shapes (Sec. III B), and the fact that only
the real part has to be modified, is motivated by an
earlier phenomenological investigation® and theoreti-
cal expectations.* This modification is introduced in
addition to the new fixed spin-orbit shape, discussed
in the previous section, treating the latter as estab-
lished since it significantly reduces the X? and the
number of parameters. Thus, initially, the number
of free parameters in this case was 11. After a pre-
liminary survey, however, the geometry parameters
(rr1, TR2> 'w» @R 1> AR2> @) Were fixed to linearly en-
ergy dependent values as indicated in Table III, and

T T T T T T T T
DWS +MSO

N T

PR ST R

Spin-orbit potential Ug, (MeV)

PSR T S S R T S T

r (fm)

FIG. 4. Comparison of the standard form with the
semimicroscopic expression for the spin-orbit potential in-
troduced in this paper. The curves were calculated with
the parameters in Tables I and II.

only the remaining five parameters for the potential
strengths were varied. Their final best-fit values are
listed in Table III. Calculations with this parameter
set are shown in Fig. 2 and labeled MSO + DWS.
The calculated total reaction cross sections in this
case are found to be in reasonable agreement with
the experiment (see Fig. 3).

The central potentials from this part of the
analysis are shown as a function of the radius in
panel (a) of Fig. 5. In comparing the present real
central potential for 200 MeV with the one obtained
earlier in our previous analysis,> we notice that, al-
though the general behavior is similar, in detail the
two are quite different. We have to conclude that
this is due to the different parametrization of the
spin-orbit potential in the two cases. Thus, it seems
that the central and spin-orbit parts of the potential
are not independent (a fact obvious from a Dirac
equation perspective, but generally forgotten in the
equivalent Schrodinger picture) and that assump-
tions about the spin-orbit parametrization strongly
influence a phenomenological determination of the
central potential (and vice versa).

The dependence of the best-fit potential strengths
(as listed in Table III) on the bombarding energy T,
is monotonic. Using the same functional form as
was employed in a previous global investigation of
the optical model at medium energies,® one finds (T,
is in MeV)
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Vi(T,)=439.7(1—0.164InT,) ,
V2(T,)=200.5(1—0.1381nT}) ,
W(T,)=17.6+2.73X 10~%(T, —80)
+3.87x10~%T,—80)* , (11
Veo(T,)=70.2(1—0.157InT,,) ,
Weo(T,)=11.0(1—0.332InT,,) .

It is remarkable that the coefficients preceding the
energy dependent terms are very similar to the cor-
responding numbers for heavier target nuclei in Ref.

The dependence on bombarding energy of both
real and imaginary parts of the phenomenological
central potential are qualitatively in agreement with
theoretical expectations. In panel (c) of Fig. 5, we
show the equivalent Schrddinger potential obtained
in the local density approximation* using an effec-
tive NN t matrix,* based on the Hamada-Johnston
interaction and the same matter distribution p(7), as
is given by Eq. (10). As can be seen, the general
features of the energy dependence of both real and
imaginary parts is in good agreement with that ob-
served for the phenomenological potential shown in
panel (a). The shape of the real part, however, al-
though showing the same general behavior, fails to
reproduce details observed phenomenologically.

As we mentioned in the Introduction, another
competing and unrelated theoretical approach which
explains the phenomenological nonstandard poten-
tial shapes arises naturally from the use of the Dirac
equation to describe elastic scattering.?? It is
noteworthy that the equivalent Schrodinger poten-
tial (i.e., the combination of Dirac potentials which
appears in the second-order reduction of the Dirac
equation to a Schrodinger-type form) not only exhi-
bits nonstandard shapes near 200 MeV, but also is
intrinsically energy dependent. Therefore, it is in-
teresting to compare this intrinsic energy depen-
dence with the one we have established phenomeno-
logically. It can be shown? that the real central
Schrédinger-equivalent representation of the real
Dirac potentials can be written as

V(r)=V,(r)+[(E +m)/m]V,
+(1/72m)[ V(P2 —Vo(r)?], (12)

where V;(r)=V; f;(r), with f;(r) given by Eq. (6).
Strengths and geometry of the scalar and vector po-
tentials, ¥, and V), respectively, are often treated
phenomenologically in a WS parametrization. In
Eq. (12), we have neglected terms containing ima-
ginary parts and the Coulomb potential, which are
much smaller than ¥, and ¥; and for the present ar-

gument are considered to be lumped together with
V, and V;. The point we would like to make is that,
with energy independent potentials ¥y, V;, the intrin-
sic energy dependence in the second term of the

" Schrédinger-equivalent expression to the Dirac po-

tential, Eq. (12), is sufficient to give an excellent rep-
resentation of the phenomenological energy depen-
dence of the real central potential, as is seen by com-
paring panels (a) and (b) of Fig. 5. The parameters
chosen for the Dirac potentials were V=277 MeV,
V,=—377 MeV, ry=0.545 fm, r,=0.504 fm,
a,=0.855 fm, and a;=0.910 fm.

The energy dependence of the phenomenological
spin-orbit potential (Table III) agrees qualitatively
with the expectation from a microscopic treat-
ment!!: With increasing bombarding energy the ab-
solute strength of the real part decreases monotoni-
cally while the imaginary part slowly increases. For
the case of the real part this trend is also found to be
reproduced by the Schrédinger-equivalent potential
obtained from the Dirac equation.? The latter,
however, predicts a decrease of the strength of the
imaginary spin-orbit potential, which is at variance
with our phenomenological finding.

We can show that the data at all three energies
indeed require a nonstandard-shape for the central
real potential. In order to demonstrate this, we have
adopted the following procedure. In the framework
of the DWS + MSO parametrization we have arbi-
trarily chosen a fixed Vy,. For each given value of
Vg, we have varied the remaining nine parameters
of the DWS + MSO potential (Secs. III B and III C)
with a, fixed. The resulting best-fit parameters,
and the corresponding total X7, then depend on the
choice of Vg, We are interested in X? as a function
of, for example,

a(Vr2)=Vra/Vr1(Vra)

which measures the relative importance of the cen-
tral depression, given by Vgr,fr2(r), compared to
the total real central potential. Thus a=0 would
correspond to a simple WS form. Results from such
a study for the 200 MeV data are shown in Fig. 6.
As can be seen, X%(Vg,) changes rather slowly for
Vro>4 MeV. This is due to the fact that once Vg,
is large enough to generate the nonstandard poten-
tial form, changes in Vg, can be compensated by
changes in Vy;(r) with the resulting sum potential
becoming insensitive to a particular choice of Vg;.
However, we note from Fig. 6 that X? improves by a
factor of 1.84 when the potential shape departs from
a standard WS form (@=0). In the corresponding
analysis of the 160 and 122 MeV data, the situation
is very similar and the corresponding X? improve-
ment factors are 1.72 and 1.54, respectively.

The above technique, which imposes a change on



466

Central potential V+iW (MeV)

MEYER, SCHWANDT, JACOBS, AND HALL

TABLE III. Best-fit parameters obtained with the DWS 4+ MSO parameter option (Secs.
III B and III C), corresponding to solid curve in Fig. 1. Units are the same as in Table I.

T=122 MeV T=160 MeV T=200 MeV
The following parameters were varied:
Vri 94.18 72.31 58.19
Vr2 68.17 58.84 54.50
w 9.24 11.60 17.55
Vo 17.13 14.51 11.70
W —6.36 —17.61 —8.46

The following parameters were fixed to linearly energy dependent values:

rr1 0.650
ari 0.780
rr2 0.915
aga 0.725
rw 1.180
aw 0.780
X, (total) 6210

X4 (total) 7350

0.690
0.740
0.925
0.715
1.080
0.720

4190
1420

0.730
0.700
0.935
0.705
0.980
0.660
2070
880

2The spin-orbit form factor is given by Egs. (9) and (10).

‘ T

! [
TDWS+MSO  (a)]

r (fm)

— 122 MeV

160 MeV

———200 MeV

-

-I6F

r (fm)

FIG. 5. The central potential ¥ +iW as a function of radius at 122, 160, and 200 MeV. The potentials in panel (a) were
calculated using the parameters listed in Table III. Panel (b) represents the energy dependence predicted by a relativistic
treatment, and (c) shows the corresponding potentials calculated microscopically in the local density approximation (see

text).
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FIG. 6. Best-fit X2 as a function of the shape of the
real central potential. The shape is determined by fixing
Vg2 in Eq. (8). The DWS + MSO potential option is used
in a search on the remaining parameters. The arrow cor-
responds to the parameter set listed in Table III. The line
is to guide the eye.

the radial form of a potential (here the real central)
by varying a (i.e., Vz,) is informative in yet another
respect: For any choice of @ we may also calculate
the volume integral and the root mean square (rms)
radius of the corresponding potential. For example,
the resulting rms radii are shown in Fig. 7 as a func-
tion of a over the range where Vz(r) develops from
a simple WS form (a=0) to a shape similar to the
best-fit potential. As can be seen, variations of the
rms radius of as much as 0.5 fm can occur. Similar-
ly, the volume integral of Vx(r) varies by about
25% over the same range of a. This clearly indi-
-cates that the commonly held belief that volume in-
tegrals and rms radii are parameters which are
well-defined by the data and insensitive to details of
the individual fit is true at best only for a given
shape of the potential (e.g., a WS form).

V. CONCLUSIONS

The present investigation was prompted by the
desire to study further the significance of nonstand-
ard (e.g., non-Woods-Saxon) shapes for the real cen-
tral potential found previously? in 200 MeV proton
elastic scattering from !>C. To this effect, measure-
ments on this same target covering a similar angular
range have been carried out at 160 and 122 MeV
with an intent to obtain an energy dependence of
these nonstandard features of the optical potential
and compare phenomenological results with micro-
scopic expectations. In view of the profusion in the

r(fm)
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|
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FIG. 7. Shape dependence of derived optical model
parameter. In the lower part, the rms radii of the real
central potential are shown for best-fit values using the
DWS + MSO option constrained to a specific potential
shape (shape parameter a; see text). In the upper part, ra-
dial shapes for three representative choices of a are
displayed. The lines are to guide the eye.

literature of greatly differing best-fit standard opti-
cal potentials for *C(p,p)'2C medium energy elastic
scattering, another goal was also to provide an ener-
gy dependence for the optical model description of
this process. Since at 200 MeV the standard poten-
tial parametrization failed badly only when data at
large momentum transfer (>3 fm) were included,?
it seems clear that any such optical model analysis
must be based on angular distributions covering a
large angular range.

The present work resulted in an optical potential
with a simple energy dependence with only five ad-
justed parameters. This parametrization yields a
description of the data at all three energies investi-
gated which is much improved over the standard
optical model (with 12 free parameters). The new
potential differs in the radial form of the real central
and the complex spin-orbit potentials and is given
by the expression

U(r)= Vrifri(r)— VRz[fRz(r)]2+inw(r)
+ A, A Vo +iW oo )8usolr) T L (13)

The ingredients are defined in Egs. (6), (9), and (10)
and the corresponding best-fit parameters are listed
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in Table III. All geometry parameters (Table III,
lower portion) are linear functions of the bombard-
ing energy, while the expressions in Eq. (12) give a
good description of the energy dependence of the
strength parameters (Table III, upper portion). We
emphasize that this particular parametrization is not
ad hoc, but inspired and justified by predictions of a
microscopic treatment of the nucleon-nucleus opti-
cal potential.#!?2 The fact that such a potential
leads to an improved description of the data is thus
an endorsement, perhaps not of the details, but cer-
tainly of the general approach of the microscopic
theory. It is also noteworthy that the phenomeno-
logical energy dependence for the potentials found
in this work is qualitatively in agreement with what
is expected theoretically.

Using a method to constrain the shape of the real
central potential, we demonstrated that its nonstand-
ard shape is indeed required by the data at all three
energies investigated. By means of the same method
we have also shown that the rms radii and the
volume integrals of the best-fit potentials (both often
believed to be quantities insensitive to details and
ambiguities of the optical model) indeed depend on
the assumed shape of the potential. Caution is thus
required in determining the neutron rms radius
(r,2)'/2 from an analysis of proton scattering where
the potentials are constrained to standard WS forms.
Such analyses may indeed be sensitive to changes in
(r,2)1/2, but may not necessarily return meaningful
values for (r,2)'/2.

Finally, any analysis of proton inelastic scattering
at these bombarding energies requires a justifiable
choice for the distorting potential. This requirement
is not serious either if such a potential is uniquely
defined and physically reasonable or if there is only
little sensitivity of the derived physical information

(be it details of the interaction or nuclear wave func-
tions) on the choice of the distorting potential. It
has been shown,?»?* in an investigation of the
2C(p,p")!*C reaction, that the second condition is
clearly not met and hence the distorting potential in
such investigations must be chosen with great care.
The potential deduced in this paper is based on more
experimental information than any previous
prescription, is monotonic in energy, easily
parametrized, and is physically reasonable (i.e., exhi-
bits the same qualitative features as are expected
from microscopic arguments), and thus may be used
with some confidence to generate p + >C wave func-
tions for bombarding energies in the range of
100—200 MeV.

Finally, we wish to point out that the present
analysis, like any optical model study, is a parame-
trization of the data. In this context, the imaginary
potential represents the sum of all effects that per-
manently remove flux from the elastic channel.
This treatment clearly is not able to deal with dom-
inant inelasticities, such as the excitation of the
prominent 2% state at 4.4 MeV, where only a few
terms in the partial wave sum are affected. The
question whether or not coupling to the 2% state sig-
nificantly affects an optical model analysis of the
elastic scattering is currently under debate and
remains to be answered. In any case, it is very un-
likely that the nonstandard shape for the real central
potential can be blamed on the fact that '>C is a de-
formed nucleus, since a recent analysis of
160(p,p)'%0 scattering? at 200 MeV also resulted in
non-Woods-Saxon potential shapes.
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Foundation.
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