Determination of gamma ray energies and abundances of ²²⁹Th

S. S. Rattan, A. V. R. Reddy, V. S. Mallapurkar, R. J. Singh, Satya Prakash, and M. V. Ramaniah

Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085, India (Received 21 September 1981)

Gamma-ray energies and intensities in the alpha decay of ²²⁹Th were precisely determined using a high-resolution Ge detector. Twenty new gamma rays were observed whereas 16 gamma rays earlier reported could not be observed. A modified energy level diagram for ²²⁵Ra is proposed using the present results.

RADIOACTIVITY ²²⁹Th; measured E_{γ} , I_{γ} . Ge detector. ²²⁵Ra deduced levels. Radiochemistry.

INTRODUCTION

The decay of ²²⁹Th has been studied by Tretyakov *et al.*¹ using a low-resolution Ge(Li) detector (FWHM 5–6 keV) and electron spectroscopy. However, their investigations yielded only crude estimates of the gamma-ray intensities. The thorium activity used in Ref. 1 contained comparable activities of both ²²⁸Th and ²²⁹Th. The presence of ²²⁸Th ($T_{1/2}$ =1.927 yr) and of the short-lived daughter products (cf. Fig. 1) of ²²⁸Th and ²²⁹Th greatly complicates the gamma-ray spectrum. Most of the reported^{1,2} gamma-ray abundances were calculated from internal-conversion electron intensities and suggested multipolarities, and for some of the gamma rays, no abundance was reported. The present work was undertaken to redetermine the ²²⁹Th gamma-ray energies and abundances.

During the preparation of this paper Dickens and McConnell³ reported gamma ray intensities of ²²⁹Th and its daughter products. The source used in their work contained ²²⁸Th and ²²⁹Th along with their respective daughter products in equilibrium. The abundances for 18 gamma rays of ²²⁹Th were reported by them, taking the 440 keV gamma ray of ²¹³Bi as standard with an abundance of 27.4%.

EXPERIMENTAL

A. Purification and activity estimation of ²²⁹Th

Thorium along with its daughter products was separated from an old (~6 yr) 233 U sample by an ion exchange method⁴ using Dowex 1×8 in the Cl⁻

form in a 6*M* HCl medium. The thorium was purified from its daughter products by another ion exchange method⁵ using Dowex 2×8 in the NO₃⁻ form in a 7.5*M* HNO₃ medium. The purity of the thorium fraction was checked by gamma spectrometry. In addition to ²²⁹Th, the sample was known to contain isotopic impurities of ²²⁸Th (<0.1%) and ²³⁰Th (<0.4%). The gamma rays due to ²³⁰Th (<0.4%) were not observed due to its very long half-life (7.7 \times 10⁴ yr).

The purified thorium activity was used to prepare

27

327

©1983 The American Physical Society

FIG. 2. Growth of total alpha activity in the estimation of thorium (228 Th + 229 Th) as a function of time.

samples for gamma counting and gross alpha counting. Three samples on polished stainless steel disks and three samples in liquid scintillation vials were prepared by a weight transfer method for gross alpha counting. The solid samples were followed on a gas proportional counter (efficiency= $50.0\pm0.5\%$) and the liquid samples on a liquid scintillation counter (efficiency $\geq 99.5\%$) over a period of 10-15 hours. Figure 2 gives a typical plot of growth in total alpha active daughter products. The alpha activity due to thorium ($^{228}Th + ^{229}Th$) was determined by extrapolating the growth curve to the time of purification by least squares fitting of the data to a quadratic equation.⁶

An electrodeposited source of thorium was

prepared on platinum backing using a thorium solution having the daughter products in equilibrium. The alpha spectrum of thorium (Fig. 3) was taken on a high resolution silicon surface barrier detector (resolution 20 keV at 5.486 MeV). The area under the well-separated alpha peaks of 213 Po, 217 At (daughter products of 229 Th), and 212 Po (the daughter product of 228 Th) were used to determine the activity ratio of 229 Th and 228 Th. The total alpha activity and the activity ratio of 229 Th and 228 Th were used⁶ to determine the individual activities of 229 Th and 228 Th.

B. Gamma counting and spectrum analysis

Three independent experiments were carried out for measurements of gamma ray energies and their abundances. In each experiment a freshly purified fraction of thorium of the purified stock solution was deposited in a standard counting vial and followed for a suitable length of time with a 2 cm³ Ge detector (resolution 600 eV at 122 keV) coupled to a 4096 channel analyzer. Figure 4 shows a typical gamma spectrum of the purified ^{228,229}Th. After 12 hours another gamma count was taken under identical conditions in order to identify, through growth, the lines due to daughter products of 228 Th and 229 Th. The total count rate was always less than 1000/sec. Hence the errors due to pileup effects were neglected.

Standard activities of ⁵⁷Co, ¹³³Ba, and ²⁴¹Am were used to calibrate the detector for gamma ray energy and efficiency in the required geometry. The gamma ray spectrum analysis was carried out using program SAMPO.⁷ The gamma ray energies of ⁵⁷Co, ¹³³Ba, and ²⁴¹Am and their respective peak positions were least squares fitted to develop the energy calibration curve. The efficiency values for the energy region above 120 keV were found to lie in a straight line on a log-log scale.

RESULT AND DISCUSSION

The relative emission rates of the ²²⁹Th gamma rays were determined using the developed energy versus efficiency calibration curves. The absolute abundances of the gamma rays were then calculated using the estimated ²²⁹Th activity. Table I gives the gamma ray energies and their absolute abundances obtained in this work, along with the reported data.²

FIG. 4. Gamma spectrum of ²²⁸Th and ²²⁹Th.

Pre	esent	Reported (Ref. 2)	
Energy (keV)	% abundance	Energy (keV)	% abundance
	70 abundance		70 abundance
12 33 + 0 0/2	5 960±0 536	11.1 ± 0.1	
12.33 ± 0.04	9.381 ± 0.781		
14.01 ± 0.02	9.381 ± 0.781		
$15.25 \pm 0.02^{\circ}$	42.480 <u>+</u> 1.592	17 36+0.03	0.17
17 82 +0 028	17 033+0 772	17.30±0.03	0.17
17.02 ± 0.02 18 31 $\pm 0.03^{a}$	4.068 ± 0.403		
18.51 <u>+</u> 0.05	4.008 ± 0.403	25.39 ± 0.02	0.035
28 50+0 14	0.117 ± 0.024		
20.00 -0.11		30.30±0.10	
31.13±0.03	0.896 ± 0.080		
31.53 ± 0.04	1.692 ± 0.085	31.30 ± 0.20	4.0
		37.80 ± 0.10	
42.63+0.02	0.188±0.010	42.76±0.03	0.16
43.96+0.02	0.604 ± 0.020	_	
53.84 ± 0.09	0.017 ± 0.003	53.20+0.10	
56.50 ± 0.03	0.246 ± 0.006	56.60 + 0.03	0.32
68.05 ± 0.08	0.052 ± 0.014	68.18 ± 0.07	0.10
68.80 ± 0.07	0.060 ± 0.013	68.90 ± 0.04	0.11
$75 10 \pm 0.05$	0.420 ± 0.043	75.20 ± 0.07	0.51
75.10_0.05	0.420 - 0.045	75.20 ± 0.07	0.51
85.43 ± 0.04^{a}	9.820 ± 0.017	15.50 10.10	
03.43 10.04	9.620 10.017	86 30+0 10	0.37
86 35+0.04	2732 ± 0.074	86.44 ± 0.05	3.0
88.48 ± 0.04^{a}	16.681 ± 0.251		
94 72 ± 0.07	0.232 ± 0.006		
99.47 ± 0.02^{a}	2245 ± 0.070		
00.18 ± 0.02^{a}	3927 ± 0.086		
02.99 ± 0.02^{a}	1443 ± 0.046		
02.77 ± 0.02	0.451 ± 0.035		
107.15 ± 0.02	0.451 ± 0.055	107.17 ± 0.05	0.82
07.13 ± 0.02	0.023 ± 0.004	107.17 ±0.05	0.02
10.38 ± 0.03	0.023 ± 0.004		
18.21 ± 0.00	0.015+0.004		
10.21 ± 0.09	0.013 ± 0.003		
20.10 ± 0.03	0.017 ± 0.003		
23.19 ± 0.03	1.040 ± 0.012	124 50+0 10	1.2
24.39 <u>+</u> 0.02	1.040±0.012	124.30 ± 0.10 124.70±0.10	0.6
12676 ± 0.09	0.013 ± 0.004	124.70 10.10	0.0
120.70 10.07	0.013 - 0.004	131.97 ± 0.05	0.32
		132.60 ± 0.10	0.52
134 33+0.08	0.015 ± 0.003	132.00 ± 0.10 134 80 ± 0.10	
134.33 <u>+</u> 0.00	0.015 10.005	134.80 ± 0.10 135.71±0.07	
136 99+0 03	0.904 ± 0.018	137.03 ± 0.06	1.6
150.99 <u>+</u> 0.05	0.904_0.018	140.30 ± 0.00	1.0
142 97+0.03	0.314 ± 0.006	142 95 ±0 10	0.42
147 66+0.03	0.183 ± 0.014	147 80±0 10	0.42
148 17+0.03	0.103 ± 0.014	148.30 ± 0.10	1 26
40.01 + 0.03	0.700 ± 0.017 0.042 \to 0.03	170.30 ± 0.20 150 20 ± 0.20	1.50
177.71 <u>T</u> U.U4	0.042 -0.003	150.20 <u>+</u> 0.50	
154 37+0.02	0.612.+0.012	151.00 ± 0.30 154 40 ± 0.70	0.65
157.57 ± 0.02	0.012 ± 0.012	134.40 <u>+</u> 0.70 156 48 + 0.04	0.05
150.41±0.02	0.972 ± 0.018	130.48±0.04	1.1

TABLE I. Gamma ray abundances of ²²⁹Th.

Present		Reported (Ref. 2)	
Energy		Energy	
(keV)	% abundance	(keV)	% abundance
158.42±0.04	0.034 ± 0.003	158.50 ± 0.07	
160.48 ± 0.56	0.005 ± 0.003	161.60±0.30	
		165.70±0.30	
167.14±0.04	0.113 ± 0.010		
171.59 ± 0.07	0.020+0.005		
172.91+0.04	0.093 ± 0.006	172.90+0.10 0.22	
179.75+0.03	0.176 ± 0.005	179.80 ± 0.20	0.50
183.95 ± 0.03	0.118 + 0.006	184.00 ± 0.10	0.23
<u> </u>		190.20 ± 0.20	
193.53+0.02	3.769 ± 0.075	193.63 ± 0.06	4.5
200.81 ± 0.03	0.066 ± 0.005		
204.70 ± 0.02	0.495 + 0.012	204.90 ± 0.30	
210.31+0.05	0.210+0.033		
210.90+0.05	2.467 + 0.063	210.97±0.10	3.2
215.16+0.08	0.146 + 0.016	_	
218.15+0.04	0.149 + 0.037	218.10 ± 0.20	0.14
221.31+0.09	0.022 ± 0.003		
225.25 + 0.06	0.048 ± 0.004		
236.31+0.06	0.158 ± 0.028	236.20 ± 0.20	0.035
242.61+0.07	0.065 ± 0.007	242.60 ± 0.30	
-	—	243.50 ± 0.30	
252.49 ± 0.05	0.089 ± 0.005	-	
259.15+0.05	0.033+0.011		
-	_	261.00 ± 0.50	
		290.00 ± 0.50	

TABLE I. (Continued.)

^ax rays of radium.

Table II gives the absolute gamma ray abundances of ²²⁸Th determined during the present investigation, along with the reported data.⁸ Our values for ²²⁸Th are in fair agreement with the literature. Table III gives a comparison of our data on ²²⁹Th with those of Dickens and McConnell³ in which only 18 gamma rays were reported.

The earlier data^{1,2} on the gamma ray energies of ²²⁹Th used for developing the energy level diagram⁹ of ²²⁵Ra had considerable uncertainties. Based on the present data and the previous measurements,¹ a modified level diagram is proposed (Fig. 5). Table IV gives the gamma ray energies and their positions in the level scheme. It is clear from the table that most of our data fit well in the level scheme. In the present work the following new gamma rays were observed: 28.50, 31.13, 43.96, 94.72, 103.71, 109.21, 110.38, 118.21, 120.16, 123.19, 126.76, 167.14, 171.59, 200.81, 210.31, 215.16, 221.31, 225.25, 252.49, and 259.15 keV. Some of the earlier reported¹ transitions (25.39, 30.3, 37.8, 75.3, 124.7, 131.97, 132.6, 135.71, 140.3, 151.6, 165.7, 190.2, 243.5, 261.0, and 290.0 keV) were not observed. In some cases, this may be a result of the transition having a large internal conversion coefficient. The 43.96 keV gamma ray could not be placed in the present level diagram. The 53.84, 68.80, 118.21, 124.59, and 218.15 keV gamma rays have been placed twice in the level diagram. Since γ - γ coincidence data are not available, the latter gamma rays could not be placed unambiguously. The gamma-ray transitions 75.10, 124.59, 154.37, 210.90, 218.15, 242.61, and 259.15 keV are postulat-

TABLE II. Gamma ray abundances of ²²⁸Th.

Pr	resent	Repor	rted (Ref. 8)
Energy (keV)	% abundances	Energy (keV)	% abundances
84.29±0.05	1.351±0.064	84.5	1.6
131.74±0.03	0.214 ± 0.004	132.0	0.19
166.48±0.03	0.136 ± 0.003	167.0	0.12
205.97±0.10	0.022 ± 0.004	205.0	0.03
216.00 ± 0.06	0.285 ± 0.002	216.0	0.29
		234.0	0.00007

Energy	nt data	Dickens a Energy	and McConnell data (Ref. 3)
(keV)	% abundance	(keV)	% abundance
31.13±0.03	0.896±0.080	31.24	1.43 ±0.05
31.53 ± 0.04	1.692±0.085		
42.63 ± 0.02	0.188 ± 0.010	42.79	0.272 ± 0.011
56.50 ± 0.03	0.246 ± 0.006	56.57	0.427 ± 0.015
86.35±0.04	2.732 ± 0.074	86.38	2.94 ±0.09
107.15 ± 0.02	0.656 ± 0.009	107.20	0.95 ± 0.03
124.59 ± 0.02	1.040 ± 0.012	124.68	1.62 ± 0.05
Not observed		132.00	0.433 ± 0.015
136.99±0.03	0.904 ± 0.018	137.06	1.51 ± 0.05
142.97 ± 0.03	0.314 ± 0.006	143.05	0.532 ± 0.019
148.17±0.03	0.708 ± 0.017	148.18	1.26 ± 0.04
154.37 ± 0.02	0.612 ± 0.012	154.36	1.13 ±0.04
156.41 ± 0.02	0.972±0.018	156.45	1.26 ± 0.04
172.91±0.04	0.093 ± 0.006	173.01	0.130 ± 0.006
179.75±0.03	0.176 ± 0.005	179.85	0.262 ± 0.010
183.95 ± 0.03	0.118 ± 0.006	184.0	0.091 ± 0.009
193.53±0.02	3.769 ± 0.075	193.59	5.89 ±0.18
204.70 ± 0.02	0.495±0.012	204.74	0.75 ±0.04
210.90±0.05	2.467 ± 0.063	210.93	4.00 ±0.13

TABLE III. Comparison of gamma ray energies and abundances with those of Ref. 3.

TABLE IV. Gamma ray transitions and their position in the level scheme.

Energy of		Energy of	
gamma ray	Levels associated	gamma ray	Levels associated
(keV)	with the transition	(keV)	with the transition
28.50	272.05-243.48	147.66	248.13-100.47
31.13	236.26-205.13	148.17	179.72- 31.55
31.53	31.55- 0.0	149.91	149.91- 0.00
42.63	42.72- 0.00	154.37	179.72- 25.37
		156.41	268.05-111.63
43.96		158.42	394.79-236.26
53.84	203.62-149.91	160.48	272.05-111.63
	272.05-218.15		
56.50	236.26-179.72	167.14	268.05-100.47
68.05	179.72-111.63	171.59	272.05-100.47
68.80	111.63- 42.72	172.91	284.48-111.63
	100.47- 31.55	179.75	179.72- 0.0
75.10	100.47- 25.37	183.95	284.48-100.47
86.35	236.26-149.91	193.53	236.26- 42.72
94.72	205.13-110.41	200.81	243.48- 42.72
103.71	321.66-218.15	204.70	236.26- 31.55
107.15	149.91- 42.72	210.31	321.86-111.63
109.21	326.79-218.15	210.90	236.26- 25.37
110.38	110.41- 0.00	215.16	326.79-111.63
118.21	321.86-203.62	218.15	243.48- 25.37
	268.05-149.91		218.15- 0.0
120.16	392.21-272.05	221.31	321.86-100.47
123.19	326.79-203.62	225.25	268.05- 42.72
124.59	236.26-111.63	236.31	236.26- 0.0
	149.91- 25.37	242.61	268.05- 25.37
126.76	394.79-268.05	252.49	284.48- 31.55
134.33	284.48-149.91	259.15	284.48- 25.37
136.99	179.72- 42.72		
142.97	243.48-100.47		

600

500

400

300

200

100

0

FIG. 5. Level scheme of ${}^{225}_{88}$ Ra₁₃₇. % feeding by alpha decay of 229 Th (Refs. 2 and 9). E_i is the energy of the gamma ray in keV and A_i is the absolute gamma ray abundance. γ placed twice in the level scheme.

ed to populate the 25.37 keV level. However, the 25.37-keV gamma ray could not be observed; we estimate its gamma-ray abundance to be less than 0.01%. Presumably this transition is of M1 mul-

0.24

tipolarity and is thus highly converted. From the levels 609, 603, 487, 417, 347, 335, 230, and 214 keV, which are quite weakly populated in the alpha decay of 229 Th, no transition could be observed.

42.63 (0.1 53 (1.692

31.55 25.37

0.00

- ²K. S. Toth, Nucl. Data Sheets <u>24</u>, 263 (1978).
- ³J. K. Dickens and J. W. McConnell, Radiochem. Radioanal. Lett. <u>47</u>, 331 (1981).
- ⁴K. A. Kraus and F. Nelson, in *Proceedings of the Inter*national Conference on Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations, New York, 1956),

Vol. 7, p. 113.

- ⁵L. R. Bunney, N. E. Ballou, J. Pascual, and S. Foti, Anal. Chem. <u>31</u>, 324 (1959).
- ⁶S. S. Rattan, A. V. R. Reddy, V. S. Mallapurkar, R. J. Singh, and Satya Prakash, J. Radioanal. Chem. <u>67</u>, 95 (1981).
- ⁷J. T. Routi, University of California Radiation Laboratory Report No. UCRL-19452, 1969 (unpublished).
- ⁸G. Erdtmann and W. Soyka, J. Radioanal. Chem. <u>26</u>, 375 (1975).
- ⁹C. Maples, Nucl. Data Sheets <u>10</u>, 643 (1973).