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To focus on the nature of the short range part of the NN interaction, the intrinsically

nonlocal interaction among the quark constituents of colorless nucleons is converted to an

equivalent local potential using resonating group kernels which can be evaluated in analytic

form. The WKB approximation based on the Wigner transform of the nonlocal kernels has

been used to construct the equivalent potentials without recourse to the long range part of
the NN interaction. The relative importance of the various components of the exchange

kernels can be examined: The results indicate the importance of the color magnetic part of
the exchange kernel for the repulsive part in the (ST)=(10), (01) channels, in particular

since the energy dependence of the effective local potentials seems to be set by this term.

Large cancellations of color Coulombic and quark confining contributions, together with the

kinetic energy and norm exchange terms, indicate that the exact nature of the equivalent lo-

cal potential may be sensitive to the details of the parametrization of the underlying quark-

quark interaction. The equivalent local potentials show some of the characteristics of the

phenomenological short range terms of the Paris potential.

NUCLEAR REACTIONS Short range part of NN interaction, six-

quark model, RGM quark exchange kernels, equivalent local potentials
via WKB and Wigner transforms.

I. INTRODUCTION

Since the quark structure of hadrons is now well

established, nuclear physics is entering a period
where serious attempts are being made to under-
stand the nucleon-nucleon interaction through the
fundamental interaction among quarks in terms of
the underlying quantum chrom odynamics. The
long-range (small momentum transfer) domain of
the quark-quark interaction is far from a perturba-
tive solution, and there are no satisfactory treat-
ments. Most recent investigations of the XE in-
teraction in terms of models of the six-quark sys-
tem' ' ' have therefore concentrated on the short
range part of the NN interaction, since this may be
dominated by the one gluon exchange terms of the
quark-quark interaction and least influenced by the
phenomenological quark confining potentials which
have to be put into the theory by hand. The short
range part may also be of greatest interest since the
long and medium range parts of the NN interaction
are described successfully in terms of the Paris po-
tential based on a field theoretic treatment of one-
and two-pion exchange terms and including the ef-
fects of the mesonic and nucleonic resonances. In
the Paris potential the short (0—0.8 fm) range part
of the NN interaction is constructed phenomenologi-

cally through a soft-core repulsive, energy dependent
potential. It is therefore of special interest to at-
tempt to gain a more fundamental picture of this
part of the interaction. Although a fully relativistic
treatment of the NN interaction has been attempted
in terms of the two center MIT bag model, the
most successful detailed treatments have been based
on nonrelativistic quark models (with u, d quark rest
masses of -350 MeV, rather than the zero rest
mass of the MIT bag model).

Calculations in the framework of the resonating
group method (RGM) seem to be most fruitful. One
of the advantages of the RGM calculations arises
from the fact that the needed exchange kernels can
be evaluated in analytic form. The nonlocal N.V in-
teraction arising from the interaction among the
quark constituents can thus be given explicitly and
an attempt can be made to convert this to an
equivalent local potential by techniques which have
been successfully used in the scattering of complex
nuclei from nuclei. The RGM is also well suited for
isolating the short range part of the NX interaction.
The nucleons are described by colorless internal
wave functions. In the long range limit of the NN
distance, therefore, both colored Fermi-Breit terms
and phenomenological confining color potentials au-
tomatically go to zero. As a result, van der Waals
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forces between the colorless nucleons are automati-
cally excluded. Since all simple power-law confin-
ing potentials would lead to van der Waals terms of
both the wrong strength and the wrong radial depen-
dence' ' for the long range part of the NN in-
teraction, this is not a disadvantage. At short NX
separation, on the other hand, the color polarizabili-
ty of the nucleons can be incorporated into RGM
calculations by standard coupled channels tech-
niques by including coupling to the so-called hidden
color channels. '

Recent detailed calculations have been interpreted
in terms of adiabatic potentials, based on a Born-
Oppenheimer type of approximation, or have
focused directly on the S-wave phase shifts in the
various S, T channels. In both approaches the inter-
play between the short range (quark-quark) and the
long range (mesonic) part of the interaction plays
some role. Harvey has studied this effect by vary-
ing the strength of a simplified pionic color-
independent term added by hand to the quark-quark
Hamiltonian. Faessler, Fernandez, Lubeck, and
Shimizu have avoided this problem by converting
their S-wave phase shifts to an equivalent hard-core
radius parameter. It is the advantage of the RGM
approach that the nonlocal kernel arising from the
color interaction among the quark constituents of
the nucleons can be converted to an equivalent local
NN potential without recourse to the long range
parts of the interaction. If the latter are negligible
in the short range domain compared with the short
range terms generated by quark exchanges, the
quark exchange kernels can be converted directly to
an equivalent local potential. Toki has shown the
repulsive character of the short range part of the
EE interaction by focusing on the momenturn-
independent part of an expansion of the Wigner
transform of the exchange kernel derived from a
simplified quark-quark interaction. It may, howev-
er, be important to include the momentum depen-
dence of the Wigner transform to all orders. Oka
and Yazaki have used their RGM solution to con-
struct the so-called trivially equivalent potential for
the XN interaction, but this potential has infinities
at the nodal positions of the relative motion func-
tions and is therefore not subject to easy interpreta-
tion.

The color interaction among the quark consti-
tuents of colorless nucleons is intrinsically nonlocal.
To interpret the nature of the short range part of the
NN interaction it is therefore very useful to attempt
to construct equivalent effective local potentials. It
is the aim of this investigation to study the nature of
such potentials in terms of the underlying quark ex-
change kernels. The method of equivalent local po-
tentials has been widely used in the analysis of the

scattering of complex nuclei from nuclei (see, e.g. ,
discussions of the Percy-Buck effect' ), usually in
the form of a local momentum approximation.

'

Recently the Wentzel-Kramers-Brillouin (WKB) ap-
proximation using the Wigner transform of the non-
local exchange kernels was studied in detail by
Horiuchi, " and the equivalent local potentials de-
rived by this technique have been used with consid-
erable success in a number of nuclear problems. '

The simplicity of this method makes it particularly
attractive for a study of the short range behavior of
the N1V interaction in terms of the underlying
quark-quark interaction, and this method has there-
fore been chosen. Owing to the approximations in-
herent in the use of nonrelativistic RGM kernels and
the use of the WKB method in converting these to
equivalent local potentials, no attempt will be made
to give a detailed comparison of the many quark-
quark interactions which have been used in recent
studies of the NN interaction. Instead, we focus on
a few characteristic examples chosen from among
those cases which give reasonable fits to the nucleon
mass, the 6—X mass difference, and the size of the
nucleon. The quark-quark interactions which have
been singled out are discussed briefly in Sec. II, to-
gether with the parts of the RGM formalism needed
in this investigation. The equivalent local potentials
for the short range part of the NN interaction are
exhibited and discussed in Sec. III. Since few of the
recent RGM treatments exhibit the detailed analytic
expressions for the needed exchange kernels, these
are collected in an appendix together with their
Wigner transforms, which are central to the present
method of calculation. A few concluding remarks
are intended to emphasize that we are only at the be-
ginning stage of a deeper understanding of the NN
interaction.

II. THE QUARK-QUARK INTERACTION
AND THE RGM FORMALISM

The one gluon exchange potential leads to a color
fine structure interaction of Fermi-Breit form. In
all recent treatments these Fermi-Breit terms have
been combined with a phenomenological quark con-
fining potential of two-body form. Tensor and spin
orbit terms in the Fermi-Breit interaction are omit-
ted since the emphasis is on S-wave scattering. In
setting the details of the quark-quark interaction to
be used in a nonrelativistic RGM calculation, the
most important considerations include (I) the quark
mass, (2) the binding energy of the nucleon and the
delta, and (3) the size parameter of the quark single
particle wave function. In a nonrelativistic treat-
ment the mass of the u, d quarks must be chosen to
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lie in the 300—350 MeV range. In the nonrelativis-
tic kinematics the center of mass motion can be

. separated rigorously, but the reduced mass of the
six-quark X N-system is —,m (m=quark mass),
whereas the reduced mass in the S-S RGM equa-

1
tion should be —,MN (MN =nucleon mass). To
avoid the problem of an impossible mass renormali-
zation, the two reduced masses should be nearly
equal. The importance of fitting the b, %ma—ss
difference has been emphasized by many authors.
This parameter essentially fixes the color fine struc-
ture constant. The size parameter of the quark sin-
gle particle wave function is related to the size of the
nucleon. In the harmonic oscillator approximation,
the root mean square radius of the nucleon, 0.8 fm,
is equal to the oscillator constant [b =(filmco)'~ ].
Using the philosophy of the little bag, ' size parame-
ters considerably less than 0.8 fm have also been
chosen. In this investigation we focus on a few
characteristic examples of recent calculations chosen
from among those potentials which give good fits to
both the nucleon mass and the 5—X mass differ-
ence and use u, d quark masses of -350 MeV.
These include (I) one of the potentials of Oka and
Yazaki', (2) the potentials of Faessler, Fernandez,
Lubeck, and Shimizu (FFLS) with the quadratic
confining term, and (3) the potential of Harvey
which has been parametrized to reproduce the
baryon spectrum in the 1.2 to 2 GeV range as well
as the E and 6 masses. In all cases the quark-quark
interaction has the form (with V =X; &J u;J )

u;, =(X; XJ)[f(r;,)+(~; 0, )g(v;;) J,

where k; is the color SU(3) generator for the ith
quark normalized such that

P;J (color) = —,(A,; A J ) + —, .

For the potentials of Oka-Yazaki and FFLS

a,Sic
f(r)= a—r +

4r

mn, A
g(r)= — ', 5(r) .

6m c

(2)

For the potential of Harvey

f(r)=A exp[ r —la ]+Br
+C+IN(r),

g(r)= —,E5(r) .

(3)

~I [(t'N((1(203) +IN((40S(6)]ST+N(R12) j

(4)

The internal wave function pN of the nucleons in-
clude, among the internal degrees of freedom g;,
color, spin, isospin, and the internal orbital degrees
of freedom such as (r1 —r2) and —,(r1+r2) —r3 in

fN( g 1 f2 f3 ), where r; is the position vector for the
ith quark. The internal orbital functions are Os

functions. For simplicity these have been chosen to

The numerical values of the constants are shown in
Table I, together with the predicted X and 6 masses.
The FFLS potential has been chosen consistently;
that is, the coefficent a of the quark confining po-
tential is related variationally to the gluon-quark
coupling constant a, and the oscillator constant b by
requiring that the nucleon mass be a minimum. The
need for this consistency requirement is not absolute
in view of the missing long-range terms in the in-
teraction. No such consistency was required for the
parameters of the two other examples. Note also
that the three examples chosen cover a wide range of
size parameters. The b values range from 0.475 fm
(FFLS) to 0.8 fm (Harvey).

The RGM wave function for the six-quark NX
system can be written as

TABLE I. Parameters of the quark-quark interaction.

mc b a n,
(MeV) (fm) (MeV fm )

M~c
(MeV)

Mgc
(MeV)

Oka- Yazaki'
FFLSb

300
355

0.6
0.475

62.5
34.5

1.39
0.97

1105
1191

1397
1485

mc b 3 n B C K M~c Mgc
(MeV) (fm) (MeV) (fm) (MeV fm ) (MeV) (MeV fm ) (MeV) (MeV)

Harvey' 355 0.8 952.5 0.8

'Reference 5.
Reference 7.

'Reference 6.

—3.125 —119.95 —227.775 939 1240



302 Y. SUZUKI AND K. T. HECHT

be harmonic oscillator functions with oscillator con-
stant b. Each Piv is orbitally symmetric of space
symmetry [3], each is spin-isospin symmetric of
SU(4) symmetry [3], and each is a color singlet of
color symmetry [1 ]. The spins and isospins of the
nucleons are coupled to total S and T. [b,b, and the
so-called hidden color state can easily be included in
a coupled channels treatment. They differ only in
the color and SU(4) symmetry of the three-quark
functions, and only the color and spin-isospin coeffi-
cients of the various kernels are affected; see the Ap-
pendix. Since the effects of coupling to b,A and hid-
den color channels are not of major importance, and
since it is the aim of the present investigation to
gain a simple picture of the short range part of the
NN interaction, such coupled channel effects are not
included. ]

Since each Piv is internally totally antisymmetric,
the antisymmetrizer W in Eq. (4) which makes g to-
tally antisym metric under exchange of quarks
among the nucleons can be reduced in terms of dou-
ble coset generators' to the simple form

M = (1—9P36)(1—H ), (5)

where P36 exchanges quarks 3 and 6 and
H =P~4P25P36 induces nucleon exchange. The P's
act on the full space, color, spin, and isospin degrees
of freedom. Because of the symmetry of the
wave function g, H can be replaced by
( —1) + H(space), where H(space) acts on the
space parts only. The evaluation of the spin-isospin
and color parts of all matrix elements is carried out
with the use of three-particle coefficients of frac-
tional parentage (cfp's) and simple recoupling
transformations (for details, see, e.g. , Ref. 19).

The relative motion function in f is specified in
terms of the baryon position vectors through
R)2——R) —R2 where, e.g.,

R& ———,(r&+rz+r3) .

The RGM kernels for the operators d' (with 6=1
(norm kernel), T (kinetic energy), V [interaction, see
Eq. (1)] are evaluated in terms of the parameter
coordinates R, R '

by

E~«R')= &[Niv&«-iv]s~5«iz — )4«. )
I
&~

I [fivXNiv]sr5(R&z —R')W(R. (6)
1 ~ ~

The factor —, takes account of the identity of the two nucleons. The center of mass motion function t(t(R, )

is included so that orbital integrations can be carried out over the full set of six r; s. The kernels split into
direct and exchange parts

Ep(R, R')=Eg (R,R')+Eg (R,R'),
through

E~ (R,R')= —,&[P )i&vs ]iv5sz(R izR)g(R, )
I
8(1—R)

I [piv&&giv]sr5(R~z —R')P(R, )), (Sa)

EF (R,R') = —,( —9)&[P Xi' ]svr5(Ru —R)4(Rc.m. )
I
&P36(1 +)

I [NN &&4 ]sr5(Riz —R')f(R, ~ )) .

(gb)

%ith

X(R)= —,[Xiv(R) —( —1) + Xiv( —R)], (9)

the RGM equation for the relative motion function
becomes

V R X(R)+ IE' '(R, R')X(R')dR'
2p

=EX(R), (10)
where

E' '(R R')=E' '(R R')+E' '{R,R')

—[&+2&/
I
H

I P )]
XE '(R, R')

is given in terms of the exchange kernels, and where

E is the energy of the relative motion of the two nu-
cleons. The nucleon binding energy is given by the
baryon internal Hamiltonian

r

2 (&)
2 3

~i ~c.m. + g Uij ~

I (J
The baryon mass is thus given by

Harvey has chosen the parameters of his quark-
quark interaction to fit both M~ and Mz, so that
&(tii Hji I Pii) gives the true binding energy of the
baryons. The potentials of Oka-Yazaki and FFLS
fit the 6—X mass difference but give only an ap-
proximate fit to the nucleon mass {see Table I). In
the actual calculations of this investigation, experi-
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mental binding energies were used in Eq. (11), but
the final results are not qualitatively sensitive to the
relatively small differences between the experimental
and theoretial values.

It is to be noted that there is no direct potential
term in Eq. (10), a feature characteristic of a color
interaction of the type of Eq. (1) and the wave equa-
tion of a color singlet two-body system. [The direct
(delta function) terms in the interaction kernel
KI '(R, R') give the contribution of the internal po-
tential energies to the nucleon binding energy, and
they make up part of (P~

~

Hs
~ P,v).] The RGM

equation for the NN relative motion thus involves
no local potential term if the underlying quark-
quark interaction is made up of color Fermi-Breit
and color confining terms. The full solution of the
NN scattering problem would clearly require addi-
tional interactions of a local long-range character (of
one-pion exchange form, for example). Since our
focus is on the short range part of the NN interac-
tion, no such terms will be added. If such additional
terms are negligible in the short range (0—0.8 fm)
domain, compared with the short range terms gen-
erated by quark exchanges, they will not influence
the equivalent NN potentials constructed by the
present method. Only the nonlocal kernels generat-
ed by quark pair exchanges will be considered.

The RGM kernels needed can be given in analytic
form. Despite the fact that a number of RGM cal-
culations of the six-quark system have been made,
previous investigations give the needed kernels only
for special radial forms ' or give the kernels in
GCM (generator coordinate) form. '7 Explicit ex-
pressions for the needed kernels are therefore given
in the Appendix. The quark-quark interaction in-
cludes a term of Gaussian radial dependence [see
Eq. (3)]. This is particularly useful since many oth-
er radial forms can easily be expanded in terms of
Gaussians.

III. EQUIVALENT LOCAL POTENTIALS

To interpret the nonlocal kernels generated by the
quark pair exchanges, an attempt can be made to
convert these to equivalent local potentials. This
will be particularly useful if we want to compare the
effects of the nonlocal kernel with the phenomeno-

I

logical short range terms which have heretofore been
added by hand to the NN interaction (cf. the Paris
potential ). Equivalent local potentials have been
widely used in the analysis of the scattering of nu-
clei from complex nuclei. If the RGM equation,
Eq. (10), for X(R) is replaced by

$2 V'-'X" '(R)+U(R)X" '(R)=EX" '(R),
2p

(13)
with the condition

X" '(R) X(R),
R~co

this defines an equivalent local potential, U(R).
One possible choice of U(R) is the so-called trivially
equivalent local potential. This is obtained by solv-

ing the RGM equation and substituting the RGM
X(R) into Eq. (13). This has been examined by Oka
and Yazaki for the six-quark model of the short
range NN interaction. It suffers from the serious
drawback that it is undefined at points where
X(R)=0. Usually some form of local momentum
approximation is used in defining the equivalent lo-
cal potential. Recently the WKB approximation
based on the Wigner transform of the nonlocal ker-
nels was used successfully by Horiuchi' to show
that it yields equivalent local potentials which simu-
late the effects of the nonlocal RGM kernels of the
nuclear cluster model with good accuracy by making
detailed phase shift comparisons. ' This method has
been chosen because of its simplicity and the fact
that it permits us to construct an equivalent local
potential for the short range part of the NN interac-
tion without recourse to the long range part of the
interaction. The validity of the method is subject to
two basic conditions. First, the usual WKB approx-
imation is A&g characteristic action. ' ' Second,
the nonlocality range parameter, given approximate-
ly by b in our case, must be such that (bPlm') &A'.

This is satisfied for relative motion energies up to
—1 GeV in our case. We would therefore expect the
WKB approximation to be a reasonable approxima-
tion in the -300 MeV range.

In the WKB approximation, the kernel
K' '(R, R ') is first converted to a momentum depen-
dent potential

K' '(R, P,~)= f d s exp s.P,~
K' ' R——,R+—exp s P,„2e " 2

'
2 2e

This momentum dependent operator is then approximated by the Wigner transform of the kernel

Kg'(R, P, (R P) )= f ds exp —s P K' ' R——R+-
fi 2' 2

(15)
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where P is treated as a e number. Because of the rotational invariance and the symmetry of the exchange ker-
nel, K~ is a function only of R, I', and (R P) . The Wigner transforms for the relevant kernels are collected
in the Appendix. In terms of these the equivalent local potential U(R) for relative motion orbital angular
momentum, L, is given by the transcendental equation

U(R) =Kgb' R,2p[E U(—R)],2pR E —U(R)—

where the WKB replacement

.L (L +1)~(L+1/2)'

(GeU) ~
O.g —N.

)'58
I I I I I X I I I I I I I I'i &S8

E = 50MeVE=O

has been made in the last variable (although final re-
sults are not very sensitive to this change).

The transcendental equation has been solved nu-
merically for the U(R) for the quark-quark interac-
tions of Table I, and the U(R) will be interpreted as
effective local potentials for the short range part of
the XX interaction. In solving the transcendental
equation the true nucleonic reduced mass has been

3
used, rather than —,m; but since our parameter
choices have been limited to cases where the differ-
ence between the two values is small, the solutions
are not very sensitive to which choice is made. Fig-
ures 1 and 2 show the effective local potentials for
the (ST)=(10) and (01) channels, for L =0 (S-wave
relative motion functions). The short range nature
of these potentials is dictated by the color nature of
the quark-quark interaction among the color singlet
nucleons. The differences in -the ranges between the
three examples are related to the choice of oscillator
constants for the three cases. The shortest ranges
are obtained with the Faessler, Fernandez, Lubeck,

h'(L + —,)'

2pR
I

and Shimizu parameters. The longest range poten-
tials are those using Harvey's parameters, consistent
with the differences in oscillator constants (0.475 fm
for FFLS, 0.8 fm for Harvey). In comparison with
the trivially equivalent local potentials obtained by
Oka and Yazaki, these potentials have a rather soft
core. However, compared with the phenomenologi-
cal short range terms of the Paris potential, these
potentials show a rather hard core. For all cases the
potentials at the origin (R =0) for (ST)=(10) are
higher than those for (ST)=(01). Since the S
phase shifts are less repulsive than the 'S phase
shifts as calculated with the short range interactions
of Oka-Yazaki and FFLS, this result seems surpris-
ing. However, it is to be noted that the (ST)=(10)
potentials are smaller (less repulsive) than the
(ST)=(01) potentials for the larger R values, with a
crossover in the 0.35 to 0.45 fm range for the Oka-
Yazaki parameters and in the 0.25 to 0.35 fm range
for those of FFLS. The potentials exhibit a signifi-
cant energy dependence. This is shown explicitly in
Fig. 3, which gives the energy dependence of the
core height (R =0 values) of the effective potentials.
The increase with energy is almost precisely linear
with rates of increase given by -0.5E and -0.3E
(E in MeV) for the potential parameters of Oka-
Yazaki and FFLS, respectively. This compares with

0.6 (GeV)

06—

I I I I & I I

E=O

I I I I I I I I

E= 50MeV

0 I I I I ~ I I

0 g
'i )57

(ST)
L

I I I I I I

0.5

0
0.9—

I I I I I I I

E= I 50 MeV E= 550 MeV

0,6
0-

0.6 1.2 0 R(tm)

FIG. 1. The equivalent local potentials for the
(ST)=(10) S-wave channels. Solid line, Oka-Yazaki.
Dashed-dotted line, Faessler, Fernandez, Lubeck, and
Shimizu. Dashed line, Harvey.

0.5

0.6
0 I

0.6 1.2 0 I.2

FIG. 2. The equivalent local potentials for (ST)=(01)
S-wave channels (as in Fig. 1).
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(Gev)

1.0—

I ~ ~ ~~o~'
( IO)

(Gev j I

0

0.8—

MeV E=350 MeV

0.6—

I I I I I I

06 (.2
I

06 ).2
R (frn)

I

)00
I I

200
I I

500
E(Mev)

FIG. 3. The energy dependence of the core height
{R=0 value) of the equivalent local potentials. Solid line,
Oka- Yazaki. Dashed-dotted line, FFLS.

where the terms with i =C, M, Q, K, and N gives
the contributions of the various exchange kernels,
color Coulombic, color magnetic, quadratic confin-
ing potential, kinetic energy, and norm exchange

(Gev)

(ST) = ((0) L =0

E= 550 MeV

I I I I I I I I I I I I I (

0.6 1.2
R(tm)

FIG. 4. The contributions of the various exchange ker-
nels to the equivalent local potentials (Oka- Yazaki).

Q —quadratic confining exchange kernel, M —color mag-
netic, K—kinetic energy, E—norm, C—color Coulombic.

the linear energy-dependent terms of 0.998E and
0.952E (for T =0 and T = 1 channels, respectively)
of the Paris potential.

It is interesting to examine the relative importance
of the various components of the exchange kernels
in their contribution to the effective local potentials.
The transcendental equation, Eq. (16), can be put in
the form

U(R) =X;Kit.'(R, U(R)),

FIG. 5. The contributions of the various exchange ker-
nels to the equivalent local potentials (FFLS) (as in Fig.
4)

kernels to the effective local potential. The results
are shown for the (ST)= (10) channel for the
parameters of Oka-Yazaki (Fig. 4) and FFLS (Fig.
5). Quite significant differences are observed. For
the Oka-Yazaki parameters the Coulombic (C) and
confining potential terms (Q) almost cancel each
other so that the net effective local potential appears
to be set by the color magnetic term (M). For the
FFI.S parameters, however, the some~hat smaller
color Coulombic contribution is not canceled by the
confining potential terms (Q) alone. The energy
dependence of the various exchange contributions is
not fully understood. However, it is clear that it
does not arise from explicit E dependence of the
coefficient of the norm exchange kernel. The can-
cellation of the large attractive contribution of the
color Coulombic exchange kernel by the effects of
the other kernels appears to indicate that the precise
parametrization of the quark-quark interaction may
be important. Owing to the phenomenological char-
acter of the quark confining potentials, it may there-
fore be premature to draw conclusions about the
underlying character of the short range part of the
NN interaction, and it would be difficult to conclude
that the color magnetic term is the key to the short
range effective repulsion. However, Figs. 4 and 5
seem to indicate that the contribution of the color
magnetic exchange kernel, with magnitude fixed by
the 6—N mass difference, may largely determine
the magnitude of the effective repulsive core poten-
tial, because the linear energy dependence of the ef-
fective potentials is matched quantitatively by the
energy dependence of the color magnetic term.

Figure 6 shows the angular momentum depen-
dence of the effective local potential. The figure
shows that the 1. dependence is much more impor-
tant than in the corresponding case of nuclear
scattering.
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{GeY)

1.0

I I I I I I I surprising result, the experimental evidence against
it may not be overwhelming. The parametriza-
tions of the quark-quark interactions which have
been used are based on experimental input which is

0.5

TABLE II. The spin-isospin coefficients Csr. The
sPin-isosPin factors Cs'r are the matrix elements of PP36,
where 6=1 (i =0); P=o4 a5 {i=1); P=o5.o6(i =2);
@=o2 o6 (i =3); P=o2 o5 (i =4); P=o3 o6 (i =5).
If bra/ket interchange of NN/hA is made then Csr and

Csr must be interchanged.

NN/NN

0.6 t.2
R{fm)

FIG. 6. The I. dependence of the equivalent local po-
tential (Oka- Yazaki).
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Finally, Fig. 7 shows some of the difficulties en-
countered in attempts to gain an effective local po-
tential with the WKB approximation. For the
(ST)=(00), I. =1 channel and E =0, the transcen-
dental Eq. (16) gives two solutions for small values
of R, one attractive and one repulsive. There are no
solutions for 1.0(R & 1.4 fm, and again two solu-
tions for large values of R. For E = 150 MeV there
are two solutions for all values of R, and one would
expect to choose the solution which goes to zero as
8 —+oo as the physically relevant one. This would
lead to the conclusion that the effective (ST)=(00)
potential is attractive. Although it would be a
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independent of baryon P-wave properties, and the
underlying exchange kernels may not be very reli-
able for the odd L-partial waves. The difficulties as-
sociated with the lack of a solution for the low ener-

gy (E =0) limit may be associated with the break-
down of the local momentum approximation. (A
similar difficulty is encountered by Aoki and Horiu-
chi' in some cases of nuclear scattering. ) However,
no such difficulties are encountered for the
(ST)=(10) and (01) channels. Insofar as the con-
cept of an effective local potential can be used, we
expect the WKB approximation to be a reasonable
approximation in the -300 MeV range for these
important channels.

IV. SUMMARY

Since the intrinsically nonlocal character of the
color interaction among the quark constituents of
colorless nucleons makes it difficult to interpret the
nature of the quark exchange kernels, an attempt
has been made to construct equivalent local poten-
tials for the short range part of the NN interaction.
Calculations have been carried out in the framework
of the resonating group method since the RGM ex-
change kernels can be given in analytic form and
can be converted to equivalent potentials without
recourse to the long. range (mesonic) part of the in-
teraction. Owing to the uncertainties associated
with the use of nonrelativistic dynamics and the
phenomenology associated with the quark confining
terms in the quark-quark interaction, the WKB ap-
proximation based on the use of the Wigner
transform of the nonlocal exchange kernels has been

chosen as the simplest method of constructing an
equivalent local potential for the short range part of
the NN interaction. The resulting potentials for the
(ST)=(10) and (01) channels are in a form which
can be compared with the phenomenological short
range terms of the Paris potential. The core
heights at E =0 are considerably larger than those
for the Paris potential, whereas the rates of increase
with E are smaller by 30—60% than the corre-
sponding phenomenological terms. The results seem
to indicate that the overall strength of the effective
repulsive core in the (ST)=(10) and (01) channels
may be set largely by the contributions of the color
magnetic part of the exchange kernel and that the
energy dependence of the repulsive core is matched
by the energy dependence of the color magnetic con-
tribution. However, the large cancellations of the
color Coulombic and quark confining contributions
make it clear that the exact nature of equivalent ef-
fective local potentials may be very sensitive to the
details of the parametrization of the underlying
quark-quark interaction. We may thus be only at
the beginning stage of a fundamental understanding
of the nature of the repulsive core in the NN interac-
tion.
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APPENDIX

Since the needed kernels are available only in GCM form ' or have been given in RGM form only for spe-
cialized terms, ' explicit expressions are given in this appendix together with the needed Wigner transforms.
The RGM kernels have been evaluated through their Bargmann-Segal transforms. ' The evaluation of the
color and spin-isospin parts of the coefficients is illustrated in Ref. 19. Since the kernels for the b,b, channel
and the overlaps between NN and b,b, states differ only in these color, spin-isospin factors, they are included in
the tabulations. Similar coefficients needed for the coupling to hidden color states, as well as the kernels for
tensor and spin-orbit terms, will be given in a future publication.

The kernels are split into direct and exchange parts; see Eqs. (7) and (8). It is convenient to express them in
terms of dimensionless coordinates a, a ' rather than R, R '

a=[—,]'~ (R/b), b =[Pi/mes]'~, (Al)
'

(A2)

(similarly for a ').
The physical kernels Ez(R,R') of the text are related to the dimensionless kernels Ez(a, a ') of this appen-

dix by a factor of dimension L
' 1/2 3

Kp(R, R ') = — —
ECp ( a, a ') .3 1

2 b

The norm kernels are
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exp[ ——,(a +a' )]

E', '(a, a ') = —,[5(a—a ') —( —1)'+'5(a+ a ')],
3/2

~(E)(~ ~i) 9( )C(0)
3 8~

(A3)

X —,[exp( —,a a') —( —1) + exp( ——,a a')], (A4)

where the spin-isospin factors Csz-' are given in Table II. The kinetic energy kernels are

1(.T '(a, a')= , fico[——V, +6]—,[5(a—a') —( —1) + 5(a+a')],
' 3/2

1(.T )(a, a')= —9( —, )Cz(T'( , fico)—exp[——,(a +a' )]
8m

(A5)

X —, j [—, ——,(a —a ') ——„(a+a ') ]exp( —, a a ')

—( —1) + [—,——,(a+a') ——„(a—a') ]exp( ——,a a')) . (A6)

The interaction kernels for

v,j ——()(,; AJ )f(r,j ) and v,j ——()(,; AJ )( cr; cr1 )g(r,j )

are the following:

(A7)

(1) For the Gaussian interaction f(r) [org(r)]=exp[ —(P/2)(r/b) ],

Kv '(a, a')= ——,p(6)(1+P) —,[5(a—a') —( —1) + 5(a+a')] . (A8)

For f-type interactions p =+ 1 for both NN and b,h; for g-type interactions, p = —1 for NN and p =+ 1 for

E' '( ')= —9
8m'

3/2

exp[ ——,(a +a' )](—, )

X ——,Csz'(2)(l+P) [exp( —,a a') —( —1) + exp( ——,a a')]

——,CST(4)(1+—,P) exp—3P(a +9a' )

8(8+5P)

6+6p. . .s+ T 6+6p

——,C»(4)(1+ —,P) exp
8 (3) 5 3/2 3p(9a'+a' )

8 8+5

6+6P,
( 1)s+7 6+6P

8+5P 8+5P

+ —,CST'(4)(l+ —,P) ' 'exp
2 8+4

exp a.a —( —1) expS+T a'a
4+2P 4+2P
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+—,CsT'(1)exp — (a +a' )
16 3

exp
3+613

( )s+T 3+6p
(A9)

(Alo)

The Cs'r' —Csz' needed for g-type interactions are given in Table II. For f-type interactions Cs'T' are replaced by
CsT' for all i

(2) For the special case of the color Coulombic term f(r) =b Ir,
1/2

&I, '(a, a ') = ——,(6) — —,[5(a —a ') —( —1) + 5( a+ a ')],

3/2

EI '(a, a')= —9Csz' exp[ ——,(a +a' )](—, )

1 /2

&&
——,(2) — [exp( —,a.a ') —( —1) + exp( ——,a a ')]

——,(4) —[ exp( —,a.a ')h(( ~ )'~
l

a —3a '
l

)

—( —1)s+ exp( ——,a.a ')h(( ~ )' '
l
a+3a '

l )]

——,(4) [exp( —,a a')h(( ~ )'
l
3a —a'

l
)

—( —1)s+ exp( ——a.a ')h(( —„, )'
l
3a+ a '

l )]

+ —,(4)[exp( —,a a')h(( —,)'
l
a+a'l )

—( —1)'+Texp( ——,a a')h(( —, ) "l a —a'l )]

+ —(1)(—, )'~~ exp( —,a a ') —( —1) + exP( ——,a a ') (Al 1)

where

h (x)=erf (x)Ix = 2

(3) For the quadratic confining potential f(r) =r jb,
IttD'(, ')= ——,(6)(3)—,[5(a—a ') —( —1) + 5(a+a ')] (A12)

' 3/2

XP'(-.,-') = —9C,",'( —16)
8m

exp[ ——,(a +a' )]—,
'

[exp( —a a') —( —1) + exp( ——', a a')] . (A 3)

(4) For the color-magnetic interaction g (r) =5(r /b),

it~+(a, a')= ——p(6)(217) —,[5(a—a') —( —1) 5( + )l (A14)

where p = —1 for NN and p = + 1 for Ah.
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I(.v '( a, a ') = —9
8a

' 3/2

exp[ ——,(a +a' )](—, )

~ p

&( ——,Csz'(2)(2n. ) [exp( —,a a') —( —1) + exp( ——,a a')]

8 C(g)(4) 5'(r
9 ST 4

—3/2
3(a +9a )

l2

exp S+T
40

[exp( —a a ') —( —1) exp( ——a a ')]
5 5

8 C(3)(4)
9 ST

—3/2

exp — [exp( —a.a') —( —1) + exp( ——a a')]+a ) 6 . s+T
40 5 5

+ —,Csz'(4)m i exp[ ——,(a +a' )][1—( —1) + )

+ —,CsT'(1)( —, )
i exp( —,a )[5(a—a') —( —1) + 5(a+a')] (A15)

The Wigner transforms for the corresponding exchange kernels [see Eq. (15)] are collected below. They are ex-
pressed in terms of the dimensionless coordinate a and the dimensionless momentum coordinate q

q=[2/3]'i bP/(ri. (A16)

Our kernels are of the form

&' '(a, a ') = —,[&(a,a ') —( —1) + &( a, —a ')], (A17)

where J (a, a ') is of a Wigner or A type, using the language of Ref. 15, whereas I(.(a, —a ') is of a Majorana or
B type. The B type kernel is first transformed to A type and then converted to the Wigner transform (see Sec.
4 of Ref. 15). Because we have identical three-quark fragments, cf. E . (9), effectively only the
Wigner transforms of I(. ( a, a ') are needed; and these are the Wigner transforms E~ ' given below.

Eg'(norm)= —9( —, )CsT'( —, ) exp[ ——,(a +q )],
1

Eg'(kinetic)= —9( —, )CsT'( —,fur)( —, ) ( —,——,a + —,q )exp[ ——,(a +q )],

Kg (Gaussian)= —9( —
) (1+P) 3i exp[ ——,(a +q )]

(A18)

(A19)

CsT(2) -Csv (4)e p—
16(1+P)

(a+i q)

——,Csz'(4)e p — ( a —i q )
16 1+

+ —,Cs '(4), exp
1+P

1+—,P

3P
4+2P

3/2

+ 9 Csz(1), exp q
i6 (5) 1+13 3P

1+—,P 4+6 (A20)
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' 1/2

Kit
' Coulomb; —=—9( —,) CsT'

r 7T
exp[ ——,(a +q )]

1

X ~ ——,(2) ——,(4)(2) f dtexp[ ——„(a —q )t ]cos[—,(a q)t ]
' 1/2

+ —,(4) — h((I)'~ a)+ —", (1)(—,
')'~ f dtexp( —,'q t )

J

2

Eu ' quadratic confining; = —9CsT'( —16)(—, ) exp[ ——,(a +q )],

(A21)

(A22)

Ku ' magnetic;5 — = —9( —, ) (2n. )
r exp[ ——,(a +q )]

X j
—

9 Csr'(2) 9CsT'(—4)exp[ —«( a+i q )']

—
9 Csz'(4)exp[ —

&&
(a i q) ]

+ —,CsT(4)~2exp( ——,a )[1—( —1) + ]

+ —,C"~(1)(—, )' 'exp( —,q')] . (A23)
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