
PHYSICAL REVIE% C VOLUME 27, NUMBER 1 JANUARY 1983

Rotational motion in nuclei
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A new method is presented for treating rotational motion up to very high spin in deformed
nuclei. Going beyond the mean field approach by the generator coordinate method, we take
into account additional corelations, in particular, the interaction between the yrast and the two

quasiparticle bands.

NUCLEAR STRUCTURE Rotational motion; heavy nuclei; generator
coordinate method.

In recent years, much work has been done on the
high spin region of deformed nuclei, theoretically as
well as experimentally (see Refs. 1 and 2, respective-
ly, for recent reports).

The most successful theory explaining data has
probably been the cranking technique combined with
the Hartree-Fock-Bogoliubov (HFB) approximation
in its different versions: full self-consistent deter-
mination of the mean field [the so-called self-
consistent cranking (SCC)],3 with constant deforma-
tion P, y, and 6, or only P and y [the so-called
cranked shell model (CSM)],~ and the generalizations
of these approximations to the particle number pro-
jection case.'

Nevertheless, all these calculations suffer from
more or less important deficiences. In order to
analyze some of these, let us consider separately the
two approximations involved in the SCC (CSM):
first, the restriction of the wave functions to those of
product type and second, the cranking procedure to
restore the angular momentum on the average. The
combination of both approximations gives, as is
known, a mean field theory in the rotating system.
Though the second one is a consequence of the first,
both are independent in the sense that we could, for
instance, maintain the HFB ansatz and project out
exactly the angular momentum. We could, on the
contrary, improve the wave functions, remaining
nonrotationally invariant and keeping the cranking
technique.

We can now consider both approximations as a
function of the angular momentum (cranking veloci-
ty). It is known' that the cranking technique is a
good approximation for well deformed heavy nuclei
with large fluctuations in the angular momentum,
and that it becomes an even better approximation for
large values of the angular momentum because it
corresponds to the classical limit. Nevertheless, as
we shall see below, the neglect of the fluctuations in
the angular momentum, as implied in the cranking

approach, is not justified in the band crossing region.
For the mean field theory in the rotating system, we
have well defined minima at low angular velocity with
the first excited states lying at about 1 MeV high. By
increasing the angular velocity, the minima become
flatter and flatter due to the high level density near
the yrast band, the increment in the level density be-
ing caused by the two quasiparticle states coming
down because of the Coriolis force. As a conse-
quence of this, the mean field theory will, probably,
be worse.

Another source of deficiency is the fact that the
SCC (CSM) wave functions usually show too much
alignment' ' at low angular momentum in compar-
ison with the experiment, which is also connected
with the band crossing problem. ' We can under-
stand with the following schematic arguments the
reasons why the mean field approximation cannot
describe correctly these facts: To describe the band
crossing region properly we have to combine both
bands at a given value of the angular momentum Io.
We should therefore allow wave functions of the type

ld & =c&ld &., +c2le&. ,

where I4)„and ata2I4) „are the wave functions

of the yrast and the two quasiparticle band, respec-
tively; ai, a2 are the two low lying quasiparticles with
respect to I4)„,. Taking into account the aligned na-

ture of a~a2I@)„,before the band crossing and the

fact that both components of I C ) above have ap-
proximately the same expectation value of J„,we
conclude that ao2 & cubi. On the other hand, in the re-
gion after the band crossing, due to the aligned char-
acter of the yrast band, we have ~2 & co~.

The linear combinations considered above are not,
in general, of the HFB type. Only for the case
cubi

= ao2 = co can we write

Ic ) = e "la )„=Ie)„+~', ~', le)„,
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E'= (elal e)((+II"Ie), (3)

with I' 'an operator which projects on angular
momentum l. Another possibility is to treat the pro-
jection approximately. This can be done under the
assumption of large deformation when we can

which means that we have too much alignment be-
fore the band crossing and too little after.

All these facts point out the necessity of consider-
ing more correlations in the wave functions or to re-
store the angular momentum symmetry in a better
approach. Some steps have already been taken in
this direction. Several authors' ' have proposed us-
ing the random phase approximation (RPA) in the
rotating system (CRPA) to describe the yrast band
and the excited states. Realistic calculations" have
been done in the rare earth region for ' Er. The
theoretical results for the excited states were in good
agreement with the experiment for angular momen-
tum I up to 22k. With respect to the yrast band, not
too much can be said because the coupling constants
were fitted for the SCC approach. Nevertheless, if
the mean field (HFB) is not a good approximation at
very high spins or in the band crossing region, obvi-
ously, neither is the RPA.

A very powerful theory that goes beyond the mean
field approximation and allows the introduction of
correlations in a simple way is the generator coordi-
nate method (GCM); one has only to be careful in
the choice of the generating coordinates and in the
number of these, otherwise the dimensions rise
tremendously.

In the spirit of this method we consider the follow-
ing wave function:

le) = J I@(co))do),
with

le(~)) =f00(~) le) „+xf„.(~)~'„(~)~.'(~) I@&. ,

(2)

where I 4)„is a wave function of the HFB type,
eigenfunction of Hp =Hp —cioJ, Hp being the one-
body approximation to the Hamiltonian H, and J„ the
x component of the total angular momentum opera-
tor. In other words, I4) are the wave functions
used in the SCC (or CSM) to describe the yrast
states; n„(cu) are the corresponding quasiparticle
operators to I4)„,and f~ (cu) are coefficients to be
determined by minimization of the energy. The velo-
city co has been used as generator coordinate by
Thouless and Peierls. '2 However, these authors were
restricted to low spins because of the linear response
approximation in co.

Since the wave functions I4(co)) are not eigen-
states of the angular momentum, nor are the le)
(the same happens with the particle number; to sim-
plify the discussion we shall concentrate only on J„);
this means we have to minimize

develop the Hamilton overlap as a function of the
derivatives of the norm overlap (Kamlah expansion).
In this case we get, ' up to second order,

E'= &ela le) + n [JJ(J+I) —&eli„le) ]
"2

+ [41(1+I) -(eli„le) ]'-
28y 28y

(4)

with the moment of inertia of Yoccoz 8q and 0 given
by

I (el(a —(a) )5J le& (ela&J. le&
2ar 2((aJ')'+ (J')'+ (J')') ' (elhJ'Ie)

If we assume that (hJ')/28r is constant, we obtain
the cranking model; i.e., we have to minimize

E = (elale)/(e'le)
with the constraint

-Jl(1+I)=(eli„le)/(ele) .

(s)

(Sa)

We see therefore that we can restore the angular
momentum symmetry in three ways: exactly, i.e., by
(3); by minimization of (4), which contains the fluc-
tuation term; or by the cranking descriptions (S) and
(Sa). At this point we can comment on the neglect
of the term (»') 28r in the cranking approach: Us-
ing the commutation relations for the pairing plus
quadrupole Hamiltonian we can get, ' in a good ap-
proximation, an analytical expression for this term:

with E a positive constant and p the deformation
parameter. From this expression we can see clearly
that this term will be very important in the band
crossing region where (gi') changes very much and

p remains approximately constant. If we do not
neglect this term, but vary expression (4), the condi-
tion of minimum will attempt to make hE& as large
as possible, i.e., (»') as small as possible; and
therefore the bands (ground and aligned) will mix as
little as possible, causing a sharper band crossing then
in the usual cranking model. In conclusion, we feel
that to get a right description of the band crossing we
cannot neglect the fluctuation term. In the rest of
the spectrum it will probably not be as important be-
cause (AJ ) shows a smooth behavior which could
be renormalized in the force constants.

We think that the wave function (I), being a su-
perposition of many specially chosen generalized
Slater determinants, contains enough correlations to
give the right alignment. Also, the two quasiparticle
parts in (2) will contribute toward a better description
of the band crossing region and of the very high spin
region. Furthermore, we think that some failures
imputed to the cranking procedure will not appear if
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we have a better wave function than in the mean
field approximation. It is also important to note that
the fluctuation term in (4) is at least a two-body
operator, which means that a mean field treatment of
this term may not be appropriate.

The purpose of this Communication is to show the
applicability of this method to the calculation of yrast
and excited states in well-deformed nuclei. In partic-
ular, we shall restrict ourselves to the approximate
methods to restore the angular momentum because
of its simplicity to contrast with the exact projection
(3).

We shall see that with the wave function (1), the
problems (5) and (Sa), we could call the cranked
generator coordinate method (CGCM), as well as the
minimization of (4) which includes the fluctuation

(7)

the basis states

term, can be solved with a relatively small effort.
The second method, though somewhat more compli-
cated, will be much more accurate.

To gain some insight into the method let us discuss
it in some detail. For practical reasons it is more
convenient to write the integral (1) as a sum:

+"v
Iq (~.) &, (6)

"a

where we have also restricted the values of eo from
—

AM to some maximum value au~ which will be
properly chosen; we will treat this point subsequently.
We denote by

li& (i=1,2, . . . , N)

~&( ~M)~2( ~M)l@&- ~ ~ ~x-&( ~M)~x( ~u)l~'& —u.

l@&~o, ~|(ohio)~2(oio)14&
o

~ir-i(ooo)~x(oio) lq'&~o

I@&.u, ~t(~u) ~2(~M) l@&.~, , ~~-i(~M) ~x(~u) I+&.u,
(8)

appearing in (2). N in (7) is the dimension of the
configuration space and depends on the number of ao

values introduced in the discretization of (1) and on
the amount of two quasiparticle states we allow in

(2); K in (8) numbers the quasiparticles. In this no-
tation (1) takes the form

I+&= gfjIJ& ~

J

with fi instead of f~ in (2). The basis states li&, as
frequently happens in the GCM, are nonorthogonal,
not complete and linearly dependent.

We turn now to the problem of the minimization
of the energy. We shall concentrate for the moment
on the minimization without considering the con-
straint; later on we shall discuss how to incorporate
it. The variation of E = (VIHI%'&/(qilqi& leads to
the Hill-Wheeler equation

IL &
= (ng)' X,ui Ii & (13)

These states are orthonormal and the Hilbert space
that they span is the smallest Hilbert space which
contains all the generating states. If we now write

Since X is a norm, the eigenvalues n~ are greater
or equal to zero. The functions u& form a complete
orthonormalized set in the space of the weight func-
tions fz.

If a zero eigenvalue n~ exists, this has to be
suppressed, otherwise the weight functions fz corre-
sponding to a state IO& are not determined uniquely.
To find a unique correspondence between IV& and f
we should restrict fj to weight functions that are
linear combinations of functions u&~ with nL & 0. For
each of these functions there exists a normalized vec-
tor in the Hilbert space

3Cf =Elf (10) (14)

Xgt„uf = nru, ' . ,

J
(12)

with the matrix overlaps

3ciJ &i IHIJ & ~ 0Is= &i lj&

As already known from the above-mentioned prop-
erties of the basis state li), the usual methods of
diagonalization cannot be applied directly. What is

usually done to remedy these problems, i.e., to go to
an orthonormalized set (see, for instance, Ref. 13), is
the so-called symmetric orthogonalization which cor-
responds to a diagonalization of the Hermitian opera-
tor R. That is,

instead of (10), we have to diagonalize

X(LIHIK&gc Eg, . ——

The matrix elements which are needed for this ex-
pression can be calculated by the techniques exposed
in Ref. 5.

If we did not have a constraint on J, [or we did not
want to vary expression (4)] the problem would fin-
ish here. Though (15) is a linear problem the con-
sideration of the constraint (Sa) or the second-order
term in (4) introduces some nonlinearities. To
bypass this difficulty, one can use the steepest des-
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cent method" which has been used, with great suc-
cess, for HFB wave functions. Because of the itera-
tive character of this method, its applicability depends
very strongly on the complexity of the gradient of the
involved operators. We will now see that these gra-
dients are very easy to calculate with our wave func-
tions. The wave function (14) can be written as

-i/2
Ie&= 1+ /gal Il)+ ggxl&)

K 2 K 2

in each step of the iteration. The gradient of the ex-
pectation value of any operator 0 is then given by

(q lolq &..0=2&llol~&,

and this expression is simply the first row of the
representation of 0.

Once we have found the yrast state l@t) corre-
sponding to angular momentum I, we can apply the
same method to calculate excited states of the same I
by excluding !%~) from the basis states.

Some points must still be remarked concerning the
wave function (1), such as the discretization of the
integral, the two quasiparticle states to be considered
in (2), and the maximum value of co to be used in

(6). As a general comment on these points one can
say" that, since we are working on a linearly depen-
dent basis, the increase of this does not necessarily
mean a better approximation. With respect to the

two quasiparticle states, as we know, the main role is
played by the intruder orbitals, in the rare-earth re-
gion, the ni iy2 and the mhii~2. The maximum value
of cu will depend obviously on the maximum value of
I, which we want to calculate.

It is important to note that for the whole spectrum
the full basis (8) is needed only once to diagonalize
the matrix 'X in (12) and to find the representations
of H and J„[eventually of the operators appearing in
(4)]. The posterior calculation of all states will re-
quire much less dimension because of the omission
of the linearly dependent states.

In conclusion, for treating rotational motion in nu-
clei, we propose the use of a linear superposition of
the yrast wave functions of the SCC (CSM of any
similar theory) and the two quasiparticle states based
on those, in the spirit of GCM. The coefficients of
this superposition are determined by minimization of
the energy. If a projection technique is not used to
restore the angular momentum (particle number)
symmetry, approximative projection methods which
may or may not include the fluctuations in the angu-
lar momentum can be applied to this GCM wave
function.
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