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Charge multipole contributions to 180' electron scattering by complex nuclei
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An analysis of the differential cross section for electron scattering at 180' from complex nu-

clei is made in the distorted-wave Born approximation to see the conditions in which charge
multipoles may contribute to such cross sections, questioning the usual interpretation of the data
in terms of pure transverse form factors.

NUCLEAR REACTIONS Electron scattering; complex nuclei. Charge
multipole contributions to 180' (e,e') in DWBA.

It is well known' that in PWBA (plane-wave Born
approximation) the differential cross section for elec-
tron scattering at 180' is directly proportional to the
so-called nuclear transverse form factor, i.e., involves
only transverse multipoles of the nuclear vector
current density. For sufficiently large nuclear charges
the Coulomb distortion of the electron wave func-
tions is important and an analysis of the data in terms
of DWBA (distorted-wave Born approximation) is
mandatory. Indeed, this approximation is now com-
monly used to interpret the experimental data on lon-
gitudinal form factors. ' However transverse form
factors are still analyzed on a PWBA basis, under the
assumption that a change of scale in momentum
transfer (q q,rr) (Refs. I and 3) is sufficient to
take into account distortion effects. Recently experi-
ments at 180' on '8'Ta have been performed3 (and
other rare earth nuclei are under investigation) to ex-
plore current distributions in rotational nuclei. In the
case of ' 'Ta large discrepancies were found at low
momentum transfer between theoretical and experi-
mental results " and calculations improving the
theoretical description of transverse multipoles in ro-
tational nuclei are now under way. However, the
comparison of these calculations to experimental data
strongly suggests that distortion effects are not prop-

erly taken into account and that in order to extract
information on current distributions in heavy de-
formed nuclei a thorough analysis of the differential
cross sections in DWBA is also required in this
case.

The widespread idea that charge multipoles do not
contribute to electron scattering at 180' is usually
based on a change of electron spin polarization argu-
ments. ' However, to our knowledge, no analytic
proof in favor of or against this assumption has been
presented on the basis of DWBA. The purpose of
this Brief Report is to provide such an analysis. To
this end, an explicit expression of the differential
cross section in DWBA for 8 = m is given in which
current conservation has been used to explicitly
separate longitudinal and transverse contributions [as
is done in PWBA (Ref. I)], and the conditions under
which longitudinal contributions vanish are investi-
gated. Numerical results will be presented elsewhere;
here we will strictly focus on the question of whether
charge multipoles may or may not contribute to such
cross sections.

Using the continuity equation to separate contribu-
tions from longitudinal and transverse multipoles the
differential cross section for electron scattering at
180' in DWBA is given by'

do (e;, S = m) n'64rr~f'
d0 I(-If 1+2m(/Mr 2(2II+ I)

where e; and ef denote the initial and final electron energies, respectively, and X],„stand for the individual re-
duced amplitudes corresponding to the contributions of longitudinal (r = C), transverse electric (r = E), and
magnetic (r = M) multipoles of the nuclear current in the transition from state I; to state If
(EI —EI = e; —af = au). The latter are given byf i
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and 3C)',„)=)', „)for 7 = C,E; Xg„)= —3C)',„
for r =M. The notation of Ref. (6) for initial (i )
and final (f ) distorted electron wave functions has

1
been used (j;(f)= K'(f) 2 ). The relations for

phase-shifts (5„) and radial solutions (g„,f„) of the
Dirac equation for the electron in the electrostatic
field V(r), 6

8 „=8„
g „(r) =f„(r)

f „(r)= g„(r)—

with K ) 0, valid in the high energy limit

(m, /d, (( 1), have been enforced to reduce the
summations in Eq. (2) to be carried over positive )(;,
Ky values. Likewise, from the symmetry properties
of th'e Clebsch-Gordan coefficients in Eq. (2), we see
that for even-parity transitions ()( = even for r = C,E;
A. = odd for r = M) the sums over K Ky in X),„,X),„
are restricted to K~ different from K; values, whereas
for odd-parity transitions the above restriction holds
for X&~. The explicit expressions of the radial in-
tegrals (R)', (+K;, Kr) are as follows:

K +Kg+A, , CVCll f f p'~
(4)

(K;+ Ky)Q)
(R), ()((, )(y) =5„~„~)(.edd ', i2 J~ J) K),(r)K),(r')p), , q(r)F„+„(r')"i " '

)( )(~1 ]
K.Ky

f(K(. KI) = 5..+. +). eve. (—(~) l)((&+I)]' '(2&+ I) ' '

x J f[4)(+ Ip)(), )(r)K„)(r)+Jkp)(z+)(r)K) ~)(r)]

K), )(r')
()(;—((y) F„+„(r')K .Ky

K +)1)( )r

A. +1 +F (r')(K) —)+K)+)) (6)

In the above equations the double integral symbol stands for Jr 2dr f r'2dr'; r & (r &) is the larger (smaller) of r
and r' The pro.ducts of KL(r) and K,(r') denote products of spherical Bessel functions of the first (jr, ) and

third (hL ) kind':

KL (r )KL (r') =jL ((dr &) hL
' ((dr &), L = )(, )( + 1

(

i 2)(+I r' '
K)+((r)Kq )(r') =8(r' —r)j)+)((dr)h& )((dr')+8(r —r') h)(~+~) ((dr) j„)(0)r')+

CU f

where t) is the step function and K), ((r)K),~)(r') is
obtained from Eq. (8) interchanging r and r' The.
radial functions G and F are defined as

G„+-„(r)=f„(r)f„(r)+g„(r)g„(r)
F„„(r)=f„(r)g—„(r) +g„(r)f,„(r),

The radial integrals (R), (—K;, KI), (R), ( K, Ky),
(R) ( K', KI') are obtained from Eqs. (4), (5), and

I

(6), reSPeCtiVely, by Changing 5„+„+),eve„(edd)

f)(( +e +X, odd (even)p FK K(» ) by ~ G K(er )
i f ' ' i f i f

G„+„(r') by F„„(r'),and K; b, y
—K;. Finally the

longitudinal (p„) and transverse (p„L )„),+)) mul-
tipoles, purely dependent on the nulcear structure,
are defined as reduced matrix elements of the nu-

clear charge [p( r ) ] and vector current [ J ( r ) ] den-
sity operators as follows:

(

Ig )~ Ii
p ( ~ )=— g ( —()~ ~

)p )p (~M~ J. d() v+(())p(r)((p()
MM ig

(10)

( M Iy A. I;
p)L(r) = — g (—1) M M IrM~ „~'tdQi Y)L(Q) J( r ) IM;

eMMp,

With the above definitions, the (nuclear) selection
les for the amplitudes X&,x,'p, +& are identical to

those for the usual longitudinal (or Coulomb) and
transverse electric and magnetic form factors, respec-
tively, defined in Ref. (I). In particular, it is ap-

I

parent that X&E„ is zero for elastic scattering and that
the differential cross section at 180' is zero for
I; = Ig= 0. The usual PWBA (Refs. I and 4) expres-
sion for the differential cross section can be obtained
from Eq. (1) by taking the plane wave limit
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[ V(r ) 0], i.e., null phase shifts and spherical
Bessel functions for the radial solutions:

g„(r) =f„+t(r)=j „(K,r) (~ ) 0)

Let us now analyze the conditions under which the
cross section in Eq. (1) does not receive contribu-
tions from charge multipoles, i.e., 3C&„+~ =0. In-
spection of Eqs. (2) and (4) leads to the following
conditions.

(i) The first obvious condition is that the nuclear
charge density involved in the transition be spherical-
ly symmetric: p~(r ) = pp(r ) Sg p.

e "g„(r)=e "+'f„+~(r) (12)

for any K ) 0. For then, with rearrangement of the
terms of the sum in 3C» and use of the identity'

(ii) The second condition is that co = 0 (elastic
scattering). In this case (K; = Kf) the radial solu-
tions [f„(r),g„(r) ] for initial and final electron
states are identical and since the terms in the sum
over K, Kf in 3C&„change sign under the interchange
of K; with xf, it follows that X» +~ =0 for co=0.

(iii) The third condition is that the radial solutions
satisfy the relation

Jf J(
1 1 —1
2 2

J,. +j +A,= —[&(&+I)]' '
& t [(Jf+—) + ( —I) ' (j;+—,)1

0 2
2 2

X&„+~can be written as

X'„+,= [(2Z+ I)')i() + I)] '"

„~,p„(r) $ e ' g„(r')g„(r')(—1) ' 5„~„~„„.,„
~

A. +1
K., Kf ~~1

Jf JI
(Kf K() KIKf

0
2 2

t ~ t

jf+1 j;+1—(~;+ I ) (Kf + 1)
2 2

1

jf jI+1 A,

+ (K;+Kf+ 1) Kf(KI+ 1)
2 2

I,,+,
K;(Kf+ 1)

jl A,

1

0
2

and with the use of the recurrence relations for
Clebsch-Gordan coefficients the coefficient within

large curly brackets can be shown to be identically
zero.

This third condition is only met in the plane wave
limit [ V(r) 0], but for V(r) A 0 the two members
of Eq. (12) become more and more different as the
charge increases, as can be shown by using the
analytical solutions of a pure Coulomb potential
[ V (r ) = Zn/r ]. No o—ther conditions have so far
been found to exclude the possibility of charge mul-
tipole contributions to the differential cross section at
180' in DWBA.

Taking into consideration these conditions we may
conclude that for inelastic scattering on heavy nuclei
at 8 = m, involving nonspherically symmetric transi-
tion charge distributions, charge multipoles with
h. ~ 2 (X ~ 1) for even (odd) parity transitions are
expected to contribute to the cross section, provided
that the excitation energy (rp) is not neglected
against the incident energy (e;). On the other hand,

I

since for the type of scattering under consideration
the momentum transfer is q = K;+ Kf = 2e; —~, it is
clear that, for a given co value, the larger q is, the
more one approaches the situation where condition
(ii) applies, and consequently, charge multipoles
would contribute more for smaller q values. Thus a
quantitative analysis of such contributions may also
be important for the correct interpretation of
transverse form factors corresponding to natural pari-
ty excitations in even-even nuclei as well as to tran-
sitions in odd-A nuclei, in which more than one mul-
tipolarity may enter.

Preliminary results' of X = 2 charge multipole con-
tributions at 180' show that they are different from
zero for inelastic scattering and grow with cu for fixed
incident energy. In particular, this contribution ap-
pears to be negligible, as compared to the contribu-
tions from magnetic multipoles, in the transition

in ' 'Ta due to the small excitation energy2 2

involved.
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