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Negative parity b J = 1 bands were observed in " ' Sb with ( Li, 3ny) and ("B,3ny) reac-

tions. Bandhead and level spacing properties are consistent with the g9~2 proton-hole collectivity

and a decoupled h ii~2 neutron. These bands decay to the low-lying (md5g2, vhi]~2)8 isomers

via several high-spin states, one of which, 7 + in ' Sb, had a measured t]~2= 22.4+0.5 ns.

Comparisons to mg9g2
' AJ = 1 bands in odd-mass Sb nuclides are made.

NUCLEAR REACTIONS " "Cd( Li, 3n) " ' Sb, "Pd("B, 3n)" Sb;
measured y-y-t coinc. (E, y, t); deduced level schemes in " ' Sb, y mul-

tipolarities, J, T]~2. Enriched targets, Ge detectors.

The low-lying level schemes of odd-mass Sb
(Z = 51) nuclei, with one proton outside the Z = 50
closed proton shell, are expected to be described sim-

ply in terms of the available single-particle states. An
experimental study' has shown, however, that coex-
isting at low energies with the single-particle states$+
are

2
proton-hole (2p-lh) states upon which AJ= I

collective bands are found. This collective feature,
which lies lowest near the middle of the 50—82 neu-
tron shell, surprisingly dominates the lower part of
the yrast level spectra for the odd-Sb nuclides. Simi-

9+
lar —, proton-hole 4J =1 bands have been observed

systematically over the Z & 50 transition region in-
cluding the odd-mass I (Z = 53), Cs (Z = 55), and
La (Z —57) nuclei. 2 Theoretical interpretations3 of
this stable feature, which have involved proton-hole
quadrupole-core interactions with the cores being
treated phenomenologically as deformed rotors or
anharmonic vibrators, have shown some success, but
are not unique. More microscopic theoretical ap-
proaches are currently being examined. " To study
further the nature of the core collectivity in transition
nuclei, there has been recent interest in odd-odd nu-
clei; the combined coupling of the odd-proton and
odd-neutron orbitals to the collective core may pro-
vide more unique information. Several theoretical
predictions for the collectivity in odd-odd nuclei have
been made in terms of deformed rotor cores and ei-
ther "conflicting" or "peaceful" coupling (opposite
or similar decoupled —strongly-coupled orbitals). ' Re-

cently, calculations involving a proton-neutron
vibrational-core coupling have also been made for
odd-odd transition nuclei.

In the Z & 50 transition region, the h]ig neutron
orbital combined with the gy2 proton hole that in-

duces the collectivity in the odd-proton nuclei would
be the relevant odd-odd configuration which is near
yrast. The pure high-spin properties of this negative
parity [mgy2, vh~~g] configuration can be experi-
mentally extracted despite the complexity of the
odd-odd nuclei; the lowest state of the multiplet is
expected to be J =7 or 8 . In a recent experiment,
van Nes et al. have observed b J = 1 bands based on
these 8 states in the odd-odd " "Sb nuclei via the
(0., 3ny) reaction. Their band spacings were similar

9+
to the —, 4J = 1 bands of the neighboring odd Sb

nuclei, suggesting that the h i]~2 neutron is a specta-
tor. To explore the extent and persistence of this
dominant gy2 proton-hole collectivity and the sys-
tematics for the odd-odd Sb isotopes, the """"Sb
nuclei were studied with the ('Li, 3ny) and
("B,3ny) reactions. New 5J = I collective bands
were found in " ' Sb and the band' in " Sb was
confirmed. These band structures which are built on
the [ng9~2 ', vh~t~2] configuration, are the focus of
this Communication; the complete level schemes of

Sb will be reported in a later paper. Preliminary
reports of this work have been made. The current
experiments which have extended the odd-odd band
properties from " Sb (N = 63) through "Sb
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(N = 69) map out a comparison of the collective in-
fluence of the g9~2 proton hole in the odd and odd-
odd Sb nuclei.

Previous to the van Nes et al. ' study of " '" Sb,
experimental information in odd-odd Sb nuclei in-
volved medium- or low-spin states populated via
light-ion reactions or radioactivity. Very recently,
Duffait et al. ' reported additional work in the
"""Sbnuclei with the ('Li, 3ny) reaction. In
many of the odd-odd Sb nuclei, low-lying 8 isomers
have been identified; their structure has been
defined by magnetic moment measurements to be
the [7rd5gq, vh~tg2]8 configuration. "

To investigate the collective properties of the odd-
odd Sb nuclei, several experiments were performed
via (Hl, xnan) reactions at the Stony Brook FN Tan-
dem Laboratory. These measurements, involving
various gamma-ray spectroscopic techniques with Ge
detectors, included excitation functions, y-y-t coin-
cidences, angular distributions, and pulsed beam y
timing. The excitation functions indicated an optimal
bombarding energy of 29 MeV for the ('Li, 3n) pop-
ulation of " ' Sb. Subsequent Li experiments were
performed at this energy with isotopically enriched 5

mg/cm "'" ' "Cd foils as targets. The " Sb nu-
cleus was also studied via the "Pd("B, 3n) reaction
with a 51 MeV "Bbeam. The y-y-t coincidence
results were used to establish the y-ray cascades and
level schemes; gated spectra are presented in Figs.
1(a) and 1(b) for the "Sb and "SSb bands, respec-
tively. To obtain information on y-ray intensities,
transition multipolarities, and spin assignments, an-

gular distribution measurements were carried out at
five angles between 90' and 150'. Lifetime results
and delayed y transitions were extracted from the
pulsed beam measurements.

The y-ray cascades extracted from the present data
revealed new 5J = 1 band structures in " ' "Sb,
which are shown in Fig. 2 along with the previously
observed bands" in " "Sb for comparison. The
5J = 1 intraband transitions are of a MI/E2 mixed
character (positive mixing ratios), which are corro-
borated by several weak F. 2 crossover transitions.
The band spacings increase with spin and show no
significant staggering. In all of these odd-odd Sb nu-
clei, the corresponding band spacings are remarkably
similar differing by less than 8% but showing a defin-
ite increase with neutron number. The J of the
bandheads, which are determined from the decay
transitions, are 8 in i is, i20Sb as in i, Sb. Their
energies relative to the [wd92, vh~t~2]8 isomers gra-
dually decrease with increasing neutron number from
just above 1 MeV in "Sb to slightly below 1 MeV in"Sb. A common feature is a high energy transition
connecting the 9 band members with the low-lying
8 isomers, which are strong in " '"Sb but some-
what weaker in " ' Sb. In " "Sb, the bands par-
tially decay through 7'+' isomers; the present experi-
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ment yields a half-life of ti~2= 22.4+0.5 ns for the
7'+ isomer in ' Sb while Duffait et al. ' obtained
I i~2= 10.3 ns for the "Sb 7+ isomer, showing E1
strengths —10 6 W.u. (Weisskopf unit).

The systematic collective band structures observed
in the odd-odd Sb nuclei are believed to result from
the collectivity associated with the g9/2 proton hole
via the [mgy2

'
~ vhtt~2] configuration. Calculations

based on a spherical core with residual interactions
between the proton hole and the neutron particle
suggest that the J =7 and 8 configuration states
are the lowest in energy being nearly degenerate,
while the 9 and 10 configuration states are predict-
ed to be 250 anad 700 keV higher, respectively.
Similar estimates result from a deformation core pic-
ture' (conflicting case) with a strongly coupled proton
hole and a decoupled neutron particle (nearly perpen-
dicular orbits). The observed bandheads are the 8

states, although the 7 state in " Sb was found, by a
strong 8 7 dipole transition, to be 37 keV below
the bandhead. This is similar to the situation in"Sb. ' The near degeneracy of the 7 state will, of
course, influence the band. The 9 and 10 band
members are also expected to contain admixtures
from the [mgy2, vh„&, ]9, 10 configuration states

(particle alignment with total J) and thereby show
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FIG. 1. Sum of y-ray spectra gated by the AJ = 1 band
transitions for (a) ' Sb and (b) " Sb. The sum spectrum
in (a) was obtained from the "Cd( Li, 3n)' Sb reaction
and that in (b) from the ' Pd(' B, 3n) Sb reaction.
Similar results were obtained for " Sb from the "Cd-
( Li, 3n)" Sb reaction, which populated the band with
somewhat greater relative strength. The underlined energies
(in keV) represent the 5J= 1 band transitions,
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FIG. 3. Comparison of the Al = 1 bands in the odd-odd
Sb isotopes with those (filled circles} associated with the g9/2
proton-hole states in the odd Sb isotopes from Ref. 1. The
energy scales are normalized to a constant energy for the

15+
corresponding 11 and

2
band members.

FIG. 2. Decay schemes for the AJ = 1 bands in

Sb. The results for '~ Sb are from the
current work and those for " " Sb are from Refs. 7 and
10. The energy scales are all normalized to the energies of
the [~d5/2, vhll/2]8 isomers (thick lines at the zero of the
energy scale). The fmg9/2 ', vhll/2]8 bandheads are also
indicated by thick lines.

possible energy shifts from a single collective-band
picture. In addition, possible admixtures in the 8
and 9 band members can arise from the
[17g7/2, vhttg] configuration which has energies
between the bandhead and the 8 isomer, on the
basis of the odd-Sb level schemes. Such admixtures
cause energy shifts and are perhaps responsible for
the transitions from the 9 band members to the 8
isomers.

The most interesting feature of the collective bands
observed in the odd-odd Sb nuclei is their precise
reproduction of the spacing of the g9/2

' proton hole
bands in the neighboring odd-Sb nuclei. A detailed
comparison of these band spacings is given in Fig. 3
from W =62 through N =70. The 11 band
members of the odd-odd Sb nuclei are normalized in

15+
energy to the —, odd-Sb band members as they are

the lowest odd-odd band members which are expect-
ed to be free of significant admixtures. With the ex-
ception of the 8 and 9 band members, which show

energy shifts due to the admixtures discussed above,
the remaining band spacings in the odd-odd Sb nuclei
agree with the corresponding odd Sb spacings to
within —5%. The odd-odd spacings are generally
smaller by this amount. Large but systematic energy
shifts are observed in the 8 bandheads and to a
lesser extent in the 9 band members. The stagger-
ing observed in the odd-Sb band spacings, which is
mainly a squeezing of the j+ 1 and j+ 2 levels

ll + 13 +
(

2
——, ), has been washed out in the odd-odd Sb

bands. The remarkable similarities between the odd-
odd Sb bands, that result from the [mgy2 ', vh ~~~2]

configuration, and the odd-Sb bands, from the g9/2
proton-hole states, suggest that the collectivity associ-
ated with the g9/2

' proton hole is largely unaffected
by the hll/2 neutron particle. The slight reduction in
the odd-odd spacings implies that the h ll/2 neutron
enhances the collectivity a small amount. Thus, the
h 11/2 neutron is essentially a spectator to the dom-
inant g9/2 proton-hole collectivity.

In summary, the coexistence of the stable collec-
tivity that is associated with g9/2 proton hole in the
Z & 50 transition region has been shown to persist in
the odd-odd Sb nuclei through the experimentally de-
fined band properties of the [mg9g ', vh&~g] config-
uration. A detailed comparison of the odd and odd-
odd Sb bands reveals the lack of any significant influ-
ence by the hll/2 neutron on this dominant
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collectivity. The theoretical approach involving
l'Irg9/2, vh ii/2] orbitals (with residual interactions)
coupled to a spherical vibrator can achieve reasonable
fits to the 4J = 1 bands only with large broad phonon
distributions in each band member. This result
which deviates from the typical particle-vibrator weak
coupling calculation is somewhat unsatisfactory. The
two-quasiparticle plus deformed rotor framework can
also achieve negative parity 3 J = 1 bands as semi-
decoupled (conflicting case) [n g9/2 ', vh it/2] orbitals
with a prolate core and Coriolis distortions. ' The
combined odd-odd and odd band properties have not
been calculated for the Z & 50 region in this model

and any residual interaction effects have not been
determined. The impressive systematics of the dom-
inant gy2 proton-hole collectivity with the additional
sensitivities of the odd-odd band properties will hope-
fully motivate a thorough theoretical investigation of
the Z ) 50 transition region aimed at defining a
more unique understanding of the collective structure
involved.
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