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Missing longitudinal strength cannot reappear at very high energy
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(Received 16 August 1982)

The longitudinal sum ru1e, computed from recent measurements of quasielastic longitudinal

structure functions at high momentum transfers, is lower than the theoretica1 prediction by

about a factor 2. Here it is shown, by comparison between the theoretical measured values of
the ratio of the fsum rule to the longitudinal sum rule, that any substantial fraction of missing

longitudinal strength must lie at energies low enough to have been detected. This analysis is in-

dependent of any systematic experimenta1 errors of overall scale.

NUCLEAR REACTIONS Quasielastic electron scattering; longitudinal
response function; longitudinal sum rule and "f"sum rule.

The longitudinal inelastic structure function of a
nucleus is defined as

n&0

proton form factor. This gives the corrected form,
Eq. (2').
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It is measured for spacelike (q )w') four-mo-
mentum transfer in electron scattering by means of
Rosenbluth plots (that is, the ratio of the cross sec-
tion to the Mott cross section is measured for fixed
three-momentum transfer q and energy loss w, but
varying scattering angles, and then plotted against
[ —, +tan'(8/2) ], which is the coefficient of the

transverse contribution). The measurement of SL is
a matter of some difficulty, and it is not surprising
that this has only been done relatively recently, '
especially since the Fermi gas model of quasielastic
electron scattering in the impulse approximation
seemed to describe the unseparated data at 8 =60
quite well. Thus it has proved extremely exciting
that this model, which fits the unseparated inelastic
structure functions quite well, fails by a factor of -2
to fit the longitudinal structure function by itself.
There are two aspects of this discrepancy which must
be explained: First, the theoretical curve, predicated
on one-body quasielastic knockout with reasonable
nuclear wave functions, closely resembles the experi-
mental curve in shape, but is a factor of 2 higher
than the data. Second, the area under the quasielas-
tic peak is supposed to satisfy a sum rule which was
first proposed by Heisenberg in 1931,4 namely

goo
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Strictly speaking, the large three-momentum limit in
(2) applies only for pointlike charged particles —for
protons we should multiply the right-hand side by the

The area under the experimental quasielastic peak,
up to the highest energy loss so far measured, and
for the largest values of

~ q ~, is also low by a factor of
-2, compared with the prediction of the Fermi gas
model in impulse approximation. The sum-rule
discrepancy is much more serious than any disagree-
ment with the detailed shape of a predicted theoreti-
cal spectrum, because the sum rule is nearly model
independent. That is, changing the parameters of the
nuclear wave functions can shift the strength around
to some extent, but cannot alter the total area under
the curve.

Only three explanations of the missing sum-rule
strength seem tenable: First, the experiments might
be wrong. The experiment is a difficult one ab initio,
and the analysis is complicated by the effects of
Coulomb distortion of the electron wave functions,
by radiative processes, and by a negative pion back-
ground. ' Since the longitudinal structure function is
extracted from the data as a small difference between
large numbers, extreme precision is necessary in con-
trolling all the potential sources of error to obtain
only moderate precision in measuring Sr. . (At the
time of this writing it is not clear whether the quoted
measurements of Sq are sufficiently in error to ac-
count for the factor of 2 discrepancy. ) Second, the
Fermi gas model is predicated on single-nucleon
quasielastic knockout; however, the hadronic interac-
tions are expected to transfer some of the inelastic
strength from one-body processes to more complex
processes such as two-nucleon ejection or meson pro-
duction, and thereby to push the inelastic strength to
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energies substantially higher than the quasielastic
spectrum. ' And third, as I have suggested previous-
ly, in some models of nuclear structure the interac-
tions modify the nucleon form factors sufficiently
that it becomes significantly more difficult to eject a
nucleon at a given three-momentum transfer than it
would be if the nucleon's form factor were unmodi-
fied.

The object of this paper is to point out that the re-
ported measurements of longitudinal inelastic
strength are consistent with the electric dipole sum

rule and with the energy-weighted inelastic sum rule.
Hence we must conclude that there is no significant
missing strength at energies where the structure func-
tion has not been measured (e.g. , for timelike four-
momentum transfer). If the experimental results
continue to stand up, we will then be able to con-
clude by elimination that the only viable explanation
is the failure of the impulse approximation.

Several years ago I showed' that for a system of in-
teracting pointlike nucleons and pions one could estab-
lish the energy-weighted progenitor sum rule

(Ol [10(—q ), [H Jo(q)]]IO) =M 'q q[p~(q —q ) —A 'p~( —q ) p~(q)]

+2q q J d x e ' " "' " (oly'(x)4(x)I0)

where $(x) is the charged pion field. Strictly speaking, the first term of Eq. (3) holds for nonrelativistic nu-
cleons, but the modification is straightforward. Also, strictly speaking, the term involving the pion fields is in-
finite because it includes (divergent) nucleon self-loop diagrams which should be included with the renormalized
nucleon form factors. In the following we shall assume that these identifications have been made and that, over
the range of momentum transfers we shall be interested in, Eq. (3) holds in the form

(ol[&'(—q), [HJ'(q)]]10) =(M") 'q qFx(q')Fx(q)lp, (q q) —A —'p, (—q)p, (q)]
+K„(N/A)M 'q qF'(q')F„'(q) p~(q —q ) [1+(q —q )'/m" ] ', (4)

where ~ is the part of the electric dipole sum-rule
enhancement which is attributable to pion exchange.
Typical calculations' give 0.2 to 0.3 for this number,
in medium-mass nuclei. (The possible modification
of masses and form factors in nuclei is implied by
superscribed asterisks. ) We shall be interested in two
extremes of Eq. (4), namely very small (but dif-
ferent) q and q (suitable for evaluating the electric
dipole sum rule), and moderately large (pF & q
& 3pF) values of the momentum transfer, with q
and q set equal. This latter limit is the nuclear
equivalent of the famous f sum rule of condensed
matter physics. ' In these two limits we obtain the
electric dipole sum rule

X I (n ID I0) I2(E„—Eo)
n&0

= (NZ/2AM) [(M/M') (p, /p) +~„] (5)

and the f sum rule

f(lql)= X 1(nl J'(q) I0) I'(E.—Eo)
n)0
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which may be expressed in terms of the longitudinal
strength function as

ff( I q I) = dw wSz( I q I, w)

Now, according to Viollier and Walecka, the ef-

I

fects of two-body short-range correlations (as dis-
tinguished from Pauli correlations) on the longitudi-
nal sum rule (LSR), Eq. (2'), are in the range
1—10% when q is & 1.5p~. However, their calcula-
tion does not tell us where the strength lies. If we
suppose that there is some missing strength which
has not been measured in electron scattering, then it
will affect the ratio of the f sum rule to the LSR.
Let us take the ratio of the integral of missing
strength to that of the known strength to be X. We
can define an effective energy where this missing
strength is to be found, in terms of the assumed
missing integrated LSR strength, X:

wgff = [ (1 + x) (f„.../C, „...) —(f«p, /C«p, ) ]/x . (8)

Here f,h„, and f,„„are the theoretical and experi-
mental values of the f sum, the C,h„, and C,„„the
corresponding values of the LSR. In Table I below
are plotted the derived values of this effective ener-
gy, for various values of M', the effective nucleon
mass in the relativistic Fermi gas model ~ The values
of ~ appearing in the table were derived under the
assumption that the net enhancement of the electric
dipole sum rule for medium-3 nuclei is 1.6, which
may be expressed as

1+K = (940/M')(p, /p) +~ =1.6 (9)

where p and p, are, respectively, the ordinary and
Lorentz-scalar densities of the nucleus. In calculating
the theoretical ratio f,h«„/C, h„„relativistic correc-
tions have been inserted according to the relativistic
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TABLE I. Values of the effective energy where missing strength may be found, for two assumed
values of the fractional missing strength, X = X/(1+ X), and for two different sets of measure-

ments, for fixed three-momentum transfer q =410 MeV/c, as functions of the effective nucleon
mass M in the relativistic Fermi gas. Also tabulated are the pionic contribution to the dipole sum
rule and the relativisticaiiy corrected version (a) of the average quasieiastic kinetic energy (given
nonreiativisticaiiy by tr2/2M').

(MeV)

(a)

(MeV)

weff (MeV)
40Ca (f«~, /C«~, =98.7')

X =20% X =50%

56Fe (f,„~,/C«, =107~)

X =20% X =50%

940
900
850
800
750
700
650
600
550

0.616
0.573
0.515
0,451
0.378
0.295
0.200
0.093
0.0

83
86
91
95

101
107
113
120
128

89
105
127
151
177
207
239
275
315

94
101
110
119
130
142
155
169
185

56
73
94

119
145
174
207
243
283

86
93

102
111
122
133
146
161
177

'M. Deady, private communication. ~R. Altemus, private communication and Ref. 1.

Fermi gas model.
We see from Table I that, for reasonable values of

M' (the value which best fits the quasielastic spec-
trum is -700 MeV), the assumed missing strength
cannot lie in uncharted realms of the energy-loss
spectrum, but would have to lie precisely where the
measurements have been made. This result is sensi-
tive neither to the assumed value of the Fermi
momentum pF nor to the estimate of the pionic
enhancement of the electric dipole sum rule. The
values of w, ff derived from the two sets of experi-
ments, in which the targets were ' Ca and ' Fe, are
mutually consistent within the quoted experimental
errors. (It is perhaps worth noting that, barring sys-
tematic errors, the relative uncertainties in integrated
quantities such as f,„„,and C,„„are smaller by

roughly I/ JN than, those in the individual experi-
mental points, where N is the number of points in

the integral. Thus in this case the errors are & 10%.
Moreover, since only the ratio fthm„, /C, „„enters
here, errors in overall scale will not affect Table I.)
We may therefore conclude that the requirement of

consistency between the f-sum rule and the LSR pre-
cludes the possibility that any significiant longitudinal
strength remains at energies too high to be measured
by the present experiments. Although the results are
not presented here, I have performed the correspond-
ing calculations for the experiments at lower momen-
tum transfers, and found similar consistency between
the f sum and the LSR. This tends to confirm the
findings of Viollier and Walecka that deviations from
the asymptotic form of the LSR should be smaller
than 10% or so for q/pF )1.5.

Thus we may reiterate that only two explanations
for the present experiments on longitudinal strength
functions now survive: First, that the experiments
themselves contain some hitherto-overlooked sys-
tematic errors, and second, that the impulse approxi-
mation fails in the manner suggested earlier.

All calculations in this paper were performed on a
Sinclair ZX81 computer.
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