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A new effective range formula is derived using a conformal mapping variable that incor-
porates the knowledge of the left-hand cut. Our formula is valid up to higher energies and
has good convergence and extrapolation properties. As an illustration, we use the formula
for a study of the S and P waves in the n-p scattering.

NUCLEAR STRUCTURE New effective range formula derived

from analyticity using conformal mappings.

I. INTRODUCTION

The effective range formula contributes signifi-
cantly towards a phenom enological understand-

ing ' of N Ninter-action and the investigation of
theoretical concepts such as the isospin invariance,
as well as providing a framework for constructing
realistic N-N potentials' and for calculating three
and four nucleon dynamics. It was derived by
Schwinger using a variational method, although
numerous alternate derivations were subsequently
made available. ' ' From the point of view of the
analyticity of the partial wave elastic amplitude the
formula may be regarded as a one-pole approxima-
tion to the left-hand cut, ' '" or alternatively it may
be viewed as a power series expansion that explicitly
incorporates elastic unitarity and has the right-hand
cut uniformized. ' From this latter point of view,
the formula depends upon the well established

analyticity properties' and does not subscribe to
any specific forms of nuclear forces or potentials.
As such it is valid for systems containing tensor
forces, nonlocal potentials, or velocity dependent
potentials. '

The formula is, however, valid only near the
threshold up to 10 MeV laboratory energy. This is
a severe limitation not only for the phenomenologi-
cal utility of the formula but also because the
higher energy data cannot be used towards the
evaluation of its expansion coefficients, with the
consequent lack of determination of the shape
parameters which in fact contain the finer details of
the underlying interaction. An extension of the for-
mula up to 40 MeV laboratory energy has been pos-
sible' by explicitly computing the one pion ex-
change (OPE) contribution through a numerical in-
tegration. An analytical generalization of the for-

mula up to high energies has been given using mul-

tisheet conformal mapping techniques. ' This gen-
eralization has been tested' and works very well.
In the present paper we give a new formula that
works as well but is simpler to use. We expand the
usual effective range function Ft(k)=k '+'cot5t in

a new variable that carries an explicit knowledge of
the left-hand cut. The expansion coefficients of our
formula are related in a simple way to the expan-
sion coefficients in the conventional effective range
formula. Of course, there is a price to pay for this
simplification —while our earlier generalization
gave both the phase and the modulus of the Jost
function, our present formula does not contain in-
formation on the modulus.

Our formula offers a precise parametrization of
the experimental phase shifts up to higher energies.
Besides, the accessibility of the high energy data al-
lows the determination of the higher coefficients,
i.e., the shape parameters. Further, we may now
also treat the higher partial waves. These features
of our formula make it phenomenologically very at-
tractive' ' and useful for the construction of real-
istic N-N interactions to be used as such or as basic
input to three- and four-body calculations ' ' such
as the triton binding energy. '

We present our new formula in Sec. II. Some nu-

merical results and their discussion are given in Sec.
III. Our conclusions are presented in Sec. IV.

II. NEW EFFECTIVE RANGE FORMULA

Figure 1 shows the analytic structure' of a par-
tial wave amplitude At(E) describing the elastic
scattering of two scalar equal mass particles whose
longest range interaction arises from a one-particle
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be explicitly written as follows:

f1l
4

Fl(k) = —1 f~ 2E (P—IrIPI )E
2

FIG. 1. Analytic structure of equa1 mass partia1
wave scattering amplitude with one-particle exchange of
mass m.

exchange of mass m, in the E=k complex plane
where E is the center-of-mass energy and k is the
center-of-mass momentum.

The branch cuts of Al(E) extend along 0 &E & ao

and —ac &E & —m /4. The branch point at E=0
corresponds to the two-particle threshold and it is a
square root type branch point. ' The branch point
at E= —m /4 arises from a logarithmic term' ' '
and it is a branch point of infinite order. In this
context the conventional effective range formula
arises' simply by unfolding the right-hand cut by
employing the transformation k =+V E and by us-

ing the elastic unitarity which specifies the discon-

tinuity across this cut. In so doing one learns that
the effective range function

where

+(QI"!PI )E (~l"Ipl )E

+(Slrlpl)E

p~ =Q~r~ .

The parameters aI and rl are traditionally referred
to as the scattering length and the effective range,
while the parameters Pl, Ql, Rl, and Sl are dimen-

sionless numbers which contain the finer details of
the underlying interaction. The quantity p~ has the
dimensions of the square of a length, although it
has been the custom in the past to take po ——ro for
the S wave.

It is obvious from Fig. 2 that the effective range
expansion Eq. (2) converges only within a circle of
radius m /4 which roughly corresponds to a labo-

ratory energy of 10 MeV. It is also clear that if we

unfold the branch point at E= —m /4 we will. have

a larger circle of convergence as well as a faster rate
of convergence. ' This can be readily done by the
transformation

Fl(k) =k +'cot5I(k)
f72z=ln E+
4

(4)

is an even function of k and has only the left-hand
cut in the complex E plane. This analyticity of
Fl(k) is shown in Fig. 2.

The expansion of Fl(k) in the E plane, which is
the conventional effective range formula, may now

However, if we wish to keep our expansion in the ~
variable close to the effective range expansion Eq.
(2), we should use the combination

co=in +14E
m

Our improved effective range formula may now be

explicitly written as follows:

0

FIG. 2. Analyticity of the effective range function

E~(k) [Eq. (l)] and the circle of convergence of the con-
ventional effective range formula [Eq. (2)].

Fl(k)=FI(co) = g AI„uI" .
n=0

In view of Eq. (5) the expansion coefficients in our

improved formula [Eq. (6)] are related to those in

the conventional formula [Eq. (2)] as follows:

1——=Aio
Q~

r) A()

2
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1 1

Qlrlpl (AI3 AI2+ I 1 )
A,

3

RI—rlpl —— ( 12AI4 —18AI3
1

i2X4

(10)
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where

l?l

4

+ 11AI2—3AI I),

FIG. 3. The horizontal strip is the image of the en-
tire E plane of Fig. 2 under the transformation Eq. (5).

The inverse relations are as follows:

T~

AI2
—2——A, ( Pirl p—l )+2 2

(13)

onto a horizontal strip of width 2m with the origin

going to the origin; see Fig. 3. The images of the
strip under the translations

N ~CO+ 27Tl (16)
AI3 ———I6A, (Qlrlpl )+6k( Plrlpl )+—, rl I, —

6
(14)

AI4= I 24/ ( Rll'IPI )+36/ (Qlrlpl )
24

1+ ~( I IPI )+ rl I (15)

Looked upon as a conformal mapping2 '27 our
transformation Eq. (5) maps the E plane of Fig. 2

correspond to the higher Riemann sheets reached in
the E plane by crossing the left-hand cut in Fig. 2.

The branch point at F.= —m /4 is mapped onto
co=Do and our improved formula [Eq. (6)] con-
verges in the whole co plane. However, if there are
any poles of F~(k) such as that corresponding to the
change of sign in the S-wave phase shifts, such
poles will have to be taken care of before our expan-

TABLE I. Comparison of our improved effective range formula [Eq. (6)] with the experi-
mental data.

Laboratory
energy
(MeV)

'So phases
(deg)

Experimental
Theoretical

Eq. (17)

'S] phases
(deg)

Experimental
Theoretical

Eq. (18)

1

2
3
4
5
6
8

10
12
14
16
18
20
25
30
40
50
60
70
80

62.43+0.01
65.03+0.03
65.35+0.06
65.06+0.08
64.53+0.11
63.91+0.14
63.57+0.20'
61.23+0.26
59.95+0.32
58.73+0.37
57.56+0.42
56.46+0.47
55.41+0.52
52.96+0.62
50.73+0.71
46.72+0.86
43.16+0.98
39.90+1.10
36.89+1.21
34.08+1.33

62.430
65.020
65.363
65.095
64.601
64.013
62.744
61.459
60.198
58.973
57.786
56.637
55.524
52.898
50.484
46.243
42.689
39.702
37.178
35.026

147.85+0.01
136.55+0.02
128.83+0.03
122.92+0.05
118.12+0.07
114.07+0.09
107.49+0.13
102.22+0.16
97.84+0.20
94.07+0.23
90.78+0.26
87.84+0.29
85.18+0.32
79.48+0.38
74.76+0.41
67.19+0.46
61.20+0.47

147.850
136.552
128.830
122.916
118.114
114.068
107.488
102.237
97.857
94.099
90.783
87.831
85.164
79.442
74.715
67.246
61.549

'This data point seems to be in error.
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Parameters Values for 'So Values for S&

Scattering length
Effective range

P (i)

(ii)

(i)
(ii)

—23.679 fm
2.505 fm

—0.012
0.0013

—0.216
—0.0024

5.395 fm
1.752 fm

(i) —0.127
(ii) —0.041
(i) —0.636

(11) —0.067

TABLE II. Values of the effective range parameters
obtained from our analysis.

It has been shown that low energy phase shifts
are influenced by contributions from momentum
components up to 6 fm '. Our improved effective
range formula, besides providing an accurate
description of high energy data, also provides a tool
to study how the low energy parameters are influ-
enced when high energy data are incorporated.

III. NUMERICAL RESULTS AND DISCUSSION

sion [Eq. (6)] can be expected to converge in the
whole co plane. This matter will be discussed in de-
tail elsewhere. For the moment we remark that our
Eq. (6) will converge considerably slowly in the vi-

cinity of such a pole if the pole has not been expli-
citly accounted for, as is the case of our present
study.

The expansion coefficients Ai„ in our improved
formula [Eq. (6)] can be evaluated by using data up
to higher energies. The corresponding coefficients
in the conventional formula [Eq. (2)] are then deter-
mined using Eqs. (7)—(12). Thus the higher coeffi-
cients Pi, Qi, Ri which specify the details of N N-
interaction may now be determined. These terms
could not be evaluated by the conventional formula
owing to its circle of convergence being limited (see
Fig. 2) so that the data beyond 10 MeV could not be
used. For the same reasons we can now evaluate
the effective range expansion parameters for higher
partial waves, which could not be done with Eq. (2)
because the higher partial waves are too small below
10 MeV and the data above 10 MeV lie outside the
circle of convergence of Eq. (2).

k cot5„=0.042 2324+ 0.1502916co

+0.077 8852co —0.008 9737co

+0.031 781co

k cot5pg 0 185 3477+0 105 125M

+0.062 3624m +0.009 163am

+0.015 6891m)

(17)

(18)

In Table I we display the experimental results
and those reproduced by our Eqs. (17) and (18).
The values of the effective range parameters corre-

We illustrate the theory given in the previous sec-
tion using the phase shifts reported in Ref. 30. Al-
though a more recent phase shift analysis ' exists,
the data reported in Refs. 30 and 31 are in agree-
ment over the energy region used by us, while there
are more data in the lower energy region in Ref. 30.

Parametrization of the n pdat-a in the S wave by
our improved effective range formula [Eq. (6)] is
given by Eqs. (17) and (18) below. Equation (17) de-
scribes the 'So phases while Eq. (18) gives Si
phases.

TABLE III. Comparison of our values of the scattering length and the effective range
with those from the literature.

Laboratory
energy
(MeV)

Experimental
'So phases

(deg)

Shape independent
effective range approximation

Ref. 1 Present analysis
a = —23.719 fm a = —23.679

r=2.76 fm r =2.505

1

2
3
4
5

6
8
10

62.43+0.01
65.03+0.03
65.35+0.06
65.06+0.08
64.53+0.11
63.91+0.14
63.57+0.20'
61.23+0.26

61.831
64.090
64.167
63.663
62.954
62.169
60.562
59.011

62.429
64.993
65.285
64.950
64.381
63.716
62.302
60.903

'This data point seems to be in error.
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TABLE IV. Comparison of our improved effective
range formula [Eq. (6)] with the experimental data.

Laboratory
energy
(MeV)

1

2
3
4
5

10
14
20
25
30
40
50
60
70
80
90

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380

Values below

400
420
440
460
480
500
600
700
800
900

1000

Experimental
'P& phases

—0.17+0.00
—0.43+0.00
—0.71+0.01
—1.00+0.01
—1.28+0.01
—2.46+0.03
—3.18+0.04
—4.03+0.06
—4.61+0.08
—5.14+0.10
—6.16+0.17
—7.19+0.24
—8.27+0.32
—9.40+0.40

—10.55+0.47
—11.72+0.54
—12.90+0.59
—15.23+0.69
—17.47+0.76
—19.59+0.82
—21.57+0.88
—23.41+0.95
—25.10+1.03
—26.65+ 1.13
—28.07+ 1.26
—29.36+ 1.41
—30.54+1.58
—31.60+ 1.77
—32.56+ 1.97
—33.43+2.19
—34.21+2.41

are extrapolations of Eq. (19)
—34.91+2.64
—35.53+2.87
—36.09+3.11
—36.58+3.35

Theoretical

[Eq. (19)]

—0.1700
—0.4299
—0.714
—1.000
—1.279
—2.464
—3.177
—4.018
—4.610
—5.157
—6.199
—7.231
—8.277
—9.345

—10.433
—11.537
—12.652
—14.894
—17.111
—19.262
—21.310
—23.231
—25.008
—26.634
—28.106
—29.430
—30.611
—31.661
—32.590
—33.410
—34.131

—34.764
—35.319
—35.805
—36.231
—36.603
—36.929
—38.037
—38.606
—38.901
—39.061
—39.158

sponding to Eqs. (17) and (18) as obtained via Eqs.
(7)—(12) are shown in Table II.

Two values are given for each of the parameters
P and Q. The first value corresponds to the tradi-
tional choice po ro in Eq. (2), while the ——second

value conforms to our Eq. (3). The values of the
scattering length and the effective range parameters
shown in Table II are rather different from those

generally quoted for these parameters in the litera-
ture' At this stage it is useful to recall" that the
values quoted in the literature are not determined
from a direct use of the phase shift analysis; rather
they are determined from the measurements of the
coherent and the incoherent scattering cross sec-
tions in the 1 —500 eV energy region. ' "' On the
other hand, we have directly employed the results of
the phase shift analysis and have based our calcula-
tions upon data above 1 MeV. In Table III we show
the experimental results for the 'So phase shifts
versus the values given by the shape independent ef-
fective range approximation with the values of the
scattering length and the effective range parame-
ters taken from the literature' and the same values

taken from our analysis as given in Table II.
Finally, we present a study of 'P& phases in n-p

scattering. The data are parametrized by our for-
mula as follows:

k cot5& = —0.392 0596—0.549 3702co

—0.1199949am —0.346 6586co

—0.208 7987m) +0.172 3316co

—0.028 727co (19)

Equation (19) gives an accurate description of data
as is shown in Table IV. Data up to 380 MeV were

used in Eq. (19). It extrapolates up to 460 MeV,
still remaining well within the error bars. This re-

markable extrapolation is possible because there is
no singularity of Fi(k) in the neighborhood so that
our Eq. (6) converges notably faster compared to
the case of the S wave where there is a pole singu-

larity at about 300 MeV. Incidentally, this is anoth-
er demonstration for the need to preserve the
correct analytic structure of the amplitude when

seeking approximations.
The effective range parameters for the P~ state

corresponding to the parametrization (19) are as fol-
lows:

a) ——2.551 fm

ri ———9.156 fm

Pi ——0.050,

Q i ——0.047,

R i
———0.014 .
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IV. CONCLUSIONS

Using the analyticity of the partial wave elastic
scattering amplitude we have obtained a much im-

proved version of the effective range formula by ex-

panding the effective range function in terms of a
new variable that has been constructed to incor-
porate the knowledge about the left-hand cut. This
formula affords a precise description of phase shift
data up to high energies; the values given by the
formula being identical to the data well within the
error bars (see Table IV). We recommend the use of
our formula instead of the conventional one. Fur-
ther, there are uses of our formula in situations
where the conventional formula does not help ow-

ing to its validity being restricted to data below 10
MeV. These include (i) extrapolation of the higher

energy data to threshold in order to determine the
threshold parameters; (ii) parametrization of the

high energy data as well as their interpolation and

extrapolation; (iii) the investigation of the higher
partial waves; and (iv) determination of the higher
expansion coefficients (the shape parameters) which

in turn can be employed to construct realistic X-N
interactions to be used in two or many nucleon

problems.
In regard to the values of the S-wave scattering

length and the effective range, it is a matter of how
much memory of the data in the 1 —500 eV energy
region is still retained by the data in the MeV ener-

gy region. In our view the matter deserves further
attention.
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