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In order for a boson-expansion theory to be useful for practical purposes, it must satisfy
at least two requirements: It must be in the form of a linked-cluster expansion, and the pure
(ideal) boson states must be usable as basis states. Previously, we constructed such a boson
theory and used it successfully for many realistic calculations. This construction, however,
lacked mathematical rigor. In the present paper, we develop an entirely new approach,
which results in the same boson expansions obtained earlier, but now in a mathematically
rigorous fashion. The achievement of the new formalism goes beyond this. Its framework
is much more general and flexible than was that of the earlier formalism, and it allows us to
extend the calculations beyond what had been done in the past.

NUCLEAR STRUCTURE Boson expansion theories, commutator
method, Marumori- Yamamura-Tokunaga method, fermion system,
norm matrix, linked-cluster expansion, ideal-boson state, physical boson

state, even-even nucleus, odd-A nucleus, nuclear collectivity.

I. INTRODUCTION

About a decade ago, we published a pair of pa-
pers, ' which we shall refer to as KT-1 and KT-2,
respectively, which presented a detailed formalism
and applications of the boson expansion theory
(BET) to describe nuclear collective motions. Subse-

quently, rather extensive calculations were per-
formed to analyze experimental data on Sm, Ru-
Pd, Os-Pt, and Ge (Ref. 6) isotopes which obtained
good fits to data in most cases. (See also our recent
review of these calculations. )

In spite of the numerical success we have
achieved, it appears that some in the nuclear physics
community suspect the validity of our formalism on
which our previous calculations were based, as seen,
e.g., in two recent papers by Marshalek. ' We our-
selves have felt for some time now that it was desir-
able to review our old formalism, and put it on a
firmer, and possibly a much broader, basis. The
purpose of this paper is to present results of such
renewed formal investigations, and the reader will

find that our goal has been accomplished to a large
extent. The new formalism is rigorous mathemati-

cally, and the obtained results are rather general and
flexible. It thus allows us to extend the numerical
calculations much beyond what we were able to do
before. The reader will also find that the new for-
malism includes the old formalism as a special limit,
thus giving us convincing justification of the latter,
and of the ensuing numerical calculations, con-

trary to Marshalek's skepticism.
The new formalism presented here may be called

a linked cluster e-xpansion form of BET. It begins
along the line set forth sometime ago by Marumori,
Yamamura, and Tokunaga (MYT), but departs sig-
nificantly from it in several aspects. It has been
known that the MYT theory, in spite of its
mathematical rigor, suffered from a very slow con-
vergence, and it will be seen later that this was the
case because the original MYT theory was not for-
mulated so as to get rid of unlinked-cluster terms.
We shall also show that these unlinked-cluster terms
remained because the MYT theory was not formu-
lated (at least not explicitly) so as to use properly
normalized states. A reader who is familiar with
the Brueckner theory' of the nuclear many-body
problem will recollect that Goldstone" showed that
the Brueckner expansion can be brought into a
linked-cluster expansion form, when, and only when,
correctly normalized states are used, which is what
is also done here. Therefore, our new formahsm
may be regarded as a reformulation of MYT along
the lines of Goldstone.

The original MYT theory was formulated using
the particle-pair representation (PPR), as was done
by many other authors, rather than by using, i.e., the
Tamm-Dancoff representation (TDR). To formu-
late BET by using PPR certainly helps to make the
theory transparent. Nevertheless, as was em-
phasized recently by Tamura, Weeks, and Pedrocchi
(TWP), ' it does not make much sense to bosonize a
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fermion system that is described in terms of PPR,
because no fermion state admits a superposition of
the same pair, thus leaving no room for introducing
boson statistics. A meaningful BET should thus
start from a fermion system described in terms of
TDR (or its equivalent). Reformulating MYT this
way was in fact done by Holzwarth and his co-
workers, ' ' who also used the correct normaliza-
tion of the states involved. They, nevertheless, for-
mulated their theory by truncating the starting fer-
mion system to purely collective states, which is not
the case in our formalism given below. Thus our
work may also be regarded as an extension of that of
Holzwarth et al.

We have stated that the present formalism gives a
justification of our previous calculations, and we
now wish to explain what is actually meant by this
statement. In doing this we first remark that there
is an important difference between KT-1 and KT-2
in carrying out the boson expansion (of fermion pair
operators). The formulation of KT-1 was done by
first examining a similar formalism given earlier by
Sorensen, ' using a method which might be called
the commutator method. This method leads to a
series of sets of equations (which may be called coef
ficient equations) for the unknown coefficients intro-
duced in expanding the fermion pair operators in
terms of normal ordered products of boson opera-
tors. In KT-1, these equations were solved in an an-
alytic way, by retaining all the TDR components.
In spite of the fact that we are able to obtain the
BET in TDR in a rather compact form this way, we
noticed that it shared with MYT the same
shortcoming, i.e., that the convergence was very
slow. (Very recently, Pedrocchi and Tamura' fur-
ther clarified the method employed in KT-1, in par-
ticular comparing it with that of MYT.)

In KT-2, the method of KT-1, i.e., to solve exact-
ly the coefficient equations, was thus given up, and
was replaced by a much simpler, and thus more ap-
proximate, method. This was to truncate the com-
mutator equations to purely collective TDR com-
ponents, and then solve them. We then found that a
very fast convergence was achieved, as was stressed
again recently. ' The matrix elements of the fer-
mion pair operators thus bosonized were evaluated
in a purely collective ideal boson space. (We use ter-
minology such as ideal, physical, and unphysical bo-
son states, and/or space in the same way as used by
MYT.) We call this the method of KT-2, and note
that it is the method used' in subsequent calcula-
tions.

The switch in method from that of KT-1 to that
of KT-2, explained above, was stated very explicitly
in KT-2 (see p. 345 of KT-2). Very unfortunately,
however, this explicit statement appears to have

been largely overlooked, resulting in several au-
thors ' having the misunderstanding that we used
the method of KT-1, rather than that of KT-2, in
our numerical calculations, and casting doubts about
our results. (It should not be misunderstood that we
gave up all of KT-1. It is only the second half of
Sec. 3 of ET Ithat-was given up. The rest of KT-1
remains valid even to date. )

In any case, one thing which we shall show is that
the formulas that were obtained by the method of
KT-2 reemerge as limiting cases of the formulas
that are to be derived later. Since the formulas of
the present paper are obtained based on a rather
firm basis, the above fact may very well be taken as
a reconfirmation of the validity of the method of
KT-2, and of the ensuing numerical calculations. In
this regard, we recall a remark made above that our
new method includes that of Lie and Holzwarth'
(LH) as a special limit. Recall also the fact that
both LH and KT-2 introduced a truncation at very
early stages of their respective formulations. It
would then be a rather natural guess that these two
theories are very closely related. In fact, we can
show' that the KT-2 and LH expansions, and fur-
ther the generalized Holstein-Primacoff (GHP) ex-
pansion (under the same truncation) are all
equivalent, none of them containing any unlinked
cluster term. This fact is contrary to Marshalek's
doubts regarding KT-2, presented in the last sen-
tence of the second paper of Ref. 8.

The equivalence between LH and KT-2 needs a
further remark. The results of LH (and of Soren-
sen' ) had a problem in that the spacings of the ob-
tained theoretical spectra were too wide, by a factor
of 1.5—2, compared with the experimental spacings.
This is because the (boson) Hamiltonian was ob-
tained in TDR. With the method of KT-2, ex-
plained above, we obtain the same Hamiltonian as
that of LH, making these two theories equivalent at
this stage. In KT-2, however, we went one step fur-
ther, before diagonalizing the above Hamiltonian, in
switching from the TDR-type bosons to RPA
(random-phase-approximation)-type bosons, which
helped to remove the above difficulty. In this sense,
LH and KT-2 calculations differ significantly. In
all the calculations reported, we were able to
compare our theoretical spectra directly with experi-
ment.

The structure of the present paper is as follows.
The material presented in Sec. II is mostly prepara-
tory. In Sec. II@, which is largely a recapitulation
of Sec. 2 of KT-1, we first explain basic fermion
quantities. In Sec. II B, we recapitulate TWP, ' in
which a few very important concepts were intro-
duced which turned out to be crucial in leading us to
the development of the formulation of the present
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paper. In Sec. IIC, we recapitulate MYT, and this
is followed by Sec. III, which discusses how to
modify MYT. The formulas derived in Sec. III
remain relatively abstract. The somewhat lengthy
algebra required to give them a more concrete form
is presented in Secs. IV and V. As stressed above, it
is vital, in order to construct a valid BET, to be able
to construct properly normalized states, which in
turn requires the calculation of norm(s), or more
generally, norm matrices. This task is performed in
Sec. IV, with the help of a few mathematical rela-
tions derived in Appendices A and B. By using the
results of Sec. IV, we then derive in Sec. V the bo-
sonized (boson-expanded) forms of the fermion pair
operators. As expected, they are given as linked-
cluster expansions. These operators are supposed to
satisfy, because of their construction, several re-

quirements, e.g., they satisfy the commutation rela-
tions that are satisfied by their original fermion
counterparts. That they indeed have these proper-
ties is reconfirmed in Sec. VI by going through
somewhat lengthy but relatively elementary algebra.
The boson expanded forms of the operators obtained
in Sec. V are very compact, but the reader might
find it somewhat difficult to determine how to use
them in practice. We thus take up in Sec. VII a few
lower order terms in the above expansion, and give
them very explicit forms, including those that corre-
spond to a truncation of the system to purely collec-
tive components. As we stressed above, they are
found to agree with those obtained with the method
of KT-2 (and of LH). All the above formulations
were made keeping in mind the application of BET
to the analyses of even-even nuclei. We touch very

briefly, in Sec. VIII, upon how to extend them to
odd-A nuclei. It will be seen that very similar
linked-cluster expansions again result. We finally
summarize in Sec. IX the results of the present pa-
per and discuss what we intend to do in the future.

II. PRELIMINARIES

III, where we discuss the basic idea on how to modi-
fy the MYT theory.

A. Fermion descriptions

We denote a shell model orbit in terms of a set of
quantum numbers Ij~ m ~ I. The operator dJ, ~
creates a fermion in this orbit, while dJ, ~, annihi-

lates it. ' "When we say that we use a particle-pair
representation (PPR), it means that we use the pair-
creation operators defined, e.g., by

Jim' J2mp ~Jiltli Jgflt2

= g (jim]j2mp
~
~p)~g J gp ~

A,p

(2.1)

m lNl2 (2.1')

When the Tamm-Dancoff representation (TDR) is
used, we use, instead, the following pair of opera-
tors:

—1 (a)8~ =B~i„l,= g Di,i2~J&i&~J&i&il
J& &J2

(a)
2 X J~J2~J~J2 J~J2~P

jrj2
(2.2)

Clearly, Eq. (2.2) defines a =Iulp, I, a denoting a
TD component for a fixed A, .

The TD coefficients gz J'~ satisfy the following

relations:

,I, (a) g, I, (a)
Y J )J2A, J )J2AY'JgJ)A

In obtaining the second equality of (2.1), the angular
momenta j ~ and j2 were coupled to result in anew
angular momentum A, with projection p, . The factor
(jmj 'm'

~

Ap, ) is the Clebsch-Gordan coefficient. It
is clear that the relation inverse to (2.1) is

~J J Ap g (jim 1J2m2 I ~J»J,m
&
j2mz

This section is subdivided into three subsections.
In subsection A, we introduce a few basic fermion
quantities, and discuss their properties and the rela-
tions they satisfy. It will be seen that the major part
of this subsection is a recapitulation of Sec. 2 of
KT-1. In subsection 8, we discuss from a rather
general point of view the basic concepts of BET as a
whole. It is thus seen that subsection B essentially
summarizes TWP. In subsection C, we survey brief-
ly the original formalism of MYT; we do not add
anything of our own. We nevertheless intend to
make it clear why it was hard to use the MYT
theory for practical purposes. This survey thus
prepares us for the presentation that is made in Sec.

j&
—j2+A.

8 g=( —)J)J2

X& . ~. 'Dj jj)j& J2J2

(a) (a')
X i~J2 ~J~Jz~~i'& J2 k,

j&j2

(2.3)

In (2.3), PJ J exchanges j~ and jz in the expression

that follows it. An important consequence of (2.3) is
that
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BJ J, = g (j 1mlj2m2 l
)1.J2)

QA,p
(a)XD,„,q, „,2Ba. g„.

It is obvious that, if we choose

.I (a) n
~J/ j2~ jl j2 & (jljp) '

(2.4)
I'(abed) = g P,'$'P,'dl" . (2.9)

B. Recapitulation of TWP

Note that a quantity called F(abed) was very im-
portant in KT-l, and will also be used below. It is
defined by

[B12 B341 (~13~24 ~14~23)

—(1—P12)(1—P34) 13C42,

[C12 ~B34 ] 523B 14 524B 13

[C12 C34]=&23C14—&14C32 .

(2.6)

The commutation relations for the TDR operators
are given by

[B„Bb]=5,b —Q P,'pb Cp, (2.7a)

[Cp,B,]= g P,' bBb )

b

(2.7b)

where

Equation (2.4) reduces to Eq. (2.1), and thus TDR
reduces to PPR. In this sense TDR is more general,
and in the following, we use TDR almost exclusive-

ly.
In addition to the pair creation operators (and

their conjugates), we also need the so-called scatter-
ing operator defined by

= g (jlml j2m2 l
Ap)C 2„, (2.5)

J)(,lM

where

(jlmlj2m2
l
~J )=(—)" '(jlmlJ2 m2

I
~J4)

If we ab™eivateSjlmlj2m2 by ~12 a d CJ.1~1j m2

by C~2, we have the following commutation rela-
tions (in the PPR)

The reason we introduce bosons to describe nuclei
which consist entirely of fermions should be obvi-
ous. This may be done when it is (believed to be)
guaranteed that a boson calculation can copy faith-
fully (or reasonably well) a fermion calculation, and
the former is practicable while the latter is not. It
should be stressed that it is rather awkward to intro-
duce bosons for problems for which a fermion
description is feasible. As a consequence, when in-
troducing bosons, one should clearly keep in mind
what the corresponding fermion calculations would
be like. These considerations constituted the start-
ing point of TWP.

When performing shell-model-like calculations,
one would begin by first constructing basis states. If
PPR is used, these basis states may be written as

l

n & =B12B34 B2n —1,2a l
0& . (2.10)

l
n)=NF '{(B,) '(Bs)"'

I l0);
(n, +nb+ . =n) . (2. 11)

In (2.10), we have in mind a state which has n pairs,
and we have denoted such a state by l

n ), the state

l
0) standing for the fermion vacuum. It is obvious

that, for (2.10) to be nonvanishing, all the indices
1,2, . . .,2n must be different. The state

l
n) of

(2.10), which is made nonvanishing this way, is nor-
malized; no additional normalization factor is need-
ed.

If TDR is used, on the other hand, an n fermion-
pair state may be written as

P = {jlj2ke I

with

and

k= j)+ J2

X ~(j 2J1&&',kJ )DJJ D,,

g =m)+m2
Further,

(jlj&kq), , (j,j2k)
Pa2p;a'2, 'pg' =(~J4~ J2

l
kl)Pa2. ;a'2. '

~

{g) {0.')
Pak;a 2. ~~ g PJJ224J1JA

J
(2.8)

OF ~O
ln)~ln}.

(2.12)

(2.13)

An important difference between (2.10) and (2.11) is
that in the latter it is permissible to take, e.g., n, & 2,
i.e., to operate with the same operators repeatedly.
Obviously, (2.11) is a complicated linear combina-
tion of states of the type of (2.10), which requires us
to introduce a normalization factor NF ' explicitly
in (2.11).

Having thus constructed the fermion basis states,
we may now consider the bosonization of the fer-
mion system, which is often done by introducing a
concept called mapping, being denoted by using an
arrow in the following way:
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Obviously, Eq. (2.12) means a mapping of a fermion
operator OF onto a corresponding boson operator
Os, while (2.13} does the same of a fermion state

~
n) on to a corresponding boson state

~

n}.
One of the most important remarks made in TWP

is that, if one intends to construct an exact BET, it
must be designed so that an equality

(m ~0~~n)=(m ~O& ~n) (2.14)

holds. In fact, if (2.14) holds for all the matrix ele-

ments, it is guaranteed that the same numerical re-
sults are obtained for any physical quantity (observ-
able}, irrespective of whether the calculation is done
in a fermion way or in a boson way. In other words,
for a bosonization to make sense, the two mappings
of (2.12) and (2.13) must be done simultaneously and
consistently, so that (2.14) is guaranteed.

Let us take three basic fermion pair operators B„
B„and C~ introduced in subsection A, and rewrite
them as BF, BF, and CJ to signify that they are fer-
mion operators. We now assume that their mapping
onto B~, Bz, and Cz has been done in such a way
that these bosonized pair operators satisfy the com-
mutation relations which are the same as (2.7}, ex-

cept that these bosonized pairs replace the fermion
pairs there. Since any fermion operator is construct-
ed out of these three basic operators, the above pro-
cedure completes the mapping of (2.12). The map-
ping of (2.13}may be rewritten, somewhat more ex-

plicitly, as

ln) =&F 'IB'I" lo)

(2.15)

A very obvious abbreviation of (2.11) was made in
describing the state

~
n) that appears in (2.15).

The above procedure clearly makes the two map-
pings (2.12) and (2.13) consistent, because the same
set of pair operators are used. It will also be obvious
that Eq. (2.14) is satisfied, because in evaluating
both sides of this equation, the same set of commu-
tation relations is used.

It is rather reassuring that we found in this way a
method to carry out a bosonization exactly, but ac-
tually we have not achieved anything, because the
evaluation of the rhs of (2.14) is at least equally in-
volved as is that of the lhs of (2.14). The bosoniza-
tion has not yet introduced any simplification of the
numerical task involved.

In the terminology of MYT, the bosonized state
~n) given by (2.15) is a physical state, and its ap-

pearance in (2.14) is the reason why the evaluation
of (m

~
Os

~

n) is so much involved. Suppose now
that we find a method to replace this matrix element

by (m
~
Os

~

n),
~
n} being an ideal boson state, so

that (2.14) is replaced by

(m ~O~~n)=(m ~O~ ~n). (2.16)

Then the matter changes drastically. The construc-
tion of

~
n) is orders of magnitude easier than is that

of
~

n). Thus, unless Os becomes excessively com-
plicated, the evaluation of the rhs of (2.16) becomes
feasible, even when that of the lhs of (2.16) is not.
In other words, what we said at the beginning of the
present subsection can be rephrased by saying that
meaningful BET's are those that permit the use of
(2.16), in place of that of (2.14). As we remarked in
Sec. I, the use of the method of KT-2 meant the use
of (2.16). Nevertheless, we used (2.16) without a suf-
ficient proof that (2.14) can indeed be replaced by
(2.16), and to fill this gap is what we intend to do in
the following sections.

At this stage, it is worthwhile to remark that
TWP introduced a method called step-by-step opera-
tion (SSO},which is very useful in obtaining

~

n) ex-

plicitly and understanding its properties. As is well
known' (see below), a standard form we obtain for
8& is given, in a somewhat abbreviated notation, as
(A and A are pure boson operators)

Bg ——g Xp„-i(A )"A"
n=i

(2.17)

C. The MYT Theory

As is well known, the bosonization of MYT is
done by first introducing the so-called modified Usui

operator U. If the PPR is used, as was the case in
MYT, the explicit form of U is given as

In constructing
~
n), we first operate Bz of (2.17)

upon ~0). Clearly, only the X& term of (2.17) con-
tributes to the result. In the second-step operation,
however, X& and X3 terms contribute; and so forth.
In obtaining

~
n) exactly, it is thus clear that it is

sufficient to have (2.17) terminated at the nth term.
It is also clear that ~n) is written as a linear com-
bination of the terms of the form (A )"

~
0), i.e., of

/n).
An important use of SSO was made in TWP. It

was to apply it to a system in which the TDR space
was limited to a single collective component of
monopole nature. We then found that

~

n) =
~
n),

i.e., that (2.14) and (2.16) were equivalent, even with
the choice of Oq ——Oz. In TWP, we gave this result
as a (partial) proof of the validity of the KT-2
method. A generalization of this proof will be given
in Sec. VIB.
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00

o (2n)!

[(2n —1)!!]

x g( )'I'—A„'„, A„' „~0)

x(0~ de d„..
dq d„.

(2.18)

Note that we denoted the lhs of (2.22) by O~, rather
than by O~. This is because we want to reserve the
notation Oz to mean something else, as will be seen
in Sec. III.

In spite of having the capability to define the
mapping very clearly, as shown above, which also
made the explicit construction of OM rather
straightforward, the MYT theory had not been used
very much in the past in practice. This was partly
caused by the fact that, as seen from (2.18) and
(2.22), the operator O~ contains a factor

In (2.18), p's and v's denote fermion orbits, and the
operator P exchanges any number of these indices
that are attached to different A&„operators. It is
clear that the number of such exchanges equals
(2n —1)!!,and thus that

~

n)= [(2n —1)!!]

x g( —) I'Aq „.Aq „~0)
P

(2.19a)

~n)=W&„W„, ~0). (2.19b)

Clearly they do not satisfy the Pauli principle.
Comparison of (2.19a) and (2.19b) shows that

~

n ) is
written as a linear combination of

~

n )

The last factor of (2.18), i.e.,

(0
~ d„,d„, .

dq d„

can be regarded as the Hermitian conjugate of (2.10),
and may thus be abbreviated as ( n

~

. Then

U=g (n)(n(, (2.20)

and

/n)=U/ )n. (2.21)

This replaces (2.13), which means that the mapping
of the states, which was defined in (2.13) only by us-

ing an arrow, is now described by an equality, mak-
ing the mathematical concept of the mapping much
clearer. As shown in MYT, the mapping of the
operator (2.12) is also replaced by an equality

OM= UOF U (2.22)

is a normalized n-boson state, making it quite ap-
propriate to denote it as

~

n )

The state (2.19a) was called a physical boson state
in MYT; it satisfies the Pauli principle, i.e., it is an-

tisymmetric with respect to an exchange of any pair
of the fermion indices p and v. Note that
A&„———A„&. [The state (2.15), constructed via the
commutator method, is also physical' .] For later
convenience we also define, as done by MYT, the
(normalized) ideal boson states

I—:
~

0)(0
~

= g [(—) /i 2"k!) ](2 )"2
k

(2.23)

which converges extremely slowly. As will be clari-
fied shortly, all the terms in (2.23) (excepting the
k =0 term, which equals 1) are unlinked-clustered,
and make OM contain many unlinked-cluster terms.
[See Eq. (5.9a).]

As regards the question on which of the states,
physical or ideal, are to be used as basis states, the
answer is clear. Equations (2.21) and (2.22) result in
the following algebra:

(I
~
OF

~

n ) = (tn PROOF 1F
~

n )

=(I
~

V'VO, V'V ~n &=(m ~O~
~

n),
(2.24)

which is nothing but (2.14), appropriate for the
MYT theory. It shows that the physical states of
(2.19a) must be taken.

It has often been remarked (see, e.g. , Ref. 8), that
a unique advantage of the MYT operators is that,
when they are operated upon an ideal state, a physi-
cal state results, thus preventing one from straying
into unphysical space. To put too much emphasis
on this aspect can be misleading, however. As
remarked above, a correct use of MYT results in
(2.14), and since in general

(m
~

OM
~
n)Q(rn ~O~

~
n),

MYT does not allow for taking advantage of (2.16).
(The matter is different if Ost can be constructed,
but it means going beyond the framework of MYT. )

When we stay with (2.14), however, the MYT and
the commutator-method operators behave in exactly
the same way. ' Therefore, the advantage of MYT
mentioned above disappears.

The OM is full of unlinked-cluster terms, as we
remarked above, and so is the operator
BM ——UBF Ut. Let us now consider constructing

~

n)
by using the BM and employing the SSO method of
the preceding subsection. It is interesting to note
that one finds in this procedure that all the
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unlinked-cluster-term contributions cancel out
(which is not unexpected, because

~
n) is properly

normalized). Thus, one of the disadvantages of
MYT is removed this way. (Exactly the same is true
for the KT-I operators. '

) This cannot be taken,
however, as a relief. To carry out the SSO in practi-
cal problems is prohibitively involved. One cannot
avoid this so long as one is forced to stay with
(2.14}.

We should look at the matter somewhat different-
ly, and begin to realize that a unique advantage of
the MYT method lies in its introduction of the
operator U to start with. The above-mentioned
problems with the original MYT remain if one re-
tains the form of U as given in (2.18). The picture
changes drastically, however, if one chooses a some-
what different form for U.

III. REFORMULATION
OF THE MYT THEORY

The operator U, as defined by (2.18), was con-
structed in such a way that, when it is operated
upon a normalized fermion (pair) state, it results in a
normalized physical boson state. An unsatisfactory
feature of this form of U is that it is defined in
PPR. As we remarked in the beginning of Sec. II B,
the fermion states with which we start differ very
significantly when they are written in PPR and in
TDR. In the former, no pair is repeated, and thus
there is no room to introduce boson statistics in its
boson image. This indicates that a procedure in
which one starts from PPR, completes bosonization,
and then finally transforms to TDR, is rather un-
likely to allow us to construct a transparent BET.
We will be much better off if we start by first con-
structing a new U which is described in terms of
quantities in TDR. This is what we intend to do
now. This was also the spirit of LH. '

Since, as we remarked at the end of Sec. IIC, to
achieve (2.16) is our goal, it may be appropriate to
construct the new U in such a way that, when it is
operated upon a normalized fermion state in TDR,
it results in an ideal boson state which is also nor-
malized. We may thus write it as

(a) =—
I a i,a2, ,a„I,

a; denoting a TD component, and

I
& @=(I/~~')(~»t)"

~

0)

—:(I/v n!)A, A,
~

0) .
a& an (3.2)

The fermion state
~
n;a ), of which the Hermitian

conjugate ( n;a
~

appeared in (3.2), is defined by

i!n;a}=g(Z„'), in;b)),
(b)

where

(3.3)

~
n;a ) }=( I/V n!)(B,)"

~
0)

= ( I /~&I )B, B,
~
0),a) an (3.4)

((n;a
~
m;b) }=(Z„'),.b5 „. (3.5)

Obviously, the states
~
n;a ) ) are not orthonormal

in general, but the states
~

n;a }defined by (3.3) are.
Therefore, the U defined by (3.1} does have all the
required properties.

It is easy to see that (3.1) results in two expres-
sions given as

~n;a}=U ~n;a)

and

(m;b
~

=(m;b
~

U.
(3.6)

The lhs of (2.16), which should now be generalized
as (m;b

~
OF

~
n;a },can then be rewritten as

(m;b
~
OF

~
n;a }=(m;b

~
UOF U

~

n;a )

=—(m;b (O~ )
n;a), (3.7)

defining the boson image of OF [which we write as
Oa, rather than as Oii as in (2.16)] as

Og ——UOF U

very similarly as in (3.2), while (Z„)b, is defined
as the inverse of the square root of the norm matrix

(Z» )»;b (Z» )b;»

defined by

U= g ~
n;a)(n;a

~

n, (a)

where

(3.1) = g g ~
n;a)(n;a

~
OF

~
m;b }(m;b

~

.
n, m (a,b)

(3.8)
The O~ can also be written as

n, m(a, b, c,d)
[1/&m!n!]

~

n;a )(Zg ')„(0
~
(B,)"OF(Bd )

~

0) (z~ ')g ( b;m~b (3.9)

The derivation of (3.9) completes the bosonization
of the fermion operator OF, and this procedure has
turned out to be extremely simple. This simplicity

I

is, however, only apparent. To construct explicitly
the rhs of (3.8) is rather involved, as we shall soon
see.
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Great care must be exercised in defining the space
in which the Zn and Zn

' matrices are constructed.
In writing several of the formulas given above, it has
tacitly been assumed that the inverse of Zn, i.e.,
Z„', exists. However, under certain circumstances,
Z„' does not exist, making the formulas given
above invalid.

Let us first consider the case with n =2. The case
with n =1 is trivial; by construction of the TD
states, we simply have

(Zi')~, ;b, =(Zi )~, ;b, =5~,b,

Let us denote by s the total number of (fermion) sin-

gle particles orbits (jm) which we decided to include
in our calculations. The total number of one-pair
states, i.e., the total number of TD states a =

I a Ap )

[cf. below Eq. (2.2)], which we denote by t, is given
as t =,C2, where, C2 is a binomial coefficient. For
n =2, the state

I
2;a &a2 ) ), defined by (3.4), is of the

form B,,B,, I
0), whose number is t, making Z2 a

t 2)& t matrix. The number of two-pair (four-
fermion) states that can be constructed without
violating the Pauli principle is given, however, as

,Cz, which is smaller than t This m.eans that if we

diagonalize the t gt matrix Zz, we will have zero
eigenvalues with the degeneracy equal to
t —gC4&0. Therefore,

det
I
Z2'

I
=0,

and thus Z2
' cannot exist. (Very similar argu-

I

ments can be repeated for n & 2.)
From what we showed above, it is clear that we

have to truncate the
I
n, a)) space one way or

another. One possibility is to use, e.g., the Schmidt
orthogonalization procedure for each n, retaining all
the possible, C2n basis states. This certainly keeps
the theory exact, but makes it all but intractable.
Since we are going to truncate the TDR state at any
rate, at least at the stage of numerical calculations, it
would make more sense to introduce the truncation
at an early stage of the formulation. Probably the
easiest and the most transparent way would be to
divide the TDR components into two groups, T and
(1—T), the space T including components that are
retained, and (1—T) those that are not. More pre-
cisely, all the indices that are attached to (Z„'}
matrices, for any n, should be picked up from the
space T. However, the indices attached, e.g., to
(Z„) may belong either to T or (1 T). We—will en-

counter a variety of examples of this mixed use of
the indices as the formalism is developed below.

An extreme of T is the case in which only the col-
lective, quadrupole component is retained. Our
theory is then reduced to that of LH (and of KT-2).
Our formalism allows, however, for a much wider
choice of T; e.g. , we may not encounter any singular
(Z„'), unless we make n excessively large by re-
taining in T all the TD components with A, =2.

It is convenient to show at this stage how the bo-
son images of the two basic fermion pair operators
B, and Cz look. They are, of course, obtained as
special examples of (3.9), and are found to be

(B, )q
——g v n g g (Z„)~,~,,~,~(Z„~ '),b I

n;a)(n —1;b I,
n (a, b) (c)

(3.10)

and

(C )&
—g(lln!) g g (Z„').,&OI(B, }"C,(Bd}"Io&(Z. '}db In a}(n»

I
~

n (a,b) (c,d)
(3.11)

We also remark here that the vacuum projector I,
appropriate for the TDR, is given as

r= Io)(oI = g [(—)"yk!]g(a,')'(~. )'.
k=0 (a)

(3.12)

Note that we wrote, e.g., I
n;a} in place of

I
n;a )

in (3.10) and (3.11). Since we exclusively use ideal
boson states in the rest of the present paper, this
simplification will not cause any confusion. In oth-
er words, from now on,

I
n;a ) means an ideal boson

state, not the physical boson state, unless it is expli-
citly stated otherwise.

n (abET)
I
n;a)[n!(Z„),b](n;b

I
.

One then sees that the operator Oz given in (3.8)
may be cast into the following form:

os (TAT) ' (Tobe T)——(TAT) (3.13)

We may make an additional remark here. Let us
define a projection operator T by

T= g g I
n;a)(n;a

I

n (a ET)

and a norm operator A by
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where we denoted by O~ an operator which we
might have used, had we decided to work in the
physical boson space. The relation (3.13) then
means that we have derived an effective operator 02)
out of an original operator OM, so that we can now
work in the ideal boson space. Equations like (3.13)
have been used in the past, in both particle physics
and nuclear physics. '

IV. PROPERTIES OF THE Z„MATRIX

The Z„matrix was first introduced in Eq. (3.5),
which we shall reproduce here in a slightly different

fm:

without causing any confusion. We understand that
(Y„)„and (Yn)». . . „.12 . . . „mean the same ma-
trix element.

In the following, we very often encounter prod-
ucts of Kronecker deltas, and we find it convenient
to introduce a quantity denoted by 5&2. . . ;.&2 . . . ;
which is constructed as follows. Construct a prod-
uct of i Kronecker deltas, each Kronecker delta tak-
ing an element from the set j 1,2, . . ,i j. and another
from the set j 1',2', . . i'j.. We can construct i dif. -

ferent products of this form, and we sum them to-
gether and divide the sum by i .. This results in

A)2. . . ;.) 2 . . . ;. Thus, e.g.,

(Z» )ah=(1 —Yn)ab

=(n!}-'&O
~
(B.)"(B,'}"

~
0) . (4 1)

~12;1'2' (511'~22'+512'~21')~

~123;1'2'3' (~11'(322'~33'+~11'~23'~32' +

(4.2a)

Clearly, the second version of (4.1) defines a new
matrix called Y„, which is related to Z„by the rela-
tion

Z„=[1—Y„])~2 .

Because of the appearance of the square root, the
manipulation of the matrix Z„ is somewhat more in-
volved than is that of Y„. We shall thus first dis-
cuss the properties of Y„.

A. Properties of F„

In Sec. III, we called Z„a norm matrix, and we
shall retain this name for simplicity, although it
may be more appropriate to call Z„a reduced norm
matrix, because it differs by a factor of n! from the
usual norm matrix. As is clear from the definition
made through Eq. (4.1},the matrix Yn measures the
deviation of this reduced matrix from l. If Y„=O,
it means that the operators (B,)" and (Bb)" are
behaving as if they were pure boson operators (Aa )"
and (Ab)". To the extent which Y„deviates from 1,
the former set of operators behaves differently from
the pure boson operators. It is obvious that Yo ——0.
We also see that Y~ ——0, because

(0
I
B.Bb I

o) =&ab

by construction of the TD operators. For n)2,
however, Yn&0 in general.

Instead of writing the matrix clement of Y„as
(Y„),b, as done in (4.1), we prefer to write it as
(Y„)„.The suffix a here stands for a set of n in-

dices ja(,a2, . . .,an j, and similarly for a'. Thus, we
may simply write

(~)Pa' [~(i);(iY(Yn —i }{n—i);in —i!'] ~ (4.4)

which has the same meaning as the expression given
in (4.3}.

It is easy to calculate ( Y2)aa from (4.1). One sees
that

(4.2b)

At this stage, it is worthwhile to note that
b ~2. . . ;.~ 2 . . . ; is totally symmetric with respect to
any interchange of the indices j12 i j, and of the
indices j

1'2' . i ' j. We further remark that this
doubly-symmetric nature is also shared by the
( Y„)12.. . „12 . . ..„matrix, as is easily seen from its
definition, (4.1).

We shall now consider a product written as

n[&]r ~~ a' [~12 ~ ~ ~ i;1'2' ~ ~ 1'( Yn —1 )(i+1) ~ ~ n;(1+1)'. n ]'
(4.3)

The operand, i.e., the quantity in the square bracket
of (4.3), is symmetric with respect to the exchange
of the first i indices j

1'2' . . i'j and of the last
(n i) indices —j(i+1)', . . .,n'j. The symmetrizer
I'," then exchanges indices in the above two sets, so
that expression (4.3) as a whole becomes totally sym-
metric with respect to any exchange of indices from
the set j 1'2' n'j, In other words, expression
(4.3) is a sum of „C; terms, where „C; is a binomial
coefficient.

In the following, we shall often abbreviate the set
[1,2, . . ,i j of ind.ices as (i). Similarly, we write
jn i j for —the set ji+1, . . , n j of indice. s. We
may thus write

(2j1,2, . . ., jn,
( Y2) 12.12

———, Y(11'2'2), (4.5)

and

a'= j 1',2', . . ,n'j. where Y(abed) was defined in (2.9), and in obtaining
(4.5), the commutation relations in (2.7) were used.

The calculation of ( Y3 ), , gets somewhat
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lengthier, but not yet very much involved. We find
that it can be written as

( Y3)123;1'2'3' a' ~1,1'( Y2)23;2'3'+( 3)123;1'2'3'
(1) (I-)

(4.6)

with

(L) 2 (1)
( Y3)123;1'2'3' 3 Pa'

X g ( Y2)23. 1g( Y2)lg 2'3

g

(4.7)

The first term of (4.6) is in the form of (4.3), and its
meaning is clear. In the second term of (4.6), i.e., in
the expression of (4.7), the symmetrizer P,"' appears
again, but its operand is not in the form 6)& Y but in
the form Yg Y. Nevertheless, Y)& Y is again a
product of two doubly symmetric matrices, and thus

I

the operation of P,"' in (4.7) is understood, as in

(4.3). We also remark that there appears in (4.7) a
sum over the TD index g. Its origin is Eq. (2.7b).
The g's are not necessarily limited to those in T,
even if the a's and a "s are.

The superscript (L), attached to ( Y3)' ' in (4.7),
stands for /inked clus-ter, and ( Y3)' ' is the linked-
cluster part of ( Y3); i.e., the part of ( Y3) which is
free from the 6 factor, in contrast to the first term
of (4.6), which does contain a 5 factor. A term con-
taining a 4 factor may be called an unlinked-cluster
term. Thus, what we have achieved in (4.6) was to
separate ( Y3 ) into linked-cluster and unlinked-

cluster terms. For larger n, such a separation gets
more and more involved, particularly because a
variety of b, factors can be constructed when n is
large.

We find, nevertheless, that the result can be
presented in a very compact form given as

5 —2
(~) (L)

( Yn )aa' Q a' [~12 ~ ~ ~ i;1'2' ~ ~ ~ i'( n —i )(i+I) ~ ~ ~ n;(i+1)' n'] ~

i=o

combined with a recurrence relation described as

( Y )aa' Pa' y ( Y2)lg;1'2'( Yn —1)23 . . n;g3' . n'+( 2)12;1'2'( n —2)3 n;3' n
(L) 2 (2) (L) (L) (L) (L)

(4 8)

(4.9)

It is understood in (4.8) that P,' ' =1 and h)2. . . o. 12 . . . o
——1. We also remark that it is easy to confirm that

(4.9) reduces to (4.7) for n =3, as it should. Note that, for n =3, P,' ' =P,"', and that ( Y2) =( Y2)' ', i.e., that
( Y2) is purely linked clustered.

In (4.8) (and elsewhere) the symmetrization regarding the I a'I indices is explicit, via the presence of P,"', but
this is not the case for Ia J. The form of the lhs, ( Y„)„,shows, however, that the rhs of (4.8) is totally sym-
metric with respect to [a J. We can thus insert, in the summand in (4.8), a factor P, /„C;. For simplicity,
however, we shall not do this, unless it becomes necessary.

To prove (4.8), we first go back to (4.1), which can be written somewhat more explicitly as

(1—Yn)aa ——(I/n!)(0
~
Bn . B2B)B)B2 . B„~0) . (4.10)

A possible way to evaluate the fermion matrix element on the rhs of (4.10) is to move the B; operators to the
right, so that they eventually annihilate the vacuum

~
0). Instead of carrying out this operator for all the B; s,

let us consider moving only the 8& factor. Each time 8& is commuted with a 8&, it produces a Kronecker del-
ta, and a term involving the C operator; cf. (2.7a). We move the C operator to the right as well. After this
operation is done, it is easy to see that we obtain a recurrence relation given as

(Y„)„=(I/n)P,"'[b» (Y„ 1)2. . . „.2 . . . „]+(2/n)P,' '[bin 2) („2)(Y2)'„'l „.l„ 1)„]
y ( Y2)lg;1'2'( Y —1)23 ~ n;g3' ~ n (4.11)

The origin of the sum over g that appeared in the last term of (4.11) is the same as that in (4.7).
An inductive proof of (4.8) can be done in the following way. We first rewrite (4.11) by changing n into

(n + 1). We then insert (4.8) to the newly formed ( Y„) factor (in the first and third terms), and show, by using
(4.9), that the rhs of this new (4.11) is reduced to the rhs of (4.8), with n being replaced by (n + 1). Since some-
what lengthy algebra is involved in showing this, we shall present details in Appendix A.

Note that the summand of (4.8) is in the form of b &( Y' ', and it will be seen soon that it is very convenient
to have ( Y„)„ in this form. In (4.11), the ( Y„)„ is not in this convenient form, and this is why we show in
Appendix A, that (4.11) is reduced to (4.8).
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B. Integer powers of 7,

In this subsection, we show how the matrix elements of Y„, i.e., of integer powers of Y„, can be expressed.
We claim that we obtain these matrix elements as

n —2
k (i) k (L)

( Yn )aa'= g ~a' [~(i);(i)'( Yn —i )!n —i!;!n—i!'] ~

i=O

combined with the recurrence relation that

(4.12)

(4.13)
k (L) (t) k —1 (L) (L)

( Ym }(m)(m)'= ~ m t~—s ~ (m)'( m —s)(m —s!;(t) !m '—s t!"—( Ym t }(s)—!m —s t!",(m—t!—' ~

s, t =0 Im —s —t I"

As seen clearly in (4.12), we are claiming that the way ( Y„) is expressed is very much the same as was ( Y„)
given in (4.8). In (4.13), we mean by [m —s tI" a—set of indices I",2", . . ., (m —s t)—", and g(
means a sum over these dummy indices. The meaning of the subscripts including these dummy indices will be
clear. For example, in the last factor ( Ym, ) of (4.13), the first set of indices (s) Im —s t j" m—eans that there
are s unprimed indices 1,2, . . .s, together with I—s rdo—ubly primed indices, so that the total number of the
indices m t matc—hes the rank of the operator Y,. Other notation used in (4.12} and (4.13) has appeared
previously.

It is evident that (4.12) reduces to (4.8) for k = 1. We also see that (4.13) becomes an identity for k = 1. This
is because the factor (Ym,')' ' becomes (1,)' ', and in order to retain the linked cluster nature, we must
have rn —s =0, i.e., m =s. The factor (I —s —t)! then requires that t =0. With k =1, m =s, and t =0, the
rhs of (4.13) reduces to ( Ym )(m'). (m) .

Relation (4.12} is proved easily once the following theorem (theorem I) is proved. Suppose there are two
doubly-symmetric matrices An and Bn such that

n
(i) (L)

(~n }aa"= g ~a" [~(i);(i)"(~n i }!n —i!;(n ——i}"1 ~

i=0

(j) (L)
n }a"a'= g ~a' [~(j)";(j)'(Bn—j)!n—j!";!n—j!']

j=0

Then we have

(4.14)

(i) (L)g (~n }aa"(Bn}a"a' g ~a' [~(i);(i)'('4 +B}!n i!;!n——i!'] ~

(a") i=O

where

(4.1S)

(L) (t) (L) (L)(~ XB}(m);(m)' g m tCs~(m)'[—(~m —s }(m —s!;(t)'!m —s —t!"(Bm t }(s)!m ——s —t}";!m t!']—
s, t =0

(4.16)

The proof of this theorem is given in Appendix B.
Once theorem I is known, the proof of (4.12) is trivial. We first set A„=Y„' and B„=Y„ in theorem I.

Then the lhs of (4.15) becomes

which is nothing but the lhs of (4.12). We further note that, with A = Y ' and B= Y, the rhs of (4.16) agrees
with that of (4.13). Therefore, with the understanding that we simply denote ( Y" ')& Y)' ' as (Y )' ', it is seen
that Eq. (4.12), together with (4.13), has now been proved.

C. Matrix elements of Z„and Z„

Since Z„=[1—Y„]'~,it can be expanded in a power series of Y„as

Z„= g pk Y„"; pk = —[(2k —3)!!]/[2"k!],
k=0

with the understanding that ( —3)!!= —1 and ( —1)!!= 1, which is justified because we can write

(4.17)
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(2n —3)!!=2" 'I (n ——, )/~1r .

We can expand Z„' similarly as

Z„'= g ak Y„"; ak ——[(2k —1)!!]/[2"k!].
k=0

Note that the expansion coefficients ak and pk satisfy the following relations:

k

X +IPk —I ~k0 and +k +k —1 Pk(k + 1}
I=O

From (4.17), we can write the matrix element of Z„as

(4.18)

(4.19)

(Z„)„=g Pk ( Y„")«+b,« .
k=1

(4.20)

Note that the k =0 term, which is nothing but the second term of (4.20), is treated separately from the k & 1

terms, because we want to use (4.12), which is valid for k ) 1, in the first term of (4.20). If this is done, we
have

ll —2 00
(i) k (L)

n }aa' g a' ~(i);(I)' g Pk( n i }!n—i!;!n——i!' +~aa' .
i=0 k=0

(4.21)

Note that the lower limit of the summation over k in (4.21) is taken as k =0, rather than k =1, as it was in
(4.20). It is because ( Y )' '=0, if k =0, because of the requirement that it must be a linked cluster term.

We can then use (4.17) and (4.21), bringing (Z„)„ into the form that

5 —2
(i) (L)

n }aa'= g a' [~(i);(I)'(Zn —i )!n i!;!n —i!'] +—~aa'
i=0

(4.22)

To obtain (4.22) has been the aim of the present section. It is obvious that we obtain (Zn )aa by simply re-
placing Z„; in (4.22) by Z„

V. CONCRETE FORMS
OF THE B~ AND Ct OPERATORS

A. The B~ operator

As seen in Eq. (3.10), the major part of the work of obtaining the (8, )s operator explicitly is to obtain an ex-
plicit form for the matrix

(Zn/ n —1)1 n;e2' n
2ee ~ ~ ~ ~ ee

—1
n )1 ~ ~ n;e2 ~ ~ ~ n ("n —1 "}2"~ ~ ~ n", 2' ~ ~ ~ n (5.1)

We shall begin this task by first writing the (Z„)1.. . „.,2-. . . „- factor, as a special example of the matrix ele-
ment given in (4.22), as

7l —2

n }1 n;e2" n =+ e e"2". n" ~1. i;e2 ~ ~ i "l~n"—i I(i Pl) . . n;(i Pl)" ~ ~ n" +~1 n;e2" ~ ~ n
i=0

(5.2)

In the first term of (5.2), we divide the terms that result from the operation of Pe'z' . . . „- into two groups,
those retaining the index e in the 5 factor, and those having e in the (Z„;)' ' factor. [This is the same tech-
nique as used in Appendix A to obtain (A6} from (A5).] It is easy to see that the first group of these terms can
be combined with the second term of (5.2}, so as to result in a simple term written as I)), 1,(Z„))2.. . „.2-. . . „-.
After rewriting the second group of the above terms slightly, we thus find that (5.2) is replaced by

n }1~ ~ n;e2" ~ ~ ~ n" ~1e(Zn —1)2 n;2" n"

5 —2

+ ~ ~ 2" ~ n" ~1 . i;2" (i+1)"~Zn —i ~(i+1) n;e(i+2)" n" .
i=0

(5.3)
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The (Z„ 1
') factor in the summand of (5.1) can be written like the (Z„) factor in (5.2) as

n —3

(Zn —1 t2" n";2' n' + s 2' n ~'2" j1+1 )' 2' (j+1)'
j=0

X (Zn —1 —j l(j +2)" ~ ~ ~ n";1j+2)' n'+ ~2" n";2' n' ' (5.4)

We now insert (5.3) and (5.4) into (5.1). In evaluating the contribution of the first term of (5.3), however, we
do not need to use the lengthy form on the rhs of (5.4), because we see easily that

2tt ~ ~ ~ nte

—1~le( n —1)2 n2" n( n —1 )2" ~ ~ ~ n";2'n' ~l n. .e. .2' ~ ~ ~ n' (5.5)

We also see that the combination of the second term of (5.3).with that of (5.4) leaves the former unchanged, ex-

cept that the doubly-primed indices there are replaced by singly-primed indices. Equation (5.1) is thus rewrit-
ten as

(Zn/ n —1)1 ~ n;e2' n' ~1 n;e2' n

n —2

+ ~ ~ 2' ~ ~ n'~1 i;2' (i+1)'~zn —i ~(i+1) ~ ~ n;e(i+2)' ~ . n'

i=0
n —2n —3

+ g g ~ ' 2' n'[~ 2" n ~1 "i;2 . (i"+))"(Zn i t(i ~—1) ~ ~ ~ n;e(i+2)" n ]"
2" ~ ~ nte

& =0 j=O

—ls(L)X [ 2" lj +1)";2' j 11+)'(Zn —1 —j )(j+2)" n", lj+2)' . n']

(5.6)

The third term of (5.6) is somewhat lengthy. However, one easily recognizes that it is essentially in the same
form as the rhs of (Bl) in Appendix B, which means that we can use theorem I in evaluating this term. In
fact, we may set A„=Z„and Bn =Z„) ' in theorem I, and obtain the third term of (5.6) in the form (4.15).
The third term of (5.6) rewritten this way is found to be nicely combined with the second term of (5.6), to re-
sult in a single term. %'e thus obtain

with

n —2

+ ~ 2' n' 1 ~ ~ i;2'. .(i+1)'~zn —i j' Zn —1 —i ~(i+1) . . n;e(i +2)' ~ ~ n'
i=0

(5.7)

(L, )
(Zn —i /Zn —1 i ) =—(Zn —i )(i p 1 ) ~ ~ ~ n;e(i+2)' n'

xy„. t )c, ~(t)
~ (i+2)' ~ ~ ~ n'

s, t I n —i —t —1 —s I"
)(L )+ [ (Zn i —s t(i+—s+1) n;eli+2)' li+t+1)'!n i —1 —s —t!"—

X (Zn —i —1 t )(i +1) (i+s)!—n —i —1 —s t)";(i+t+—2)' n']

By using the notation of (5.1), the (Be )~ operator of (3.10) is rewritten as

(5.8)

(g, )s = g Q (z„/z„,), . . . „.,2. . . . „(A,)"
l
o)(o

l
(A. )"„,. (n —1)!

With the notation of Sec. IV, we can rewrite (3.12) for the factor
l
0)(0

l

as

(5.9a)

k=0 (b, b')
l())(()

l

= y [(—1)"/k!) y

grab.

(Ab)"(At, , ) (5.9b)
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Insert this into (5.9a), and introduce a new summation variable l =n +k. We then get

(8, )2)
——g g g (Z„/Z„))1.. . „.,2 . . . n 6(n+)). . . I.(n+)) . . . I (A, ) (A, )

I=1a,a' n=1
(5.10)

(5.11)

However,

1 1 —1

y ( —)'+"/I(n —I)!(&—n)!j =(—)'+' y ( —)"/In!(& —I —n)! j

Note that (5.10) does not contain the symmetrizer that could have appeared to symmetrize the indices in
the I(), and the (Z„/Z„1) factors. We suppressed it, because the factors (A, )' and (A, )' ' take care of the
symmetrization.

Let us denote by (8, )II' the contribution of the first term of (5.7) to (8, )2I. It is given as

ao I

(8, )II' ——g g [(—)'+"/[(n —I)!(l—n)!j]b l. . . I.e2 . . . I (A, ) (A, )'
1=1n=1

n=1

Therefore

n=0

=(—)'+'(1+( —1))' '/(I —1)!=Si, . (5.12)

(5.13))B X ~1, 1 X ~1 I;e2 . !'(A'a ) (Aa') g ~l eA 1 Ae
1=1 a a' a

The second term of (8, )II, which we write as (8, )z", originates from the second term of (5.7), and is ob-

tained as

ao 1

(8, )'"'= g g g ( —)'+"/I(n —I)!(I—n)! j
1=1a,a' n =1

n —2
D(i)Q ~ 2' - ~ n'~1 ~ - i;2' (i+1)'

i=0

X (Zn —i / n —i —1)(i+)) . ~ ~ n;e(i+2)' ~ n'~(n+1) ~ I;(n +1)' I'

X(A, ) (A )' (5.14)

In (5.14) the symmetrizer P'2'. . . „can be replaced by „)C; because of the presence of the completely sym-
metric factor (A, )' '. We then introduce a new summation index k =n i, to re—place i, and then interchange
the order of the summations over n and k. Equation (5.14) is then replaced by

ao 1 1

(8, )'"'= g g g g ( —)"/I(l n)!(n ——k)!j I( —)'/(k —1)!j
1=1a, a'k =2 n =k

(L) f 1 1 —1X ~1 (I —k);2' (I —k+1)'(Zk/ k —1)(l—k+1) ~ ~ I;e(l —k+2) ~ ~ ~ I'( a ) (Aa') (5.15)

Very simple algebra, similar to what was given in (5.12), shows that the quantity in the square brackets
in (5.15) equals ( —)'5k I, i.e., that

1

g ( —)"/I(I —n)'« —k)'j =( —)'!2k, l . (5.16)
n=k

Then (5.15) is replaced by

(B, )B = g g [(I—1)!] '(Zl/Zl ))).', I.,2. . I(A, )'(Aa, )'
1=2a, a'

Combining (5.13) and (5.17), we finally obtain (8, )s in the following extremely simple form:

(5.17)
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(B, )ii ——A, + g g X2i i(1 l;e2' I')(A, ) (A, )
1=2a,a'

with

(5.18)

Xpi i(1 I;e2' . . I')=[(l —1).] '(Zi/Zi i)'i. '. . I ,2 . . . i. (l &2) . (5.19)

It is very gratifying to find that the boson expansion of (B, )z was obtained in the above very simple form.
A more important feature which the (B, )q has in (5.18), however, is that it is a linked cluste-r expansion, in
that the X2i i coefficients, as seen in (5.19), are completely free from the 6 factors.

Recall that we started from (5.9), in arriving at (5.18), and that the former contained two factors, (Z„/Z„ i)
and

~

0)(0 ~, which, as seen in (5.7) and (5.9b), were both full of unlinked clust-er terms. Their contributions to
each X2I 1 have, however, been very neatly canceled out, as shown by the two algebraic relations given by
(5.12) and (5.16).

We discuss later in more detail the significance of achieving the linked-cluster expansions. In the next sub-

section, we shall derive (Cp )~ also in the form of a linked-cluster expansion.

B. The C~ operator

We first rewrite (3.11) for (Cp )it as follows:

(Cp)g= y y y (Z„)g (bY , p)N$ (bZpg )$g
~

n;a)(ti;a
n =1 (aa') (bb')

(5.20)

where

(Yp, g)yb =( ~B, '' BiCpBI 'Bg ~0)/ti'. (5.21)

In (5.21), we move the Cp operator to the right until it hits the vacuum
~
0), and each time it is commuted

with a B; factor, the commutation relation (2.8b) is used. The result of this operation is written as

(5.23)

(Yp„)bi, =n pe, ' (1—Y„)b g, =n
Q.

P'p' (Z„)b b, . . (5.22)
g

Note that the (numerical) coefficient P&,
' is what was defined in (2.8), and thus should not be confused with

bn g

the symmetrizer P,"' that was introduced in (4.3) and was used repeatedly in the preceding subsection, as well

as in Sec. IV. We also note in (5.22), and in a few formulas that appear below, that, e.g., b stands for a set of n

indices: bi, b2, . .,b„, while . b stands for (n —1) indices: bi, . . . , b„ i. In (5.22) we could have written the
symmetrizer Pb

' in place of the numerical factor n We sha. ll restore such a symmetrizer whenever it becomes
vital to do so.

Note that the summation index g that appeared in (5.22) runs over the TD elements belonging both to T and
(1 T). We find i—t convenient to divide (Cp)ii of (5.20), after (5.22) is inserted into it, into two parts: (Cp)z'
and (Cp )ii", the former containing only those g that are in T, and the latter those in (1—T). It is then easy
to see that (Cp )~' is obtained as

(Cp)z' ——g n g g P&,
' (Z„'),b(Z„)b b,(Z„')&, .

~

n;a)(n;a' ~,
n =1 g E T (aa'bb')

which can be rewritten further by going through the following algebraic steps:

(Cp)q' gn g g P——
b . (Z„),. b (Z„')b,

~

n; )(na;a'~
n =1 gG T(aa'b')

g PgP, (Z„),b.(Z„)b,—~.n;a)(n;a
~

n =1 g G T(aa'b')

= g n g g PgP,
' (b),—,/n;a)(n;a'/+5(Cp)iI'

n =1 g E T(aa')

= g [ I/(n —1)l] g P~(I b 2 ",;2 "., (~, )"
~

0)(0.
~
(~, ) +5(C )a

n=1 (aa')

(5.24)
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It will be clear that, in obtaining the first and the third equalities in (5.24), use is made of relations

g (Z„),»(Z„)». »
—(Z, ),. »

b
~ and

g (Z„)s, »(Z—.„')»,= (&)s,
b'

which are valid when g 6 T. In obtaining the second equality, we made the following replacement:

(S.26)

(5.25)

which resulted in a correction term 5(c& )II', this term will be discussed shortly. The fourth equality in (5.24) is
trivial. On the other hand, the last equality is very significant. The algebra involved there is the same as what
was encountered in going from (5.11) to (5.13). Just as was the case previously, the fifth equality of (5.24)
shows that all the unlinked cluster terms in [(Cz )s' —5(c& )II'] are neatly canceled out, retaining only one sur-
viving linked cluster term, the first term in the last expression of (S.24).

We shall now explain 5(C~ )II'. Obviously, it can be written as

5(C&)~ ——g n g g [P»~ (Z„),. », Pz, (Z—„),.»,](Z„)», ~n;a)(n;a
~

.
n =1 g & T(aa'b')

g~,",),(Y„)».,~,=g~,",' (Y„),~.» . (5.27)

Previously, we obtained (Y~„)»i»n the form of
(5.22), by moving C& in (5.21) to the right. We can
also obtain another expression of ( Y~ „)»», however,
this time moving C~ to the left. By equating the
previously obtained expression to that in (5.22), one
sees that (5.27) holds. What we need to do next is
expand in powers of Y„ the (Z„) factors in the [ ]
expression of (5.26). By using (5.27) repeatedly, one
finds that only the g sum remains for each power of

For our present purpose, it is not necessary to at-
tempt to rewrite this expression further'. We just
want to make a few remarks. The first is that, al-
though we wrote the lower limit of the summation
over n as n =1, the summation actually begins with
n =2, because the [ ] factor in (5.26) vanishes for
n =1;note that Z1 ——1. The second is that, although
(5.26) is written as a sum over g in T, the rhs of
(S.26) can be rewritten so that it contains a (very
complicated) sum over g, where we denote by g the
TD components that are outside T: (E(1 T). —
From here on, we shall express this fact by saying
that, e.g., the rhs of (5.26) consists only of the g
sum(s). Suppose we choose T very large, still per-
mitting the presence of (Z„'). Then the (1—T)
space will be all but empty, making the g sum very
small. Thus a g sum term may in general be regard-
ed as a small term, although this may not always be
the case if T is taken very small.

The proof of what we stated as the second remark
above is somewhat lengthy. We shall thus explain
only the outline of how it can be done. In doing
this, we first note that we can prove an equality
given as

I

Y„. Thus our statement is proved.
The (Cz)~" is given by (5.23), if we replace the

g E T sum there by a g sum. We also note that, once
this replacement is made, the n =1 term vanishes
again, because the factor

(Z) )», ,g=(b)», ;(=0,
since b) C T and g 6 T. Therefore, the terms
5(CP)B(') and ( pC')8(I') behave very similarly. We may
thus combine them into a single term 5(c&)s, ob-

taining (C~)z as

(Cq)s ——g P, A, A, +5(Cp)g .
Ia)a )

(5.28)

Just as we expressed (B, )z in (5.18), we may write

(C~)s as

(C~)s ——Q g Xg)'( I l; I' I')
1=1(aa')

X (A.t)'(A. )'. (5.29)

Xg(' ——0; (1)0), (5.30b)

again in agreement with what we obtained in KT-1,
although they were obtained there in quite a dif-
ferent context. (In order to avoid any misunder-
standing of what we have just said above, the reader
is strongly urged to read Ref. 16.)

Since the 5(C& )z term in (5.29) contributes only the
l )2 terms in (5.30), one sees that

Xg'(I;1')=PI I . (5.30a)

This agrees with what was obtained in KT-1; If we
also decide to suppress all the g-sum terms, we may
further write
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As will be discussed in some detail soon, there is
no a priori reason to justify suppressing the g sums
always. It then makes it desirable to give explicit
forms to the X2I terms with I)2, in particular in

I

the form of linked cluster expansion. Instead of do-

ing this, we shall be content to give only the leading
term, the X4 term. It reads

Xg'(12;1'2')= g g IPg'g(Z2))zg) —Pg2(Z2)gl;I"2" l
1"2" gET

(p) —1 —1
2",g( 2 )]2 T2( ~2)Tp p" (Z2 )1"2";1'2' ~

g T, 2

(5.31)

Combining the presentations of the present and
the preceding subsections, we see that the bosoniza-
tion of the fermion pair operators, and thus of any
fermion operator, has now been completed. As we

stressed in Sec. I, they are all in linked-cluster
forms, and are permitted to be used directly in the
space of ideal bosons. They were derived through
rigorous mathematical procedures, and yet, as they
stand, are in a form that can be used for practical
calculations.

The reader may wonder how the g sums find their

way into our formalism, and why we are so cons-
cious of them, in spite of the fact that we have de-

cided to truncate the (TD) space in which to work.
The origin of the g sums is of course the commuta-
tion relation (2.7b), or more simply the presence of
the scattering operator Cr in the original fermion

theory. Even if we choose the T space to start with,
the Cr scatters the pairs in T into the (1—T) space,
and there is no way to prevent this from taking
place.

We may thus say that whether to retain the g
sums or not is a matter of choice. As we stressed in

TWP, ' once one decides to use BET, it means that
one has decided to introduce an approximation, one
way or another. In this regard we note here that the
problem of the g sum became apparent only when
we started to discuss the bosonization of the Cp
operator in the present subsection; it was not en-
countered in the preceding subsection in which we
discussed the bosonization of the B, operator. Ac-
tually, the problem was simply hidden there. See,
e.g., Eq. (4.7), in which we first encountered the g
sum, which includes both the g E T and the g sums.
To retain the latter may improve the accuracy of
evaluating the matrix elements that are eventually
used to construct the (B, )g operators. In this re-
gard, we also remark here that the same g sum al-
ready appeared in (Sec. 5 of) KT-1. We have re-
tained the g sums which appeared there in our later
calculations. In these calculations, however, we

set X2„'——0 for n & 2, which means that we had
suppressed all the g-sum terms when they appeared
in these coefficients.

We want to stress here that it should not be
misunderstood that we are encountering the g-sum
term problem because we have bosonized the calcu-
lation. It is a problem that is encountered in a pure-
ly fermion calculation. Note, first of all, that the
need for constructing (Z„'), and thus the need for
truncation, is encountered in the fermion system.
One may also consider evaluating a fermion matrix
element (n;a

~
Cr

~

n;a'), as an example. By using
the definition (3.3) for

~
n;a ), one immediately sees

that the above matrix element is nothing but what
was given in the square brackets in (5.20). It is then
clear that the same g-term problem appears in the
fermion calculations. When one does a fermion cal-
culation, one would set up a strategy on how to treat
(-sum terms. One may then know exactly what to
do when one switches to the boson description.

VI. PROPERTIES OF THE
B AND C

OPERATORS

In Sec. V, we obtained the (B")g and (C )g opera-
tors in rather compact forms. [The (B)g operator is
obtained simply as the Hermitian conjugate of
(B )g.] In the present section, we discuss a few in-

teresting properties of these operators. In subsection
A, we prove that they satisfy the bosonized versions
of the commutation relations in (2.7) within the g
sums. Had we not introduced a truncation, it would
have been unnecessary to go through such a proof;
satisfaction of the commutation relations is
guaranteed by the construction of the bosonized
operators. It is thus interesting to see to what extent
the commutation relations are violated because of
the truncation. In subsection 8, we shall see how
the step-by-step operation is done by using the
(B )g's obtained above.

A. Commutation relations

We may make Eqs. (5.18) and (5.29) more explicit to obtain
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(B, )B=A, + QX3(12;a2')A&A]A2+ g Xs(123;a2'3')AzAsA]A2A3+
122' 1232'3'

(Bb)B=Ab+ QX5(12;b2 )A]A2Az+ g Xs(123;b2'3')A]A2A3Ap' 3'+
122' 1232'3'

(Cp)B ——EXP'(2, 2')AzA2 + P X4"'(23;2'3')A&A&A2'A3'+
22' 232'3'

and insert them into

[(Ba)Bi(Bb)B] ~ab y Pa, b(Cp }B ~

[(Cp)B,(B,)B]= g P,'pg(Bg )B .

(6.1)

(6.2a)

(6.2b)

Both sides of (6.2) are expressed as sums of normal products of the A and A operators, and we equate the
coefficients of the same products on both sides. This results in a set of equations that are to be satisfied by the
Xf X3 ., coefficients in (6.1}~ These equations are exactly the same (save for a slight change of notation, as
is easily figured out) as are those obtained in KT-1. In KT-1, however, these coefficients were totally un-

known, and were obtained by solving these equations. (This point will be discussed further in Sec. VII.) Here
we show that these coefficients obtained in Sec. V do satisfy these equations.

It is trivial to show that the X2 equation, i.e., the equation to be satisfied by Xg', makes X'f'( l, l') =PI.'], in
agreement with (5.30a). We then obtain the Xs equation as

2X5(a 2;b 2')+ QX3(a 2;1"2")Xs(1"2";b2')+( Y2),z.bz ——0 .
1II2tt

(6.3)

Note that we used (2.9) and (4.5) to obtain the last term on the lhs of (6.3). It is easy to see, by using (5.19) and
then (4.1), that the second term of (6.3) is rewritten as

g (Z2)a2. 1 2 (Z2)]"2";b2' g [(Z2}a2;1 2
—ka2. ] 2 ]'[(Z2)1 2 .b2 —kl 2 .b2 ](L, ) (L)

1 tl2tt 1II2II

=(Z».~,» -2(Z». 2,»+~.2,b.2

= —( Y2),z.b2 —2X&(a 2;b2') . (6.4)

With (6.4), it is easy to see that the lhs of (6.3) vanishes. Thus the consistency of (5.19) with (6.3) has been
proven.

The X4 equation is given as

2[X4"'(12;a2')+ g X6 '(12; I "2")X&(1"2";a2')]
1It2tl

+2 g PI ']X,(1"2;a2') —g PgI Xs(12;a 1")—g P,'"gX,(12;g2') =0 . (6.5)
1tl 1

It

Note that the summation indices 1" and 2" are restricted to lie within the truncated space [T],while g is not in

general; see the discussion of Sec. V B.
We first note that the two terms in the square brackets in (6.5) are combined into a single term, causing the

first term of (6.5) to be replaced by

2 g X6 '(12;I"2")(Z2)1 P .a2 .
1II2tl

(6.6)

For the purpose we have here, we find it convenient to express the Xg' factor in (6.6), not as in (5.31), but as

Xg (12;1 2 }= g (Z2 )]23 4 Pg'. g(1 —Y2)3 4'g5"(Z2 )5 6']'2 —gP] . 1 .() . gg () —1 (p) (6.7)
3tl4tt5tt6llg 22"

Equation (6.7) is obtained by noting that Xg' is nothing but the linked-cluster part of the coefficient of the
n =2 term of (5.20), and that the factor ( Yp „)bb there can be expressed as in (5.22).

Insert (6.7) into (6.6},and combine the factors (Z2 ')5 6-. 1 z and (Zz)] 2-.,z to obtain

~5"6" 2' ('55" ~6"2'+~5"2'~6"
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One then sees rather easily that (6.6), i.e., the first term of (6.5},is rewritten as

y Pr'g(Zz)12;ag+ y Pa g(Z2)12;gz' /PI" 1(Z2)1"2;u2'
gCT gGT 1"

y y (Z2 )12;1"2"[Pry(Y2)1"2",pa +Pa, g( Y2)1"2",gz'l
() (p)

1II2lt
(6.8)

The other three terms in (6.5) are easy to manipulate, and one finds that in combination they cancel the first
three terms of (6.8), and add a g-sum term. It is thus seen that we eventually obtain the lhs of Eq. (6.5) to be
equal to

g (Zz ')12.1-2 IPg'g( Yz)1-2 ga+P,' g( Yz)1 2";gz']+Pa gX3(12'g2')
1lt2II

(6.9)

This shows that the coefficient equation (6.5) is satisfied to within the g sums.
The equation to be satisfied by Xs is somewhat lengthy, and we find it convenient to write it as

25+34+23 ——0 . (6.10)

Here As stands for a sum of all the terms that contain the Xs coefficient, while A4 is linear in X4" and A3 is
quadratic in X3. We first write A, in full:

As ——6 g Xs(1"2"3",a23)Xs(1"2"3";b2'3')+6Xs(a23;b2'3')
1

I t2II3 I t

+6 g [X3(1"2";a2)Xs(1"2"3;b2'3')+Xs(1"2"3',a23)X3(1"2";b2')] .
1II2tl

The A4 and A 3 terms are much shorter, and are given as

A4 ——g P, bX~g (23;2'3'),

(6.11)

(6.12a)

A3 ——4+X3(1"3',a2)X3(1"3;b2')—QX3(2'3', a 1")X3(23;b1") . (6.12b)

In (6.11), we note that Xs can be written as

Xs(1"2"3",a23) = —,(Z3/Zz)1 2 3'g23
1 (L)= —,[(Z3/Z2) 1 2 3-,a23 —2&3 3-(Zz)1 2;a2 —~1-2-3-;g 23] (6.13)

See Eq. (5.19) and then Eq. (5.7). If (6.13) is inserted, it is seen, after short algebra, that As is rewritten in the
fallowing form:

3
As =(

z ) (Z3/Z2}1"2"3"g23(Z3/Z2)1"2"3" b2'3
1tl2tt3II

—( 2 ) Q [2533 (Z2)1 2 .gz+51 2 3 .a23]
3 (L, )

1II2lt3lt

+ [ (33'3"( 2 }1"2";b2'+~1"2"3";bz'3'1
(L) (6.14)

It is significant that the (Z3/Zz) factors are not in the linked-cluster forms, because we can write, e.g.,

(Z3/Zz)i-z"3";gz3 —g (Z3)1-z-3";g4"s"(Zz )4"s",z3 .—1

4tl5tt

It is easy to show than that the first term of (6.14}is rewritten as

2 }23;1"2"( 3 )a 1"2";b3"4"(Z2 )3"4";2'3'
—1 2 —1

1 tl2tt3tt4II

(6.15)

(6.16)

Since Z3 ——1 —Y3, as shown in (4.1), and since Y3 is expressed in terms of Yz's, as seen from (4.6) and (4.7), we

see that the first term of (6.14) is expressed in terms only of Yz's and Zz's. The same is also true for the
second term of (6.14). The A3 term is, of course, expressed in terms of Zz only. If we use (6.7), the A4 term is
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also seen to be expressed in terms of Yz's and Z2's. This means that the algebra involved in the evaluation of
A 5 +A4+A 3 is reduced to that of adding and subtracting terms that are expressed entirely in terms of Yz s and
Z2's (including Z2 's). Thus the rest of the algebra is rather straightforward, though lengthy. After this
lengthy algebra one finds that

A5+A~+A3 —g g (Z~ )23 ~f( Y2)~f p( Y2)~g ~f (Z2 )~f, r3,
efe'f'

(6.17)

i.e., that As+A4+A3 ——0, to within a g sum.
It is rather difficult to continue similar proof in-

definitely for still higher order coefficients
X6,X7,. . ., but it will be a reasonable guess that the
equations for these coefficients are also satisfied to
within g-sum terms. In this regard, it will be
worthwhile to emphasize that the problem of the (-
sum terms is never encountered in the X1, X2, and

X3 coefficients. In the terminology of KT-1, a BET
which terminates the boson expansion at X3 is called
a fourth order theory, Therefore, what is meant by
the remark we just made is that the fourth order
BET can be carried out exactly, within a fixed trun-
cation. Note that we have experienced in the past
that the fourth order theory was already a rather
good approximation.

xA, Io)

= g [bgf pf +X3(ef;e'f')].
e'f'

xA,'Af'.
I
o),

g(Z )f2'fA Af' Io)
e'f'

(6.18b)

It may be expected that this pattern is repeated
with any further step of operation, and it is rather
easy to prove by induction that we obtain the fol-
lowing general relation:

B. Step-by-step operation

We have discussed in TWP, ' and in its recapitu-
lation in Sec. IIC, the significance of the step-by-

step operation (SSO). We shall discuss it here again,
this time by using the explicit form of the (8, )z
operator obtained in Sec. V B. By using the (8, )ii's,
as given by (5.18), it will be easy to see that the re-

sults of the first and the second operations take the
following forms:

(8, )s IO)=A, I0)=(Zi)„A, I0), (6.18a)

(Bf)B(Be)B I
0) Af+ gx3(12&f2 )A IAZA2

122'

(8, )s I
0)= g (Z„),.b(Ai, )"

I
0),

(b)

where we again used the notation

(6.19)

n;a = n;a (6.21)

Equation (6.21) is a generalization of Eq. (14) of
TWP, which was proved only for the case in which
we had one kind of monopole bosons.

To have (6.21) is very significant, because we can
now combine Eqs. (2.14) and (2.16) to give

(m;b
I
O~

I
n;a) =(m;b

I Os I
n, a)

=(m;b IOii I
n;a) . (6.22)

As was stressed above, we use the third version of
(6.22), i.e., we work in the ideal-boson space, in actu-
al calculations. However, the second equality of
(6.22) shows that in effect we work in the physical
boson space. Since the meaning of the first equality
of (6.22) is well understood [see text following Eq.
(2.14)], to have the second equality of (6.22) is an
ample justification of the use of the ideal-boson
space in the calculations.

It is interesting to see how the matter changes if
we use PPR instead of TDR. For simplicity, take
n =2, and write the equivalent of (6.19) appropriate
for PPR. As is well known, it is given as

(812)B(834)a I
0)=(1/V 3)(A i2A34 —A i3A24

+A,4A23) I
0) . (6.23)

To invert (6.23) in the same way as we did (6.19)
into (6.20) is not possible, however. Note that the

a= a1,a2, . . .,a„

Relation (6.19) can be inverted to give

g (Z„'),.b [1/~nt](Bb )it
I

o)
(b)

=[I/V n!](A, )"
I
0) . (6;20)

In the terminology of Sec. II, the rhs of (6.20) is the
normalized ideal-boson state

I n;a ), while the lhs of
(6.20) is the orthonormal physical boson state, which
may be denoted as n;a ) in analogy to the orthonor-
inal fermion state n;a ) introduced in (3.3). Equa-
tion (6.20) thus means that we have established an
equality
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indices 1 through 4 in (6.23) denote fermion orbits,
and thus, when we choose for the lhs the states such
as Bi2B24

~

0) and Bi4Bz3
~
0), we simply see on the

rhs that the expression as seen in (6.23) appears re-

peatedly. Therefore, the corresponding Zi ' matrix
is singular, which prevents one from writing an
equation that corresponds to (6.20). This then
means that we cannot write the second equality of
(6.22) either, and are thus forced to work always in
the physical boson space. This is another way to
look at the difficulty one encounters when one uti-
lizes PPR.

VII. FAST CONVERGENCE OF THE
LINKED CLUSTER EXPANSIONS

In Sec. V, we showed very explicitly that the basic
pair of operators, i.e., (B, )s and (C~)s, were ob-

tained as linked cluster expansions, and thus in
forms that were extremely compact. In Sec. I, on
the other hand, we stressed that the linked cluster
expansions would converge very fast. With the
form given in Sec. V for the above operators, howev-

er, the reader may not yet see very clearly in what

way the given expansions embody this fast conver-

gence. In this section, we shall thus rewrite the re-
sults of Sec. V still further, so that the fast conver-

gence becomes evident. In the course of this, it will

also be shown that the forms we obtain in this way
for the expansion coefficients agree with those we
had obtained earlier, and use in many calcula-
tions.

As for the (Cz)s operator, we may choose to ig-
nore the g sums, thus obtaining X2„——0 for n )2.
Then (C~)s consists of a single term, and thus no
problem of convergence is encountered. We shall
therefore concentrate on the (B, )s operator from
now on, and show that X2„ i

——0( Yq '), where Y2
is a quantity defined, e.g., by (4.5). In other words,
we intend to show that the expansion of (B, )z is in
the form of a Taylor series, taking

~
Yz

~

as a small-
ness parameter. We shall then show that

~

Y2
~

is
indeed very small, if we truncate the system to the
collective component.

We find it most convenient to first recapitulate
our previous formalism; and for this purpose we can
use the coefficient equations given explicitly in Sec.
VI. The X3 equation is given by (6.3), and one easily
recognizes that this equation is the same as the
equation given as (3.5c) in KT-1 (apart from a slight
change of notation). In KT-1, this equation was
solved exactly, retaining all the TD components.
[See Eq. (3.13) of KT-1, and notice that it in fact
contains an unlinked-cluster term. ]

As emphasized in Sec. I, however, the solution of
(3.13) in KT-1 is not what we used for our calcula-

Here, e.g., (a 2
~

m } is an abbreviation of the
Clebsch-Gor dan coefficient which reads
(2p, F2 ~

im ) in full. It is obvious that i =0, 2, and
4, while m is the projection of i.

If (7.1) is inserted into (6.3), the latter becomes a
quadratic equation for the unknown (x3)f.

2(x, );+(x, ) +(y;/2)=0,

with a solution that

(7.2)

(x 3 )i =[ 1 ——,A ] —1 = ——,y; ——„y;
(7.3)

This shows that (x3);=0(y;), i.e., that X& —O( Y2),
as we stated above.

We remark that we chose the plus sign in front of
the square root in (7.3). The reason for this choice
is that the choice of the minus sign makes
X3 0 ( 1 ). We also remark that the lowest order
solution of (7.3), i.e., (x3);=—( —,)y;, which results
in

X&(a 2 b 2') = g ( —1/4)y (a 2
~

m )(b 2'
~

m ),
im

(7.4)

is obtained from (7.2), if we first suppress the (x3);
term, which is O(y; ), compared with other two
terms which are both O(y;). If we are to be satisfied
with (7.4}, the procedure explained above, with the
use of (7.2), was necessary. We can just suppress the
second term in (6.3). Then (6.3) is solved trivially
and gives (7.4} again. We shall use this simplifying
techinque in solving the X5 equation.

The x5 equation is given by Eq. (6.10), together
with (6.11) and (6.12). Anticipating that
X& ——O(y; }, we retain only terms in (6.10) that are
O(y; ). [We also set X4 ——0 in (6.12a}.] We then im-
mediately see that the X5 equation is solved as

X5(a 23;b2'3') = —A3/6,

where Ai was defined in (6.12b). We shall use

X3(a 2;b2') = ——,( Y2 ),z.b2

(7.5)

which is nothing but (7.4), in (6.12b), to express A3
in terms of ( Y2). We then find rather easily that

tions. As was explained in KT-2, we first truncated
the TD system to the collective component (of quad-
rupole nature), and then solved (6.3). To redo it here
explicitly, let us first rewrite ( Yz) and X3 as

(Y&)&2;b2' X (y /2)(a 21m)(b2
l
m) (7.1a)

im

X3(a 2;b2') = g (x& );(a2
~

m )(b2'
~

m ) ~

(7.1b)



362 T. KISHIMOTO AND T. TAMURA

X5(& 23~b2 3 ) ( 8 ) $ (~2)23 b3"(I 2)a3";2'3' .
3tt

The X5 of (7.6) is obviously linked clustered, and is O(y; ).
Combining (5.18), (5.19), (7.4), and (7.6) together, we can write down (B, )z1 very explicitly as

(B )&=A + 2 2 [ y ](121m)(e2
I
m)A1A2Az

122' im

+ g g [——„y;y;]g(23 I
m)(e3"

I
m)(13"

I

m')(2'3'
I
m')A 1AzA3A2A3

(7.6)

(7.7)
1232'3' ii 'mm ' 3II

X (12
I
m )(e2'

I

m ) . (7.8)

It is obvious that (7.8) is an exact reproduction of
(7.1b), together with (7.3).

In evaluating X5, we find it convenient to use the
expression given by the second equality in (6.13),
rather than by the first equality. In any case, the
algebra to show that X& of (6.13) reduces (to the
lowest power of y;) to (7.6) is somewhat lengthy, but
straightforward. Therefore, we shall not give every
detail of it. It will be sufficient here to give only a
few basic ideas on how to carry it out.

The most complicated term in (6.13) is
(Z3/Zz)123 ~ ez'3' which is of course rewritten as

—1(Z3 )123;e2"3"(Z2 )2"3";2'3'
2tt3II

We first rewrite the Z3 factor here as

Z3 ——1 —(F3)/2 —(I'3 )/8 —.

and then note in (4.6) that (Y'3) consists of two
terms: One is O(y;) and the other O(y; ). By using
(4.6), we express the above Z3 up to terms of O(y; ).
We next expand Zz ', also to O(y; ), and combine
it with the expansion of Z3. In the resultant
(Z3/Zz)1z3. ,23, the term of O(1) is b, 123.e23. The
term of O(y') is of the form

~e2'3'[~1;I( I 2)23;2'3'] ~

(1)

There are two terms that are O(y; ). The one is of

The expansion given in (7.7) is exactly what was
used in our calculations. Note that (7.7) is also a
reproduction of the expansion given as Eq. (14) in
Ref. 17.

We shall now show that the expansion of (7.7) is
easily reproduced by using the results we obtained in
Sec. V. First of all, Eq. (5.19) shows (noting that
Z1 ——1) that

3(12;e2')=(Zz)'12,', 2

(Z2)12;e2' ~12;ez'

= XI [I——,y;1'"—l l
im

I

the form

~e2'3'[~I;e( I 2 )23;2'3'] ~
(1) 2

while the other is of the form of (7.6). Thus the
(Z3/Zz ) term produces one linked and three un-
linked cluster terms. . These unlinked cluster terms
are, however, very neatly canceled out, as they
should be, by the two remaining terms in (6.13). We
thus see that X5 indeed reduces to a linked-cluster
term, and further, that the thus reduced X5 agrees
exactly with what was given in (7.6).

This completes the proof that the new method of
the present paper results in the bosonized fermion
pair operators which agree exactly with those ob-
tained earlier ' and were used in calculations.
As seen from the explanations given above, however,
our earlier work did not contain a proof that the
thus obtained operators can be used in the ideal-
boson space. This missing proof has now been
presented by showing that the results with the new
and old methods are the same. One thus sees that
our earlier calculations were in fact performed based
on formulas that can be well justified.

In the above proof of the equivalence, we expand-
ed X2„1 in powers of Y2, and retained only the
leading terms. For the calculations we have done so
far, Y2 was indeed small, and thus the above com-
parison is justified. With the forms given by the
present method, however, an X2„1can be evaluated
without expanding the square roots in powers of Yz.
In other words, the use of the new formulas allows
us to evaluate the X2„1'swith an increased accura-
cy, when such becomes necessary.

It is easy to see why Y2 is so small if we restrict
ourselves, as we did in our earlier calculations, to the
collective TD component. Let us denote by
(Bc)

I
0) the collective TD state, and assume that

there are involved Nz particle pairs (or particle-hole
pairs) to define B„so that the summation in (2.2)
contains N& terms. For the collective state, the ex-
pansion coefficients O'J' z' may be very weakly

dependent on Ij1jz J, and roughly equal to
1/(Np)1/2. By keeping these facts 1n mind, and then
constructing
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(0I(B,)'(B,') I0) =(2!)(1—Y,);
cf. (4.1), it is easy to see that Y2 ——O(Np '), which
may be of the order of 0.1 or less. (The smallness
parameter that appeared in our actual calculations
was still smaller than this, because we used RPA-
type, rather than TD-type bosons, as we stressed in
Sec. I, as well as in Refs. 2 and 7.)

For the noncollective states, the corresponding Y2
is very close to unity. This can be seen easily from
the fact that, for a PPR operator B~2, we have

(Kz)'
I

o& =o

making Y2 ——1. However, one should not consider
that the boson expansion theory breaks down be-
cause of this. It should be kept in mind that, in
practice, we will seldom consider basis states in
which a particular noncollective component appears
more than once (although the collective component
may appear multiply). Then what happens is the
situation we encountered in Eq. (6.18a). As seen, we
can let the theory remain exact, even if we retain
only the first term of the expansion. Thus the slow
convergence of the B operators corresponding to
noncollective components should not be bothersome.

We finally explain why the presence of unlinked-
cluster terms slows down the convergence. We
showed above that, with

X,„,=(Z„jZ„,)"',

X2» ) ——0( Y2 )

U,dd ——g g I
n; aj ) ( n; aj I,

n (a j)
(8.1)

as a straightforward extension of what was given in
(3.1). Here,

with

ln;aj&= g (Z„'),j,, j'I n;aj''»,
(a'j')

(8.2)

I
n;aj )) = [ I /~n!]dj (B,)" 0), (8.3)

which is a nonorthonormal state with a fermion in
an orbit j, together with n TDR-type fermion pairs,
specified by

a = a~, . . .,a„
0 0

The Z„matrix, and the related Y„matrix, are de-
fined through a relation that

lier papers, and many other related papers.
Several authors have discussed BET, intending to

use it for odd-A nuclei. However, the presenta-
tions made in these papers remained rather formal,
largely because the development was made in PPR.
As we emphasized above, a BET in PPR is all but
useless. We shall show in this section that it is pos-
sible to extend the TDR formalism of the preceding
sections, which were developed for even-even nuclei,
to the use for odd-A nuclei. It will be seen that this
results in formulas that can be used for very practi-
cal calculations.

We begin again by introducing an operator U~d,
defined as

and thus a fast convergence. Suppose we had '
2(Zn )aj;aj'' ( n )aj;a'j'

=(0 I (B,)"djdj'(B, )"
I
0)/n! . (84)

Further in (8.1), ln;aj) is a normalized, ideal
fermion-boson state given as

I n;aj) =[ I /Onl]cj (A', )"
I
0), (8.5)

the ideal fermion operator cj commuting with Aa's
and A, 's, and satisfying a commutation relation

[cj,cj' J =5jj

Xz» —i
——(Z» /Z» —i )

instead. Then we see, from Eq. (5.7), that we have

n —2

Xq„)——O(1)+ g O(Y„" ' ')=O(1) .
i=0

Obviously we cannot have a fast convergence, even
if Y2 is very small.

VIII. FORMULATION
FOR ODD-MASS NUCLEI Once the U,dd operator is defined, the procedure

to be taken for bosonizing the fermion operators and
the states is essentially the same as it was for even-

even nuclei. We shall thus give immediately the bo-
son images of the 8, and the C~ operators:

(8.6)

and

All the formalism presented so far in the preced-
ing sections was for even-even nuclei. Such a re-
str' ..'ion was also the case with MYT, LH, our ear-

I

(B, )jj ——g &n g g [(Z„), .„j-(Z„~ '), j-,j ] I
n;aj )(n —1;a'j'I

n =1 (aa'a") jj'j"

(aa'bb') jj 'ii 'n=0
(Cp)s= 2 [ n'] 2 X(z. ').j;bi(ol (Bb) Cp(Bb')" '10&(zn ')br', »j ln'aj)(n'a'j'I (8.7)
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The reader will find no difficulty in understanding these two expressions.
Contrary to what we have done above for even-even nuclei, we shall here be content with obtaining explicitly

only the first two terms of the series in the above expressions, i.e., the n = 1 and 2 terms in (8.6) and the n =0
and 1 terms in (8.7).

In doing this, we shall first go back to Eq. (8.4), and note that the factor djdJ' that appeared there can be
rewritten as

djdJ'=5jj g—(m'm
l q)C~,

kq

where

(8.8)

(m'm
l q) =(j 'mj'm

l
kq),

while p'= Ij 'jkq I. [See the text following Eq. (2.7).] By inserting (8.8) into (8.4), and then using (5.22), we see
that

(1 Y.—)eje j =5JJ {1 ~. )ee Pe"—g (m'm
I q) g (I —Ye)e g.- P'1';g

kq

from which we obtain

(8.9)

(Yo)jj =o

(Y,},J., J
——Q (m'm

l
q)P'(. 1,

kq
0 (1) 4

( Y2)12j;1'2'j' ( jj2'( Y2)12;1'2'+Pl'2'~22'( Yl)lj;1j''

(8.10a)

(8.10b}

Pll'2' g g (m'm
I q){Y2)12g2'PI', g .

kq g

Note that ( Yl)&0, while ( Yi) =0.
Since ( Yo}=0,we have (Zo) =1. Therefore, for the n =1 term in (8.6), we simply have

0 0 (I )
( 1/ 0)iJ' ej'= JJ' le + (Zl )ij ej'

For the n =2 term of (8.6), we obtain, after a little algebra, the result that
0 0 0 (L)(Z2/Zi )12j;e2'' —f)jj'(Z2)12; +e2~l (Z21) j;j2'+e(Z2/ 1)12j;e2'j' .

(8.10c)

(8.11)

(8.12)

In the discussion which follows, it is not necessary to have an explicit form of the last term in (8.12). We shall
nevertheless give it here, in order to give an idea of how the linked-cluster terms look for odd-A nuclei:

(L) ' (L) (L) ' (L){Z2/Zl )12j;e2'j' {Z2}12j;e2'j'+g (Z2 }12;e2"(Zl)2"j;2j'
2el

+ g (Zi}2j;ej"{Zl }lj",2'j'+ g {Z2)12j;e2"j"( I }2"j";2'j' '
(L) ' -1(L) (I) ' —1 (L) (8.13)

jee 2"1"

We can now insert (8.11) and (8.12) into (8.6}. Since we consider only two terms in (8.6},we may set

l
0)(Ol =1—QAtA,

1

in the n =0 term, and
l
0)(0

l

= 1 in the n =2 term. We then see that the unlinked-cluster terms neatly cancel
out, and that we obtain the following linked cluster expansion of the (B, )JJ operator as

(B, )JJ = IA, + QX2(12;e2')AtA2A2+. . .
I g(CJcJ)

122' j
+ g {Zl)1J.,J'(A lcJ cJ')+ g {Z2/Z, ),2J,2J'A 1A2cJA2c'+(I-) (L) (8.14)

jj'1 jj'122'

The expression in the curly brackets in the first term of (8.14) is nothing but what we have obtained for
(B, )s, when we considered an even-even nucleus. Therefore, the first term of (8.14) is interpreted as the term
that describes the motion of the core part of an odd-A nucleus, and the last (unpaired) nucleon is just playing
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the role of a spectator.
The other terms in (8.14) evidently describe the coupling of the last nucleon and the core. The significance

of obtaining the expansion of (8.14) is that the two kinds of terms, the core terms and the coupling terms, were
obtained from a single starting point, and thus in a completely consistent manner. It may also be evident from
the derivation explained above, that all the nucleons, whether paired or unpaired, were treated on a completely
equal footing.

The situation is very much the same regarding the operator (C~)z. We shall give the first two terms of its
boson expanded form, without going through the derivation. (Note that p =

Ijj'kq I.)

(Cz)z ——g (m'm
~
q)cj cj'+ g g (m'm

~
q). 5JJ, (Zi ')i, ,, .

mm' mm

(8.15)

It will be evident that a relation very similar to
what was given in (6.22) will hold again here. Since,
as shown above, the bosonized operators have been
obtained in a linked-cluster form, and since they can
be used in the ideal fermion-boson space, they satis-

fy all the requirements for them to be amenable to
practical numerical calculations. We may thus con-
clude that we now have obtained a very practical
BET that can be used for odd-A nuclei. It does not
seem that such a BET was obtained in the past, at
least not in a form as general and as flexible as is
our formalism.

During the past decade or so, Paar and his co-
workers performed rather extensive analyses of col-
lective odd-A nuclei; see Ref. 24 and earlier papers
cited therein. In their calculations, however, the
even-even core part was treated in a phenomenologi-
cal way. Extensive analyses of odd-A nuclei were
also done by Kuriyama et al. , with a particular
emphasis of the "dressing" of the odd nucleons of
the collective field produced by the even-even core.
The formulas given above may be considered to
offer a possibility either to improve or extend these
earlier calculations, although some additional alge-
bra would have to be worked out before such calcu-
lations could be performed.

IX. CONCLUDING REMARKS

We shall first summarize what we have done in
the present paper.

(i). We showed that to construct a BET based on
PPR is very unlikely to lead us to any formulas for
practical purposes. To have such a BET means that
we can at best repeat, normally in a much more dif-
ficult way, the calculations which can be done in the
original fermion form.

(ii). Once TDR, or its equivalent, is introduced,
the above problem of PPR is largely removed.
However, the theory can become useful, if and only
if, the formulation is done in such a way that the
bosonized operators, thus derived, are in the forms
of the linked-cluster expansions, and are allowed to
be used in the ideal boson space. The major part of
the present paper was devoted to show how such a
practically useful theory can be constructed.

(iii). The guide we took in constructing such a
theory can be expressed in terms of an extremely
compact equation; Eq. (6.22). Actually, the necessi-

ty of taking the first equality in (6.22) was pointed
out by several authors in the past, but in most of
these cases the significance of retaining the second
equality as well seems to have been overlooked to a
large extent. One reason for this, we believe, was the
use of PPR in such discussions. We showed that,
with PPR, there is no chance to retain the second
equality of (6.22).

(iv). To use criteria other than that of (6.22) could
be gravely misleading. For example, one often
evaluated various BET's by asking whether a boson-
ized operator annihilates unphysical boson states, or
equivalently, whether it produces a physical boson
state when it is operated on an ideal boson state. As
is well known, the MYT operators meet this cri-
terion, while those of KT-1 and KT-2, for example,
do not. However, once we take as the new criterion
the satisfaction of the equalities in (6.22), which we
believe is much more meaningful than is the above
criterion, we see that there is no chance that we ever
encounter an unphysical state. In other words, there
remains no room to apply his criterion. We have
shown that the BET of KT-2, which was used for
calculations, ' (approximately) satisfies (6.22).
Thus, Marshalek's doubt about our calculations is
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removed. We have also shown that the original
MYT failed to satisfy the second equality of (6.22).

(v). Above we made a few negative remarks about
MYT. However, MYT has in it an outstanding
feature in that it begins with introducing the modi-
fied Usui operator U. If the original form of U used
in MYT is retained, the above problems remain.
However, if a revised U is used, and the line set
forth by MYT is followed, a very useful BET theory
emerges, and to demonstrate this is what has been
done in the present paper. As a by-product of con-
structing a rather flexible new BET, we found that
the results of KT-2 and of LH are obtained as limit-
ing cases of the present results. We take this as con-
vincing evidence to indicate that our previous calcu-
lations were done correctly.

(vi). We showed that the technique developed in
the present paper can be used to derive formulas
that can be used to describe not only collective
even-even nuclei, but also collective odd-2 nuclei.

After summarizing our achievement in the
present paper this way, we shall now turn to a dis-
cussion of what should be or could be done in the
future. Since we have found that the present results,
if truncated to a single quadrupole component, agree
with those of KT-2, it is unnecessary to redo the
earlier calculations, so long as we decide to stay
with the above truncation. However, in spite of the
very good general agreement with experiment we
have achieved, there remained certain features
which called for improvements. These features al-
most always indicated that it was necessary to re-
move the severe truncation to a single collective
component.

We have been rather hesitant in the past, however,
in moving in this new direction, because we were not
certain of how to properly describe the coupling be-
tween different modes, particularly when the new
modes that are to be integrated into the calculations
are of a noncollective nature. With the new formal-
ism of the present paper, however, this missing in-
formation has now been given. We may thus at-
tempt to start such extended calculations. The situ-

ation is very much the same as regards odd-A nuclei.
Previously we felt that we did not have well formu-
lated expressions to work with, but we now feel we
do have them.

In all the calculations we have reported, we
have treated the pairing field by solving the BCS
(Bardeen-Cooper-Schriefer) equation in a spherical
basis, and kept it unchanged, even when the resul-
tant system turned out to be well deformed. This we
believed to be another feature, for which an im-
proved treatment was necessary, but we were unable
to find a proper method for doing this. In this
sense, it is very pleasing to find that a recipe pro-
posed recently by Suzuki et al. appears to be pre-
cisely what we have been looking for. Note that,
among the calculations we have performed, we were
most successful regarding the Ru-Pd (Ref. 4) and
Os-Pt (Ref. 5) isotopes, all of these isotopes being re-
latively close to the spherical limit, but for the Sm
isotopes, where we encountered a rapid transition
from spherical to deformed elements, the fit to data
we achieved was much less satisfactory. It will thus
be very interesting to see whether the problems in
Sm isotopes are solved by integrating the method of
Suzuki et al. into the framework developed above.
Such an approach may also help us in removing a
few problems we have encountered in our previous
analysis of the Ge isotopes.

We have compared above, at various stages, the
present formalism with those of MYT, KT-1, and
KT-2. Since there have appeared a number of for-
mal papers on BET in the past, as we mentioned
above, it would be desirable to extend our compar-
ison with these papers as well. This will be done in
a separate paper. '
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APPENDIX A:
INDUCTIVE PROOF OF EQUATION (4.8)

We first replace n by n+ 1 in (4.11), and denote the three terms in the thus obtained ( I'„+)) simply by [I],
[II], and [III].

We then see, first of all, that [with a'=
I 1', . . , (n + 1)'j].

[I]=(n+1) I', [b) ) (F„)z.. . („+)).2 . . . („+))] .|,'1)

We then rewrite the ( Yn ) matrix on the rhs of (Al) by using (4.8), obtaining

N —2

[I]=(n+I) Q [+n' +(;)'P2' . (n+1)'~2. . . (i+() 2'. . (i+))'(In i )(i+2) (n—+)) (i+2)' (n+))'] .
i=0

(A 1)

(A2)
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It is not difficult to see in (A2) that the product of two symmetrizers P'"P" can be replaced by
(i + 1)P'1'+ ". („+1). After making this replacement we change the summation index i into i —1. We then obtain
[I] as

n —1

[I]= g [i/(n+1)]P,'l'[5(;).(;)(Y„, , )({„) 1,.).(„ 1,),] (A3)

T»s is the expression we need to have for [I]. The corresponding expression for [II] can be obtained, without
performing any algebra, as

[ )=[ /«+ )l a" 'l~(n-))(n-))(Yz)'n'ni);n(n+))] (A4)

In obtaining [III) in a similar form, we start with the form that
ll —2

[III]——[2/(n+1)]Pa g(Yz)) .1,2 g P 3 ( 1).
i=0

(L)X [~2 (i+1);g3' (i+1)'( Yn —i )(i+2) (nial);(i+2)'„, (nial)'] ~

Note that (4.8) has been used to obtain (AS). The symmetrizer Pg3'. . . (n+)» of course produces nC; terms, and
it is very important to separate these terms into two groups, those retaining the index g in the 5 factor, and
those in which g has been shifted into the ( Y„ 1) factor. Having this fact in mind, one sees that [III] is rewrit-
ten as

1l —2

[III)= [2/—(n +1)]g P,'. '( Yz)~iig.', z.
i=0

~ [~zgP3' (n+1)'~3 . (ill);3' (i+1)'( Yn —i)(1+2) (n+1);(i+2)' . (n+1)'

+P3' (n+ )')~2 (i+1);3' ~ (i+2)'( Yn —i f(i+2) (n+1) g(i+3)' (n+1)'}
For the first term in the curly brackets in (A6), we first note that the i =0 term vanishes because of the pres-

ence of the symmetrizer P" ". Therefore, if we change the summation index i into i + 1, the range of summa-
tion for the new index i becomes from 0 to n —3, rather than from 0 to n —2, as it was in (A6). We can
nevertheless set the upper limit of i as n —2, because this term contains a factor ( Yl ) =0. We can thus retain
the same range of summation for both the first and second terms on (A6).

In both terms, we modify the roles of the products of the two symmetrizers slightly, and find that [III] is
rewritten as

[III]=—[2/(n+1)] g Pa b(').(')[P((+1)'.. . (n~i)
i=O

X I(Y2)(i+1)(i~2);(i~l)'(i+2)'(Yn —1 i)(1+3)— (n+1);(i+3) .(n+1)''.

X g ( Y2)(i 1+) (ig+ )'()i-tz)'(Yn —i I(i+2) (n+1) g(i+3» (n+1)'I ]
g

By looking at Eq. (4.9), we see that the expression in the curly brackets in (A7) is nothing but
(L)[«+1—1)/2](Y—n+1 i)(i+1) —(n+1);(i+1)' (n+1)' ~

In other words, we found that [III] can now be written in the following very compact form:

[Ill]= l(n+1 —i )/(n+ 1))Pa"'[~(;)(,) ( Yn ~), )I'„'~, ;).(„~),) 1 .

(A7)

(A8)

As seen in (A3), (A4), and (A8), all three terms [I), [II], and [III) are brought into very similar forms, and
they can be easily summed together, thus giving

(Yn+l)aa'= g Pa' [~(i);(i) (n+1 —i){'n+1—i);(n+1—i)'] ~

(ij (L)
(A9

i=O

which agrees with (4.8), if n in the latter is replaced by n + 1. This completes the inductive proof of Eq (4.8). .
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APPENDIX 8:
PROOF OF THEOREM I

From (4.14), we first obtain

Q (A„)„(B„),, —= (A B)„
(a")

(j) (i) (L) (L)= $Pa' [Pa"~(i);(i)"(An i )—[n —i); [n —i)"][~(j)";(j)'(Bn—j }[n jj";—[n —jj'] . (B1)

In (Bl), we first emphasize that the symmetrizer P,"' operates only upon the doubly-primed indices attached to
quantities that appear inside the first square brackets, and not those appearing in the second set of square
brackets.

We shall now claim that the result of operating Pa'l' reduces (Bl) into

(A B)„=g P,' ' g (jCm „1Ci m )

j (i ); m" [i mj "~—(m)" [j —m j ";(j )'

In —m)" (m)"

(L) ( )(L)
n i j[n i)—;[j—mj"[m—+n —i —jj"( n —j)[i mj "—[m+n i j—j ;—[n "jj' . — (B2)

Equation (B2) was obtained in the following way. We pick up terms in which m doubly primed indices,
denoted by (m)", are common in the two b, factors, the rest of the doubly primed indices in these factors,
denoted respectively, by Ii —m ]"and Ij—m I", having no matching elements in common. It is easy to find
that the number of such terms equals jCm n jC;, which is the weight factor appearing just after the sum-
mation symbol g . The doubly primed indices in the (A„;) factor are divided into two groups; the first

Ij—m I" being the same as the Ij—m )" that appeared in the second b, factor and the rest whose number
equals (n+m i —j—) are simply denoted by Im+n i —j)"—. A similar division was made in the (Bn j) fac-
tor also.

We now rewrite the two b, factors in (B2) somewhat more explicitly as

i —& n(m)
~(i);(m)"[i mj" [i—Cm] ~ I ~ i[~(m);(m)"~[i —mj;[i —mj"] ~

~ i —&n(m)
~(m)" [j —mj";(j)' [j Cm] P(' j'[~(m)";(m)'~[j mj";[j mj'—]— (B3)

If we insert (B3) into (B2), most of the summations over the doubly primed indices can be carried out, obtain-
ing

(A 'B }aa'= g g [n jCi —m]—Pa' P(' j'~(m)(m)
(j) (m)

i,j m

(0(An —i j[n i);[j m—j [n+m —i 'j(jnB——j—I[i m)[n+m——i —jj";[n jj' '—(B4}
In+ m —i —jj"

A factor [1/;Cm ]P'( . .'. ; that could have appeared in (B4) was replaced by unity, following our general practice
of not writing the symmetrization over the nonprimed indices explicitly.

The two symmetrizers Pa~' and P', .'. .j symmetrize first the primed indices in the 6 and the (A„;) factors,
and then symmetrize them with those in the (Bn j } factor. We shall now modify this symmetrization into a
form so that the indices in the (A„;) and (Bn j ) factors are symmetrized first, and then with those in the b,

factor. The result is written as

}aa' g g [n j i —m]Pa—' ~(m);(m)'
l,J m

I n+m —i —j I"
~ (m+1)' n'~~n —i &I n —i I; Ij—mI'In+m —i —jI"&~n —j ~Ii —m I In+m —i —jI";In —jI'

(B5)

In (B5), let us change the summation indices m, i, and j, into i, 1, and m, respectively, and then set 1=i+s
and m =i+t. We then find that (B5) is nothing but (4.15), together with (4.16). Theorem I has thus been
proved.
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