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A previous analysis of high resolution measurements of the total cross sections for 25- to
1100-keV neutrons on S in terms of an

independent

optical model is extended to obtain
model-independent but still l-dependent average scattering matrix elements from the data. The
particular optical model obtained here is essentially the same as that deduced in the previous pa-

per but the matrix elements are more amenable to future analyses with different models.

'
NUCLEAR REACTIONS 32S(n, n), E„=25—1100 kev, average scattering

matrix elements and optical model parameters for l =0 and 1.

In the last quarter century since Barschall's
pioneering comment' on averaged experimental neu-
tron cross sections and Feshbach, Porter, and
Weisskopf's interpretation' in terms of an optical
model potential, there have been many papers with
varying degrees of sophistication in which averaged
cross sections are described by various optical'
models. Two years ago we reported3 a set of parame-
ters for a spherical but independent potential that ade-
quately described two average experimental quantities
for each I and J, the strength function s(J and the
external R function R(J"', which had been deduced by
partial wave analysis of high resolution measure-
ments of total cross sections for ' S+n. Those two
quantities were chosen in part because they are fami-
liar to workers in neutron physics. However, since s(J
and R(J"' involve the rather arbitrary R-matrix boun-
dary conditions used for analyzing the data, the opti-
cal model calculation of s(J and R(J had to include
those same boundary conditions. In fact, a compar-
ison of any model to the experiment via those func-
tions must take into account the choice of boundary
conditions.

MacDonald4 suggested that the high resolution
neutron data be analyzed to produce an average
scattering matrix element for each IJ. Since such
averages are independent of boundary conditions, the
adjustment of the model can proceed without refer-
ence to those conditions. Such is the purpose of this
Brief Report. Of course, the two procedures are
essentially equivalent and each has its merit. The
comparison of the data to nuclear models via s(J and
R(J"' shows more clearly the relationship of the theory
to the experiment, but the average matrix elements
may be more amenable to future theoretical interpre-
tation because they do not involve the arbitrary chan-
nel radius.
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FIG. 1. Schematic diagram of the chain of logic from high
resolution total cross sections to an optical model potential.
In the previous report (Ref. 3) the model was compared to
experiment in the upper right block; here the comparison is
made in the lower right block so that the R-matrix boundary
conditions are not involved in the model. The boundary
conditions are indicated by the boundary radius a.

In Fig. 1 is shown schematically the chain of logic
of our procedure. The upper and lower branches be-
gin, respectively, with the data and model. Taking
the upper branch first, consider the data block. High
resolution total cross sections for neutrons on sulfur
(95'/0 "S) were measured' over an energy interval
(designated I) from 25 to 1100 keV using the Oak
Ridge neutron time-of-flight facility, ORELA. Ideal-
ly, angular distributions would be included, but the
total cross sections are adequate here because ' S has
zero spin and only the entrance neutron channel is
important.

The second block denotes the R-matrix multilevel
fitting" of the data. Only the s~/2, p~/2 and p3/2
channels were considered; the barriers for higher par-
tial waves restrict their contribution to very narrow
resonances. For channel lJ the scattering matrix ele-
ment can be written in the R-matrix formalism as

-2($(
Stq(E) = e '(1 Ll Ru) l(1 L—tR&J)—
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su= (y /D)IJ,

RIJ(E) =uu+P»E,

(4)

and D is the average level spacing. The fitted values
of alJ P» and (y'/D) IJ are listed in Table II of
Johnson and Winters. ' In Eq. (3), Pr denotes the
principal part of the integral. The subtraction of this
integral is equivalent to the addition of the integral
from —~ to + 0o, with the interval Iexcluded.
Froehnert has also emphasized the importance of Eq.
(3).

For the moment we leave the upper branch in Fig.
1 and consider the block labeled "optical model. "
Modern models have many parameters but the
present data justify only two adjustable parameters
for each partial wave. As discussed previously, ' we
fix the geometries for a Woods-Saxon well with
surface-derivative imaginary and spin-orbit terms and
then adjust only the well depths for each partial wave.
For given well depths we calculate the optical model
scattering matrix elements as indicated in the lower
right block in Fig. 1.

In our previous paper, as indicated by the dashed
arrow in Fig. 1, we expanded the scattering matrix in
terms of a smoothly varying complex R function
using the same boundary conditions as above:

where all terms on the right are evaluated at the
chosen boundary radius a. At energy E, Ql is the
hard sphere phase shift, I.I = SI —BI +iPI, Sr is the
shift factor, P~ is the penetrability, and BI a chosen
boundary condition. As previously, we choose
Bf= SI The R function is then subdivided into a
sum over the levels in the interval I plus a term for
all external levels;

R»(E) = xy), (J/(Eiij E)+—R(J"'(E),
I

where ygIJ and EgrJ are the reduced width the
eigenenergy for the level A..

The RrJ"' must increase monotonically and smooth-
ly in the region. In principle, this function can be
obtained exactly from the fitting procedure; however,
the quality of the data is such that it is very well
determined for s~/2 and less well for p~/2 and p3/2. As
in our previous paper, ' we expand RIJ in a form
which is appropriate for the subsequent averaging:

RIJ"'(E) = Ru(E) —Pr siJdE'/(E' —E), (3)
"r

~here the strength function sIJ is set equal to that ob-
served in the interval, and the real smoothed R func-
tion is parametrized as a first order polynomial:

o (~/gJ = ~k '(I —
I (Su) I

') (9)

where gJ is the statistical factor J+—,, for a spin-zero

nucleus. In Figs. 2 and 3 the solid curves show these
average quantities deduced from the data.

The dashed curves in Figs. 2 and 3 are the best
visual fits of the model to the data. The resulting
well depths are listed in the figures. The uncertain-
ties are approximately +1 MeV for Vo and +1.5
MeV for WD. The model geometries were fixed as
the previous work' with 1.21 fm for all radii and with
ao=0.66 fm and aD =0.48 fm. As expected, the well
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We then adjusted the model well depths to give a
good fit of the predicted siJ and RIJ from Eq. (7) to
those observed in Eqs. (4) and (5).

In the present paper we simply reverse part of the
procedure, as indicated by the solid downward arrow
in Fig. 1. Thus we insert the experimental RIJ(E)
and si1 in the right hand side of Eq. (6) in order to
find the experimental average (SIJ), which are to be
fitted by the optical model predictions. The results
could be displayed in various ways. Our choice is to
plot quantities proportional to the average shape elas-
tic and compound cross sections:

~If/gj = hark 'I l —&Su) I',
and

S, M =e '(I —L;dt )/(1 —LI6lIJ),

where

rst»(E) =Ru(E) +~ msIJ(E) . '

(6) FIG. 2. Average experimental s-wave shape elastic and
compound cross sections (divided by gJ) and visually adjust-
ed predictions from an optical model. The potential
geometries are as in Ref. 3 with all radii at 1.21 fm and with

ao =0.66 fm and aD =0.48 fm.
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FKJ. 3. Same as Fig. 2 but for p waves.

depths are nearly the same as deduced previously.
The main differences result because the present and
previous potentials actually had slightly different
geometries; the same Wood-Saxon geometry parame-
ters were used in both cases but previously the po-
tentials were set to zero outside the 6.4-fm R-matrix
boundary. In fact, one purpose of this Report is to
give well depths for a model without a cutoff.

The most striking feature of our model is a strong

parity or I dependence. Of particular interest is that
for the real part; the Vo is 10 MeV greater for p
waves than for s waves. This result, which comes
primarily from fitting the real parts of the scattering
matrix elements, means that the spherical well
demands different depths for s and p waves to prop-
erly locate the 2p and 3s single particle states. As we
have already discussed, ' the parity dependence is also
required to give the observed binding energy for the
2p states and the mass location of the 3s size reso-
nance.

For the imaginary part of the potential, a parity
dependence is suggested by the s- to p-wave ratio of
2/1 for O'D. However, we emphasize that each O'D

has a large uncertainty because it has been deduced
primarily from (y2/D), a quantity which has a large
inherent uncertainty resulting from Porter-Thomas
fluctuations. If %levels are drawn from a Porter-
Thomas distribution, the fractional uncertainty in

(y /D) is (2/N)'~; in the present case Nis only 5,
7, and 8 for s~g2 p~/2 and p3/2 respectively. We also
note that such few levels provide little evidence for
the energy dependence of the strength function.
Thus each experimental sIJ has been assumed con-
stant, whereas the model sIJ is energy dependent.
For this reason no significance is given to the differ-
ence in shapes of the model and experimental curves
for 0-' in Figs. 2 and 3. The difference is particularly
large for the p~/2 curves because the model strength
is on the high energy side of the nearby 2p&~2 bound
state.
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