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Vfe discuss the scattering theory pertaining to the coupled m.NN-NN system and ap-
proach the problem in two independent ways. The first one starts from a Hamiltonian for-
malism and coupled Schrodinger equations, whereas the second one employs an off-mass-
shell relativistic theory of classifying perturbation diagrams. Both ways lead to connected
equations among transition operators in which mNN vertices, as well as nucleon propaga-
tors, are completely dressed and renormalized. Furthermore, the physical amplitudes obey
two- and three-body unitarity relations. The resultant equations form a sound theoretical
basis for subsequent numerical calculations leading to the evaluation of physical observ-

ables in the reactions m+d ~m+d, m+d~N+N, and N+N~N+N.

NUCLEAR REACTIONS Coupled m.NN-NN equations, Hamiltonian

approach, off-mass-shell approach, dressed vertex and propagator, last
cut lemma.

I. INTRODUCTION

In this paper we intend to present a complete
scattering theory of the coupled nNN NN syst-em.

It has been realized that the scattering problem per-
taining to these systems plays a crucial role in inter-
mediate energy pion nuclear physics, and therefore,
the motivation for our extensive study is very clear.

In a previous work (I) (Ref. 1) we started from a
Hamiltonian formalism and applied the Feshbach
projection method, as was previously worked out by
Mizutani and Koltun (MK). Assuming that the
mX interaction in the P~ ~ partial wave is due entire-

ly to the nucleon pole term, we then derived integral
equations for amplitudes describing the reactions
trNN(trd)~mNN(hard), trNN(trd)~NN, and
NN —+NN (including inelastic effects due to single
pion production). In a second work (II) (Ref. 3) we

(i) related I and some previous works, (ii) included
the effect of the background contribution in the two
body mN P» partial wave (which we termed the
nonpole P» contribution or, briefly, NPPi, ) in such
a way that the coupled integral equations retain
compact kernels, and (iii) tried to construct a corre-
sponding set of equations with relativistic invari-
ance guaranteed. The interrelation between our re-
sults and those based upon the (so called) bound
state picture were studied in some detail recently.

The initial motivation for the present work was

due to our feeling that the study of the nonpole con-
tribution to the mN P„partial wave (NPPi i ) needs
a further elaboration than the one we gave in II. As
is well known, the pole term alone cannot fit the mÃ

P» phase shift 5 (Pii) [which changes sign at
T (lab) =150 MeV] so that one basically needs the
XPP~~. Preliminary numerical results indicate that
the inclusion of NPP~~ substantially affects elastic
md scattering above T =200 MeV. Thus, we were
obliged to recast the equations obtained in II [espe-
cially Eq. (3.24)] in a form which is easier to handle
practically.

Our motivation was recently amplified when we
noticed that the Taylor approach to relativistic
quantum field theory can be employed to find a set
of generalized Bethe-Salpeter equations, giving an
off-mass-shell description for the pertinent system.
Hence, we found it appropriate to present the .two
(essentially different) approaches in the present
work, since they lead to equations sharing apparent-
ly the same basic structure, namely: (i) the equa-
tions have a multichannel Lippmann-Schwinger
form (nonrelativistic) or Bethe-Salpeter form (redu-
cible to Blankenbecler-Sugar type equations) in the
relativistic case; (ii) the NNtr vertices, as well as the
nucleon propagators, are properly dressed; and (iii)
all the propagators are renormalized to correctly
implement two and three body unitarity to the
scattering amplitudes.
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In Sec. II we show how to obtain the desired
equations starting from the coupled Schrodinger
equations of MK. We rely on results obtained in I
and II but the presentation is definitely self-
contained. The central result of Sec. II is expressed
in Eqs. (2.9), which are connected equations for the
evaluation of the physical transition operators. In
these equations, the mNE vertices and the NX pro-
pagator are fully dressed. In fact, these equations,
when used in conjunction with the separable ap-
proximation (SA), have been impLicitly obtained in

II, namely, Eqs. (3.24). The step which makes the
latter more practical is the use of a simple operator
identity [see Eq. (2.7)]. It is worth pointing out here
that Sec. II contains the only successful attempt so
far to obtain the equations starting from a Hamil-

tonian formulation.
Then, in Sec. III we shall study the relativistic

off-mass-shell approach to the problem. As we

pointed out in Sec. IV of II, relativistic formula-

tions (and extensions) go much beyond the simple
kinematic considerations. Therefore, we present the
construction of the relativistic coupled equations
based on the Taylor approach. In the context of
the coupled mXN-XX systems it was first applied

by Mizutani. Here we proceed further along this
line and show how the diagrammatic method can be
used to derive generalized coupled Bethe-Salpeter
equations for the mNN NN sy. stem-(with relativistic
invariance guaranteed). We note the similarity in

the form of these coupled equations [see Eqs. (3.29)
and (3.30)] and of those derived in Sec. II (through

a Hamiltonian formalism and an off-energy-shell
reduction). This similarity is just like the one be-

tween the two body Bethe-Salpeter equation and the

corresponding nonrelativistic Lippmann-Schwinger
equation. The basic input to the relativistic equa-

tions includes irreducible vertices and Feynman

propagators, while three body forces are retained in

the derivation. (In order to have a self-contained

presentation we also introduce the basic concept of
the Taylor method. )

The equations obtained in this paper are com-

bined with the antisymmetriz ation procedure
(worked out in I), a separable assumption for the
two body amplitudes together with the explicit form
of the md% vertices and the two nucleon propagator
(their nonrelativistic counterpart is given in the Ap-
pendix of II), to form the basis for numerical
evaluation of various observables.

There is another approach by Afnan and Blank-
leider who attacked the problem using a time or-
dered perturbation theory equipped with the
method of classifying diagrams. We shall comment

on this method further on, but here we point out
that their final equations are physically equivalent
(in a sense to be clear later on) to Eqs. (3.24) in II
and are identical in form with Eqs. (2.9) below.

Before going on, it is useful to point out that al-

though the two approaches presented in Sec. III and

IV, respectively, are quite different and have no
overlap, we found it appropriate to combine them in
order to convey our feeling that the formal theory is
now completed. We nevertheless think that,
whereas the Hamiltonian approach presented here is
a modification of the previous results, the more
novel part of the present work is the off-mass-shell

approach of Sec. IV.

II. DERIVATION OF THE EQUATIONS
FROM THE COUPLED SCHRODINGER

EQUATIONS OF MK

In this section we shall briefly show how the
equations for the coupled m.XX-E1V system can be
derived in the Hamiltonian formalism. It consists
of an extension of our previous results (upon which

we shall heavily rely), but the ensuing equations are
much simpler and physically transparent. We find
it encouraging to realize that, despite the complexi-

ty of the system under consideration, the nonrela-

tivistic case can be handled on the same footing as
ordinary potential scattering problems. The use of
more sophisticated tools, such as summing pertur-
bation diagrams, is then reservmi solely for the off-
mass shell approach which is detailed in Sec. III.

In order to allow for smooth reading, we give
here only the main lines of the derivation. Whenev-

er possible we refer the reader to our previous works
I and II. We also relegate to the Appendix most of
the required definitions, as well as the explicit form
of most of the operators.

Our starting point is Eqs. (3.2) and (3.3) of I,
which in matrix form read

U =8+BIoU, (2.1)

where U= [U,b] is a matrix of transition operators
in channel space which includes three kinds of
channels: (i) pair-spectator three body channels

rt(NN) and N(~N), in which the pair (mN) does not
interact in the NPP~~. These physical channels
(which can be reached as asymptotic states) are
denoted by a,P,y, . . . , in this sequel; (ii) the two
nucleon channel, denoted simply as "N"; (iii) in case
the pion and the nucleon can also interact in the
NPP~ ~ (a situation excluded in I) there are also non-

physical pair-spectator states a; (i = 1,2) corre-
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sponding to the clustering N~(n.N, ) in which the
pion and nucleon N; do interact in the NPP~~. The
other symbols in Eq. (2.1) are the "potential" ma-
trix 8 given in Eq. (Al) and the propagator matrix
detailed in Eq. (A2).

Equation (2.1) suffers from the following three
drawbacks; all of them stem from the occurrence of
the nonphysical channels of type (iii). We shall
refer to these drawbacks as points (1)—(3) in this
sequel. (1) The equation contains disconnected

pieces as explained in detail in II. These discon-

nected terms are shown graphically in Fig. 4(a) in

II. The md% vertices are not dressed with the
NPP j i interaction. Equation (2.1) contains the un-

dressed vertices R;g; defined in (2.3) in I and what

we nerd are the dressed ones y;g; defined in (3.3) in

II. (3) The two nucleon propagator is not dressed

with the NPPii. Equation (2.1) contains the propa-
gator rz defined in (2.15a) in I and what we need is

the completely dressed two nucleon propagator II&2

which is defined in (3.21d) in II.
We are now going to remedy all the aforemen-

tioned flaws in five main steps using the formal

theory of scattering from two potentials (which are

the disconnected and connected parts of the matrix

8, namely 8 and 8'). As it turns out, the removal

of the disconnected parts results in both vertex and

propagator dressing so that all three points are tak-
en care of simultaneously. Now for the details:

(a) The matrices U and 8 are decoinposed into
their respective connected and disconnected parts as

U= U'+ U',

B=B'+B',
(2.2a)

(2.2b)

U =B +B I pU =B"Qd=QdB

Qd 1+rpUd Qd=1+Udrp

(2.3a)

(2.3b)

Since we are going to factorize the M@11er operators
later on we will be content to give the explicit form

and it should be kept in mind that only the connect-
ed parts have physical meaning. The explicit forms
of B~ and 8' are given in Eqs. (A3) and (A4),
respectively.

(b) The disconnected part of U, namely U, can
be explicitly calculated by solving a matrix
Lippmann-Schwinger equation in closed form. The
resulting U is then employed to construct the
Mufller operators Qd and Q, which are needed in
the distortion procedure occurring in the formal
theory of scattering from two potentials. The equa-
tions determining U and the pertinent M@11er

operators are then [see Eq. (A3')j

of each factor when the factorization is carried out.
(c) The connected part of U, namely U' (which

for physical channels contains the physical transi-
tion operators) can now formally be evaluated using
the equations for scattering from the sum Bd+B'
of two potentials, namely,

O'=Qd Y'Qd

Y'=B'+B'I Y'

I =IpQd ——Q I p.

(2.4a)

(2.4b)

(2.4c)

Qd =7/dh)d, Q =CO Yf
d d d (2.5)

in such a way that the following two conditions are
met: (i) As far as physical transition operators are
concerned, they are given by

U =co Yco (2.6a)

which are related to U' of Eq. (2.4a) by

(2.6b)

In other words, the matrices of operators gd and g,
when evaluated on shell, deviate from the unit ma-
trix only through elements involving the nonphysi-
cal channels a;. (ii) The nondiagonal propagator
matrix I appearing in Eqs. (2.4b) and (2.4c) can be
written in the form

I =67 /cod, (2.7)

where y is diagonal and coincides with the original
propagator matrix I 0 in Eqs. (2.1) and (A2), except
for the crucial difference that in y the two nucleon
propagator is the fully dressed one, nam-ely II22.
Thereby, point (3) is corrected. The substantiation
of step (d) is straightforward and will not be de-
tailed here. The explicit forms of gd and cod are
shown in Eqs. (A5) and (A6), respectively. We
point out that the simple procedure detailed in step
(d) eluded us in II and when we noticed it, it was a
few weeks too late for a "note added in proof. "
Now for the last step.

(e) If we now sandwich the two sides of Eq. (2.4b)

The precise expression for I is explained in the
Appendix following Eq. (A6). Equations (2.4)
describe an algorithm from which it is possible to
compute the physical transition operators, since the
equations are connected. Thus, point (1) has been
remedied but not points (2) and (3). Besides, the
new propagator matrix I is not diagonal. We
therefore need the last two steps which go beyond
the results obtained already in II.

(d) It is possible to factorize the Mriller operators
Qd and Q according to
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U'= V'+ V'yU', (2.8a)

V'=codB'co (2.8b)

is identical to B', except that now all the +X' ver-
tices are fully dressed also with the NPP». There-
fore point (2) has been remedied and this completes
our quest. The explicit expressions for the "poten-
tials" V' and the propagators y are given in Eqs.

between cod on the left and co on the right, we get
[employing Eq. (2,7) for I'] the integral equation for
U' directly

(A7) and (AS), respectively, so that the input to our
final equations is well specified.

We prefer, for clarity, to also write this equation
with regard to elements. In doing so, we recall that
Eq. (2.8a) is equivalent to several sets of coupled
equations; each one couples all the amplitudes with
the same initial channel. Since we are interested in

the physical channels a, P, and N, we will obtain
two sets of equations, one for U,'p and one for U,'N

(a =a,p, y, . . . , ai,a2,N) in which the elements
U'

p and U'.N enter as scaffolding while U'p, UNp,

Ua~, and Uzz are the pertinent physical transition

operators. Thus we have

UaP 5aPGO
——'+ g tyG0UyP+ gta G0Ua P+ZNII2. 2UNP,

~a i

UNp =J N + g J NGOryG0 Uyp+ g Vi Gora. G0Ua.p+ MNN II22UNp t

y

Ua P GO + gryGOUyP+5ij ta GoUa. P+5ijzjfI22UNP ~

y

U'N ZN+ g —tyGOUyN+ g taGOUa N+Z, N II22UNN,
~a i

UNN=ujNN+ g jNGOryGOUyN+ g j Gota GOUa N+. ujNNI. I22UNNl J
y i'

Ua N=5ijzj+ p'fyG UOyN+5ij&a GOU Na+5/jZJII22UNN .
y

(2.9a)

(2.9b)

Equations (2.9) present, in some detail, the central
result obtained in this section and employ the non-

physical nature of the operators involving NPP»
initial and final states. As already mentioned, no
further operation is needed for evaluating the physi-
cal amplitudes

Tab (@a
I Uab I cb ), a Ub+ai, a2 .

The relation U'=gd U'q is hence redundant and
the operators U' and U' are indeed physically
equivalent, as we have termed in the Introduction.
Since the equations in II were constructed for U',
we have substantiated our claim that the equations
of II and the present equations are physically
equivalent.

In order to establish unitarity we need to know
the amplitudes involving the channel "0" of the
three (nNN) free particles. These are first given in

I

terms of U' [Eq. (2.4a)], and using straightforward
algebra one can relate them to U' of Eqs. (2.9).
Thus, for physical channels a Ub+a|,a2 we have

UOb ——g &cGOUcb+RN~N UNb = UOb
c+N

= g t, G U,'b+zNII UNb,
cd%

(a U b+o.|,a2), (2. 10)

UaO= g UccGOtc+ Uo'N&NRN Uao-—
c+N

Uac G0tc + UaN ~223 N
c+N

Notice that in these expressions c runs on
a,p,y, ,a|,a2. With these expressions it is not dif-
ficult to show that U,'b (a Ub+a„a2) satisfy two

(NN) and three (nNN) body unitar. ity, namely

Uab(E +i e) U'b(E i e) = 2~i—[U,'0—(E+i@)5(E— HO) UOb(E i@)——

+ U,'N (E +i e)5(E hO) UNb (E i e)] —. — (2.11)
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We have thus completed our quest of deriving the
desired equations starting from the Hamiltonian
formalism of I and II by making the kernel of the
equations connected (compact). Through this
(mathematical) procedure, we exposed much phys-
ics in the sense that (originally) incompletely
dressed nucleon propagators and ~1VX vertices are
now fully dressed.

In contrast to this result, we shall observe in Sec.
III that an approach starting with the dressed ver-
tices and propagators leads directly to the connected
set of coupled integral equations without any
recourse to the procedure of making the kernel (of
the integral equation) compact. To end this section
we note that the final set of equations (2.9) is essen-

tially the same as that obtained in Ref. 9 through
the classification of perturbation graphs, which is
similar in spirit to what we shall study in the next
section.

III. OFF MASS-SHELL EQUATIONS

A. Preliminaries

To complete our formal studies in the coupled
+X'-XX systems we want to have an off-mass-
shell description in terms of generalized coupled
Bethe-Salpeter equations. Under certain approxi-

mations such equations are then reduced most nat-
urally to the form with Blankenbecler-Sugar propa-
gators and then further to the nonrelativistic set of
equations derived previously (both of them are
amenable to practical calculations). In accomplish-
ing this task we shall utilize an approach to field
theories by Taylor, who established the rules of
unambiguously classifying diagrams. These rules
then render the analysis of the structure of scatter-
ing amplitudes reduced to a combinatorial problem
associated with diagrams. The method was applied
by one of us to the ~XX-SÃ problem up to the
point where the equations obtained are only partial-
ly coupled (its nonrelativistic form has been ob-
tained by MK using the projection operator
method). In our present study we shall work out
this procedure further to find a set of completely
coupled equations.

We shall not give here any detailed account for
the Taylor method due to lack of space. The in-
terested reader is referred to the original work,
whereas here we shall just sketch some necessary
background.

(i) We consider an off-mass-shell amplitude with
m initial and n final particles obtained from a
causal Green's function. To simplify the discussion
we consider only scalar fields. Then the Green's
function reads

By removing the n +m dres"ed single particle pro-
pagators we associate this amplitude with a dia-
gram having m initial and n final legs.

(ii) A perturbation graph is defined as being com-
posed of external particle legs, internal lines
representing dressed and renormalized single parti-
cle propagators, and dressed vertices (internal and
external).

(iii) A diagram with m initial and n final particle
legs is considered the formal summation of all pos-
sible (topologically distinct) perturbation graphs
with the same number of initial and final externa1
legs.

(iv) A k cut is an arc with no multiple points
(that is, it does not intersect itself) which intersects
k particle lines in a given graph or diagram to
separate the initial and final states. It must inter-
sect at least one internal line and should not inter-
sect a particle line more than once (see Fig. 1).

(v) A graph or a diagram is called r irreducible in
a given channel (that is, initial and final state speci-
fied) if it does not admit any k cut with k &r (see

I

Fig. 2).
(vi) The last cut lemma (LCL). For a given

graph or diagram which is (r —1) irreducible there
is a unique r cut which is closest either to the initial
or the final states prouided the graph (or diagram) is
connected. As usual, a graph is said to be connected
if it cannot be split into two (or more) separate
pieces unless one breaks a single internal line (see an
example in Fig. 3). It is important to keep in mind
that the LCL does not hold for disconnected graphs
(or diagrams).

FIG. 1. An example of a E cut for K=5.
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FIG. 2. An example of an r-irreducible graph for
p'= 3.

(vii) Complete unitarity (CU). Implemented by
(ii) and (iii), CU guarantees that diagrams with the
same initial and final external leg structure together
with the same irreducibility are identical. For ex-

ample, suppose that by use of the LCL one finds
the following decomposition of amplitude A

A =B+CGA',

where both A and A' have the same external leg
structure and irreducibility. Then A =A' and the
above relation defines an integral equation for A.
As may be clear from this example, CU is essential-

ly important to guarantee unitarity of the scattering
amplitude and is so termed.

(viii) No specific form of the interaction La-
grangian is needed.

With the LCL and complete unitarity as guiding
principles one can expose a definite number of in-

termediate particle lines in a given diagram step by
step, thus expressing a certain amplitude in terms of
other amplitudes with higher irreducibility.

Before going on it may be worth mentioning the
approach of Ref. 9 which is based on a previous
work by Thomas and Rinat. " The method used in
these works is close in spirit to that of Taylor ex-

cept that it is based upon a definite time ordered
theory without antiparticle degrees of freedom. It
should also be mentioned that in order to derive the
equations they employ a procedure corresponding to
the LCL (without CU), which, however, is also used
for amplitudes containing disconnected pieces. So
far, the work of Taylor is the most fundamental
and rigorous algorithm for classifying perturbation
diagrams by the LCL. In his papers, he discusses at
length how the use of the LCL with disconnected
diagrams might lead to erroneous conclusions. The
fact that the final equations of Ref. 9 are indeed the
correct ones indicates either that there are some for-
tunate cancellations or that there may be some kind
of theorem which covers this special case. It is our
judgement that this point needs further substantia-
tion.

B. Study in the mN-N and NN sectors

In order to familiarize the reader with the Taylor
method it may be instructive to first apply it to the
two body (rrN~rrN) and (NN~NN) problems as
well as the mN~N problems. We write a connected
amplitude for the process m (initial particles)~n
(final particles) with irreducibility r as

M„" =(connected amplitude having m initial and n final particle legs and irreducibility r), (3.1)

which is diagrammatically depicted in Fig. 4(a).
The dressed single particle propagator for particle j
(j =N or n. in our case) is given by

dj =iaaf(j ), (3.2)

where b,z(j) is the usual Feynman propagator for
scalar particles (recall that for simplifying the argu-
ments we assume all the particles to be scalar). A
dressed single particle Feynman propagator is

I

graphically represented by a straight line and a dot
[see Fig. 4(b)].

Now, we consider the following:
(a) NN +NN amplitude—s. Since NN scattering

does not go through the single (elementary) particle
intermediate state, the amplitude is Mqz' in the

).

(a) ( [3)

FIG. 3. Example of (a) connected and (b) disconnected

graphs.

(a)
FIG. 4. (a) Symbolic representation of the amplitude

(with m initial and n final particles) which is r irreducible
[see Eq. (3.1)]. (b) Single particle dressed and renormal-
ized Feynman propagator dj [see Eq. (3.2)].
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FIG. 5. Graphical description of Eq. (3.3) for the one
particle irreducible two nucleon amplitude M22'(NN).

sense of Eq. (3.1) and the LCL leads to

M2z'(NN) =Mz2'(NN)[1+d~, d~ M2z'(NN)]

= [1+M'2'2'(NN)dtv de, ]M22'(NN),

(3.3)

whose diagrammatic structure is shown in Fig. 5.
(b) rrN~mN amplitudes Ther. e is an s channel

nucleon pole contribution, hence the amplitude
should be one particle reducible (that is, it has an

intermediate state with a single particle line). The
LCL actually gives

M22(nN)=Mzp (mN)+M'2I'(nN)d~MI'q (mN),

(3.4)

as seen in Fig. 6. Obviously, the separation of the
dressed (direct) pole term and the nonpole term is

clearly demonstrated here. For the nonpole part
Mzz'(mN) we find an equation similar to the one sa-

tisfied by Mzz'(NN) [see Eq. (3.3)]. Note that these

equations for M22' are just of the form of the
Bethe-Salpeter equation, where the two particle ir-
reducible amplitudes M22' serve as two body poten-
tials.

(c) vrN~N amplitudes (pion nucleon vertex).
Since the dressed propagators are always taken off
the Green's function, this vertex is at least one-

particle irreducible. One then finds

M2I'(~N) = MPj'(mN)

+M22'(AN)dnd~M2)'(AN)

= Mzi'(n'N)

+M22 (mN)d~d~M2I'(nN)

(3 5)

with the corresponding diagrams drawn in Fig. 7.

0 1

FIG. 6. Graphical form of Eq. (3.4), giving the decom-
position of the mN~mN amplitude M22(mN).

FIG. 7. Graphical form of the integral Eq. (3.5) for
the m.N~N vertices M2'~'(mN).

Similar decomposition holds for MIz'(nN). Clear-

ly, MI2'(~N) and Mz'~'(m'N) correspond to the
dressed vertices y; and z;, respectively [see Eq.
(2.16)]. Also, they should be properly renormalized
to give the n.NN strong coupling constant when all
the particles are put on the mass shell. We note
here that this result has been derived in the Green's
function approach by Nutt and Shakin' in the PS-
PS theory of nN scattering, where M2~'(mN) is set
equal to the strong interaction coupling constant

gmNN

(d) The nucleon propagator admits the following
decomposition

N x +ds

de" =dt's '+M Pg'(re)d~d~M2", (mN),
(3.2')

in which dz ' is the bare propagator.
In order to study the structure of the NN "poten-

tial" M22'(NN) we should expose its three particle
intermediate states. This will be done in the next
subsection.

C. Study in the coupled mNN-NN sector

Since our interest is in the pion interaction with
the two nucleon system, any three body intermedi-
ate states to be exposed by the cutting procedure
will be restricted to mNN states. In other words,
heavy mesons are regarded as multipion states. Al-
ternatively, it is always possible to also consider
"elementary" heavy mesons; in this case, one should
expose various three particle states so that ampli-
tudes like mNN~pNN, NNp~NNp, etc., as well as
two body inputs mN~pN, should also be con-
sidered.

For convenience we introduce the following nota-
tions:

(i) The two nucleons are labeled "1" and "2,"
while the pion is labeled "3."

(ii) In the presence of the spectator particle i the
amplitudes for j+k +j +k (jQiQkQj—) and
j+k~j {j+3in the 2~1 case) introduced in the



27 COUPLED md%-NN SYSTEMS IN A HAMILTONIAN APPROACH. . . 319

previous subsection are redefined as

m "(i)=—M22'( jk)d;

y'+'(i) =M—p"i'(j k)d;

y'"'(i )=M" (j k)d

(JAi&kAf)

(3.6)

We extend it simply by also admitting i=3, with
the understanding that y'+'(3)—:0.

(iii) Finally (for the notation) we define free pro-
pagators

G2 =d)d2,

63 =d)d2d3 ~

This notation is in line with the "odd-man-out"
prescription extensively used in many body prob-
lems. Note that y'+'(i) is defined only for i=1,2.

With the above preparation we go on to the
analysis of three particle amplitudes.

(a) mNN ~m.NN. First we notice that it is one-particle irreducible. The LCL leads to

M33 M33 +M32G2M23 + g y+ (i)G2 23 + g™32G2j—(

—M33 +M32 G2M2p + g y+'(i)G2Mi3 + g M32 G2y "(i) (3.7)

as we see in Fig. 8.
(b) nNN~NN. We find

M23 M23 +M22 (NN)G2M23 + QM22 (NN)G2y"'(i)

=Mz3'+M22'(NN)G2M23'+ g M22'(NN)G2y' "(i) . (3.8)

An analogous result holds for M32'.
(c) Tioo particle irreducible amplitudes for nNN~nNN. With the LCL one easily finds

M '=M3$ +M' G M + yM 'G m (i)+ ym ' (i)G M + ym ' (i)G m' '(j)

=M33'+M"'G M' '+ QM3, 'G&m"'(i)+ gm' '(i)G3M' '+ pm' '(i)G3m"'(j) .
i i i+j

In analogy with M22' (appearing in 2~2 amplitudes) one may identify M33 as the three body force.
(d) Tioo particle irreducible amplitudes for nNN~NN (M2s, Mss) Here one e.asily obtains

M' ' =M'3'+M'3'G3M33'+ y y' '(i)63M/3'+ y M'3'g3m' '(i)+ y y' "(i)G3m' '(j)
i

=Mph'+M23'G3M33'+ g y' '(t)GiMi3'+ g M23'G3m"'(i)+ g y' '(i)Gym"'(J) .

(3.9)

(3.10)

to

I

(e) Tioo particle irreducible amplitudes for NN ~NN IM22 (NN)]. The exposure of three particle states leads

M2g'(NN) =M22'(N)+M~i'G3M3g'+ g [y'"(i)GiMgp'+M2i'Giy'+'(i) j+ g y '(i)G3y+ (j ) .
l

(3.11)

Here M22'(NN) may be identified as multipion ex-
change or single heavy meson exchange NX interac-
tions, while the last term is obviously responsible
for one-pion exchange (OPE). The 2nd, 3rd, and
4th terms include some complicated interactions
which so far have not been considered in previous

I

works (I, II, AB, and Ref. 11), but do contribute to
three body (n.NN) unitarity. The amplitude
Mzq'(NN) is schematically expressed in Fig. 9. For
our present purpose we need not expose intermedi-
ate states with more than three particles, although
this process could certainly go further.
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The next step is to rewrite M33 etc., in a more
transparent form T.his is carried out by first add-

ing disconnected contributions (m, y+, etc.) to con-
nected amplitudes M 's.

F' '=M' '+—pm'"(i) (3.12a)

and

r(2) M(2) + y y(i)(i)

r(2) M(2)+ y (i)(i)

(3.12b)

(3.12c)

F"'=M"'+ g— '"(') + gy"'( )G y'"(j),

r(i) M(i)+ y y(i)(i)
(3.13a)

(3.13b)

r(i) M(i)+ y y(1)( )
i

Furthermore, we shall introduce the following
quantities:

(3)
UO=

—
M33

(3.13c)

(3.14a)

(n.NN three body potential),

u;:—m' '(i), i =1,2, 3 (3.14b)

1 1 2 1 2 1 1 2

XX=X) (Z ~~7~7&ZZ
2 1 1 1 2 1 2

=Z)-(X ~X,XX", X7
FIG. 8. Diagrammatic form of Eq. (3.7) for the one

particle irreducible mNN ~~NN amplitude M33'.

and

3
r',"=—g r,„.

@=0
(3.14g)

In terms of I+o we can now introduce the
dressed irreducible mNN+-+NN vertices, which are
the (three body connected) counterpart of y'+'(i)

[i= 1,2,3, but y'+'(3)—:0] recalling the statement fol-
lowing Eq. (6). Thus, we have

[1+m"'(0)G3]I +p
y(~i )(0) r'",[1+G,m'"(0)]

and from Eqs. (5) and (6) we find

[1+m")()M)G ]I' „'

r( ) [1+G m(1)(p)] '

(3.14')

(3.14")

=U +F G3U,

r(2) (1+F(2)G )r( )

r'"=r"'(1+G,F'"),
r'"=r"'[1+G2M22'(NN) l

r'"= [1+M,",)(NN)G, )r(",

(3.15a)

(3.15b)

(3.15c)

(3.15d)

(3.15e)

F")—F( )+I ")G I ( )
+ 2

=F"'+r',"[G,+G,M,",'(NN)G, ]r'" .

(3.15f)

Then we can easily obtain from Eqs. (3.4), (3.5),
and (3.7)—(3.11) the following equalities:

=U+vG F'

m "'(0)=up+ u pG3—m (0)

r( ) y(»(.)

(3)
(3) M 32r+,=—.

23

2 3 2 2

XX=XX Z&--~X ~X&-

(two body potentials for n.N and NN pairs),

(3.14c)

(3.14d)

(3.14e)

(3.14f)

Equations (3.15) are just the relativistic off mass
shell analog of those obtained by MK. The physical
amplitude for mNN~NN and m.NN~mNN are
identified as I'+' and F"', respectively. (Note that
these amplitudes do contain disconnected parts, in
the same way as 3~3 amplitudes in potential
scattering. ) Equation (3.15f) decomposes F"' (for
nNN+m'NN) into F' ' (which contains no inter-
mediate pion absorption channel) and an "absorp-
tion correction" term I'+'G2I' '. Still we want to
obtain coupled equations which are more easily
handled than Eq. (3.15).

1 3 1

+ E; '.(g+2;
ioj

FIG. 9. The two particle irreducible contribution to
the two nucleon amplitude, denoted as M2z'(NN) in Eq.
(3.11).

D. Derivation of the coupled equations
for the md%-NN system

Based upon the preceding results in Secs. IIIB
and C we are now in the position to find coupled
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sets of equations among the amplitudes pertaining
to the mNN-NN systems.

(a) Coupled equations for NN~NN and
NN —+mNN. First we abbreviate the NN "potential"
and amplitude as

u» —=M33'(NN),

U» ™33'(NN).
(3.16a)

(3.16b)

UNN VNN +VNN62 UNN

=VNN + UNNG2VNN (3.3')

Then, from Eqs. (3.3), (3.11), (3.12), and (3.14) we
find Likewise we decompose I'+', noting Eqs. (3.14f),

(3.17a), and (3.18),

I (~1) y I (1)

P
(3.19a)

Channel N is the interacting N)Nz with no spec-
tator m..

Now we may decompose

F(3)= gF„'„' (p=0, 1,2,3), (3.18)

where F„',' satisfy the Faddeev equations

F&„'——m"'(p, ) 5&„+gm")(p)5&g„'„' . (3.18')

u„„=M",,'(NN)+ l."'G,r")
3—g y"'(i)G3y'+'(i), (3.11')

I'+~= X 5~.+ XF~~G3

where the subtraction of the last term in (3.11') en-
sures that VNN is connected. This last term is noth-
ing but the nucleon self-energy term due to virtual
pion production. We shall regard the first term
M32'(NN) as the heavy meson (p, co, etc.) exchange
NN interaction. Thus we define

X I'+',(1+Gz U»)

5q„+ QFqqG35q„y+'(v)

X(1+G3 U» ), (3.19b)

uHM =—M33'(NN),
3

SE(op)= g y' '(i)G y' '(i) .

(3.11"a)

(3.11"b)

where the last equality employs Eqs. (3.18') and
(3.14"). Applying the above result to I' 'G3I'+' in
Eq. (3.17b) we find after some algebra

Now, we shall rewrite the expressions for U» [Eq.
(3.3')] and I'+' [Eq. (3.15)] using Eqs. (3.11'),
(3.11"),and (3.15): + g y'"(p)G 5„„I"„'. (3.20)

rf ~—G3y+ (P )( 1 +G2 URN )

I"'+'= [I+F"'G3]l'+'(1+G2 U»»
U» ——[uHM —SE(oP)](1+Gz Utvtv )

+r'"G, r+'

(3.17a)

(3.17b)

Since we have [recall Eqs. (3.14e), (3.14'), and
(3.14")]

y I (3) G y(1)( ) I (3) G y(1)((})

The above set of equations couples the amplitudes
U» and I '+', but is still far from being practical as
it contains explicitly the nucleon self-energy terms
SE(op), F' ' (the absorption free mNN~mNN am-
plitude), etc. Thus, a further modification is neces-
sary, which we achieve by decomposing I' ', I +',
etc., into "channels. " In accordance with the
"odd-man-out" notation (introduced earlier) and the
definitions of uo and I'+(I [Eqs. (3.14a) and (3.14f)],
we define channel 0 and other channels as follows:

Channel 0 is the n.N1N2 interacting through
three particle irreducible interactions;

Channel i; i=1,2 is the interacting mNJ with
spectator NJ,j+1;

Channel 3 is the interacting N1N2 with spectator

+ g y'"(t)G3y'+'(1'), (3.21)

we get

U» =[uHM+I'('o'G3y'+'(»](1+G»»)

+ g y"'(p)G35„„1'~"s . (3.17b')

We remark that the contribution I' pG3y'+'(0) to
the NN potential (composed of three particle irredu-
cible mNN~NN vertices and the mNN three body
potential) has pure three body (n.NN) intermediate
states and hence does contribute to three body uni-
tarity (see Fig. 10). It has been overlooked in all
previous works.



322 Y. AYISHAI AND T. MIZUTANI

Two more steps are to be taken before arriving at our coupled equations. First, for algebraic simplici-

ty we introduce vector and matrix notations.

F' '= [F„'„'(, m"'—= [m")()tt)5„„1, 63 —= I 63&„„], K = I&„„J,
y'"= [—y '(o) y' '(1),y'"(2),y'"(3)] y"'=[y"'], etc.

(3.22)

+y("G,SCr(,", (3.17b")

I'"=(1+F' 'K 63)y"'(1+G2UNN),

I" '=m'"+m"'EG F' '

By eliminating F(3) from Eq. (3.19') one finds

I'+ =y+'(1+G2UNN )+m'"K G3I'+' .

(3.19')

(3.18")

(3.19")

Second, we substitute Eq. (3.19") into Eq.
(3.17b") to explicitly show the OPE NN interaction.
This leads to

UNN (UHM+EO 63y+ (0)+ Y ~63Kr'+')

X(1+62 UNN)+'y 3m 3

(3.17b"')

It is instructive, before going on, to observe the

(where T+ means transpose and replace —by + ).
Thus, Eqs. (3.17b'), (3.18'), and (3.19) can be written
as

UNN [UH——M +I' ()63y'+'(0)](1+G2 UNN )

=F"'+I'"G y'"(1+63KF"')

I'"=(1+UNNG2)y'"(1+G3KF' ') .

(3.23a)

(3.23b)

Eliminating F'2' from Eq. (3.23) and using Eq.
(3.18")one finds

P(1) m (1)+m (1)g G P(1)+y(1)G I (1)

(3.23a')

Then, we eliminate UNN from Eqs. (3.23b) employ-
ing Eq. (3.17b"). The result is

structure of y'"63Ky'+' (see Fig. 11). Beside the
usual one-pion exchange potential (OPEP), there are
other contributions which do affect mNN th.ree body
unitarity. Like I' I)63 y+'( 0) (discussed previously,
see Fig. 10), these terms have also been overlooked

in previous works.
Equations (3.19") and (3.17b'") are the coupled

set of equations describing the processes NN~NN,
NN —+m'NN which we have been seeking.

(b) Coupled equations for mNN~NN and
~NN-~mNN amplitudes. Utilizing again the ma-

trix notation we find, from Eqs. (3.15e) and (3.15f)

F"'=F"'+(1+F"'KG, )y"'G I "'

P( )
I 1+[1 ( +P( ) 6 ( )(0))6 ]

—
I

X [(uHM+"'-'o' 63y+" (0» +y'-" 63KI'+' ]6]2y'-"(I+63KF ) ~ (3.24)

which, after some algebra [noting Eq. (3.23b)],
reduces as

I'"=(.HM+~l. 63 +y'( )0)621'"

+y() )(1+6 K F( 1) ) (3.24')

Furthermore, substitution of Eq. (3.23a') into Eq.

3 3

-( g+
3 3

+ (Ii()(Q) e.

FIG. 10. The contribution I'"063y'+'(0) [appeariug in

Eq. (3.17b')] to the NN potential. It contributes to three
body unitarity but has been disregarded in previous
works.

I

(3.24') now yields explicit OPE structure

I'"=y"'+y"'6 Km"'(1+G KF"')

+[U„+r")G,y',"(0)+y'"G,Ky(,"]6,1"'.
(3.25)

1

) + ~{1){0)

FIG. 11. The contribution y"'G3KZ'+" [appeariug in
Eq. (3.21)] to the two nucleon interaction. Beside the
usual OPEP term (a) there are other terms (b) affecting
three body unitarity which have not been considered in
previous works.
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Equations (3.23a') and (3.25) form the second set of
coupled integral equations which we have been

seeking.
In order to make closer contact with what we

have obtained in the first half of the current work
we shall modify Eqs. (3.17b'"), (3.19"),(3.23a'), and
(3.25) into the Alt-Grassberger-Sandhas AGS (Ref.
10) form by recalling the amplitudes from the rep-
resentation of transition operators in terms of chan-
nel wave functions. Specifically, we write

(3.26a)

(3.26b)

U~„——G3 5q„+ g 5qaFa135P„,
(1)

aP

UNq ——g I"a5aq,

(3.27a)

(3.27b)

UyN= X5pal +a . (3.27c)

Defining the matrices

U= I Uq„I, U'+'=
I UqN I, U' '=

I UNqI,

and combining OPE plus vHM with the additional
forces (discussed previously) to form

where g& is the wave function for channel p and

XNN is the two nucleon plane wave. It is then
straightforward to show that (regarding I'+' and
F'" as operators)

vHM vHM+I —oG3y+ (0)+y ~G3KY+

we can easily obtain the following equations:

(3.28)

and

UNN vHM(1+G2UNN)+y ~63K m ~G3 U

U'+'=y+'(1+G2UNN )+m"'G3 U'+'

U=G, -'K+K m ' G, U+Z~+ G, U—

for NN ~NN,
1VN

for NN @AN

(3.29)

(3.30)

U' '=y"'(1+G3K m'"G3U)+vHMG2U'

Clearly, one can observe the formal similarity be-
tween the above equations and those we obtained
from the nonrelativistic coupled channel approach
and also those obtained by AB. However, the equa-
tions obtained currently are for the relativistic off-
mass-shell amplitudes. Our coupled Bethe-Salpeter
type equations for the ~NX-NN systems preserve
the antiparticle degrees of freedom.

As for the unitarity structure, it has been shown
explicitly that F'", I'+', and UNN do satisfy off-
mass-shell two (NN) and three (nNN) body unit. arity
(as well as off-mass-shell subenergy unitarity) pro
vided that dressed single particle propagators are
properly renormalized. Since Eqs. (3.29) and (3.30)
have resulted from formally rearranging the expres-
sions for F'", I'+', and UNN, the unitarity proof
proceeds along the same line, which is not difficult
although rather lengthy. As remarked before, the
second and the non-OPE parts of the third contri-
bution to v HM [see Eq. (3.28)] do contribute to three
body (n NN) unitarity. It can be shown that neglect-
ing these parts does preserve the unitarity structure

U's~U's,

r, ~m("(i),

Ra,Ra~y' )(a),y(+)(a),

y z y(i)(a) y(i)( )

Go~63

(3.3 la)

(3.31b)

(3.31c)

(3.31d)

(3.31e)

(3.31f)

For a practical use of Eqs. (3.29) and (3.30) one
may adopt the procedure by Freedman et al. ' to
introduce isobar approximation to the two body
amplitudes and also to eliminate the relative energy

I

of the equations provided that one consistently
drops the three body mNN potential v and three
particle irreducible mNN~NN vertices I + . At
this stage the formal correspondence to our previ-
ous derivation (through the Hamiltonian plus pro-
jection operator approach) becomes more trans-

parent; one could then establish the following
correspondence:
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component (see also the work of Aaron et al. '~).

The elimination of relative energy in problems in-

volving true pion absorption have already been
worked out in II. This corresponds to introducing
the Blankenbecler-Sugar propagators. Some care
must be taken in deriving the two-nucleon propaga-
tor from G2 [the product of two (dressed) single nu-

cleon propagators]. The simplest way is to evaluate
the discontinuity of G2 in s (the total NN c.m. ener-

gy squared) to keep up to the value corresponding
to the mÃN elastic scattering and then disperse it
with respect to s. We believe that this is the most
natural and transparent way to arrive at practical
formulations implementing relativity in the manner
of Blankenbecler-Sugar.

To end this section, one remark seems to be
necessary. It has been pointed out by Kowalski
et al. ' that in order to completely eliminate the
overcounting of the ~ exchange effect, the re two
body amplitudes m'"(i), i=1,2 (appearing in the
Faddeev amplitudes F&„'), must be void of the
crossed nucleon pole term. The reason why our
derivation has not apparently met this requirement
is that we have applied the LCL only in the s chan-
nel for the coupled mNN NN syste. ms, -but not in u

and t channels. One could, in principle, carry out
the cutting procedure in all channels at the same
time but the resulting equations would (if obtained
in closed form) necessarily become highly nonlinear
and basically impractical. Fortunately, compared
with the important role played by the direct nucleon
pole term in nuclear a absorption, the possible over-
counting of the crossed pole term should hardly af-
fect the essential physics. We note that in time-
ordered approaches like those using the
Blankenbecler-Sugar reduction this overcounting
problem is absent (see Kowalski et al. ' ).

IV. CONCLUSIONS

We have ended our quest for presenting a realistic
theory for the coupled mÃN-SN systems. Com-
bined with our previous works, it completes our for-
mal development, and we hope that most of the
theoretical questions have been answered. [Assum-
ing that unitarity is obtained as pointed out after
Eqs. (3.30), this will be proved in a future commun-
ication. ]

In the nonrelativistic case, Eqs. (2.9) form the
complete solution to the scattering problem initiated
by the set of coupled Schrodinger equations (3.2)
and (3.3) in I. In achieving this goal, we had to
overcome numerous subtle problems resulting from
few body dynamics, absorption phenomena, and the

peculiar nature of the two body mX P&& channel.
Nevertheless, the equations obtained here possess
various attractive properties such as (i) containing
only dressed and renormalized ~RE vertices and
nucleon propagators, (ii) satisfying two and three
body unitarity, and (iii) being practical and amen-
able for numerical solution, with no substantial ef-
fort required beyond the solution of ordinary three
body problems. (The antisymmetrization procedure
as well as the explicit form of the vertices and pro-
pagators have already been worked out in I and II.)
We note in passing that Eqs. (2.9) have also been
suggested in AB, but to our knowledge, the present
work is the first one to solve the scattering problem
in the Hamiltonian formalism.

In the relativistic approach we have utilized the
powerful Taylor method and obtained the coupled
Bethe-Salpeter type equations (3.29) and (3.30).
Thus we have presented an off-mass-shell theory for
which the basic input includes Feynman (complete-
ly dressed and renormalized) propagators and ver-
tices as well as two and three body forces. The
basic tool in the derivation procedure was an algo-
rithm for classifying perturbation diagrams based
on the last cut lemma and complete unitarity. We
point out, however, that much care is needed in car-
rying this procedure out since the last cut lemma
can be used only for connected diagrams with fully
dressed (and renormalized) vertices and propaga-
tors.

Unlike the nonrelativistic case, one more step is
required here before arriving at the practical phase,
namely, the elimination of relative energies. As we
have already pointed out, one might, for this pur-
pose, use the techniques developed by Freedman
et al. ' and Aaron et al. ' which have been slightly
modified in II for problems involving absorption.
As a result one arrives (after employing the separ-
able approximation) at three dimensional integral
equations with Blankenbecler-Sugar type propaga-
tors. These equations form the basis for numerical
evaluation of physical observables associated with
the ~XN-NN systems. Much care is required in
deriving the explicit form of all the input quantities
(especially the dressed mNN vertices, and. the
dressed and renormalized two nucleon propagator).
This task has already been accomplished together
with numerical results for the elastic md ~~d
scattering.

We would like to thank R. Vin Mau and the In-
stitut de Physique Nucleaire at Orsay for their
warm support during the course of this work during
the winter of 1980.
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APPENDIX

This appendix is composed mainly of definitions
and the detailed forms of operators appearing in
Sec. II. Its sole purpose is to allow for a smooth
reading of Sec. II without beirig bothered by lengthy
expressions. First we introduce (in order of their
appearance) some operators, most of which are de-
fined in I and II (in which case the reader is re-
ferred to the appropriate equation).

Gp is the nNN f.ree propagator [(2.11b) in I].
RN, R;, RN, and R; are the pion emission and ab-

sorption operators [(23) in I].
vNN

——vp+ZNN is the two nucleon interaction.
See, e.g., (2.14) in I without div therein.

t, is the two body amplitude in three body space
[(2.1lf) in I].

zN is the two nucleon propagator without the
NPP, i dressing [(2.15a) in I].

IIzz is the completely dressed two nucleon propa-
gator [(3.21d) in II].

~22 =1+~22~N, Tzz =qN+qN ~zzqN,

Gp 5ab a A b+N

RN
Bab= '

RN

VNN

a =N b+N
a@N b=N'
a =b=N

(Al)

(I p).b = Gpt Gp5 b a Ub+N

N a =b=N' (A2)

The disconnected and connected parts of B (in
a ~a2N channel subspace) read

0 0 R1

B~b= 0 0 Rz

R1 Rz 0

(A3)

(a,b =a„a2,N),

with fully dressed mNN vertices.
We are now in a position to give the explicit ex-

pressions of operators introduced in Sec. II. The
matrices B and I p in Eq. (2.1) are given by

and

qz ——g R Gpr, GpR; .
0 G,-' R~z

Gp
1 0 R1 (A4)

y;, z; are the fully dressed pion absorption and
emission operators for nucleon N;, i = 1,2.

yN =y1+yZ zN =z1+zZ

wNN ——vp+y1Gpzz+yzGpz1 is the NN interaction

Rz R1 VNN

For the sake of completeness we give also the
disconnected part of U, namely U", which is intro-
duced in Eq. (2.3a)

0 aU +baia2N,

R1II22R1 R1II22R2
Uab ='

R2II22R1 R2II22R2

22R 1 22R 2

221'
Rzco a Ab =+1,o,'2, N .22

Tzz

(A3')

Next we need to know the factors gd and cod whose product leads to the Mufller operator Qd appearing in Eq.
(2.5). It is found that

5,b aUb+a aiN2,

7ld —= '
1 0 R1II22

0 1 R2II22 a Ab =+i,uz, N,
0 0 cozz

(A5)

5ob a Ub@ai,ai,N,

1 0 0
0 1 0

R1Gpt~ Gp R2Gpt~ Gp 1

a Ab =ai, o.'2, N . (A6)
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Although not needed directly we give below the nondiagonal propagator matrix I appearing in Eq. (2.4c)

r.b=s bGpt Gp (aUb@ai, a2, N),

I b =Gpt Gp(Qg) b (b =a&,a2, N)

I aa. =(0 )aa;Gotu, Go,. I Na H22RiGota Go, PJUN II22 '

Finally, the matrix of dressed "potential" V' and the diagonal matrix of dressed propagators y appearing in
our final equations (2.8a) are detailed below:

V,'b ——(COg8'CO )~b =

5,bGo
' a Ab+N,

ZN

0 Gp z2

Gp
' 0 zi

b =N a+ a,ta2N,
a =N b+ a&, a,2N,

a=b =IV'
5,bGpt, Go a Ub+N

7ab —'

II22
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