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Using the method of effective nuclear density, we apply a simple, m-nucleus optical poten-

tial (without p terms and the Lorentz-Lorenz effect) to m atoms and low-energy ~-nucleus

elastic scatterings. Data of both phenomena are analyzed in a unified, hybrid (phenomeno-

logical and theoretical) manner: The ~ -atom data are analyzed first to determine

phenomenologically the potential parameters at threshold. The parameters are then extra-

polated successfully up to 50 MeV incident pion laboratory energy by a microscopic calcula-

tion in which the energy-dependence correction is made after including the Fermi-averaging

and Pauli-blocking effects. In contrast to other work, our potential includes the minimum

number of the parameters that describe the full information content of the data. %e can

thus conclude that these effects are the important microscopic corrections for the extrapola-

tion, but neither the Lorentz-Lorenz effect nor some highly nonlocal effects are crucial ones.

The potential we have used has angular transformation terms which are also found to be

crucial in the unified treatment. During the course of this work we have found an interest-

ing behavior of the terms. A short account of its discussion is also presented.

NUCLEAR REACTIONS Unified analysis and calculation; strong-

interaction shifts and widths in m atoms and differential cross sections
. of elastic n.-nucleus scattering up to 50 MeV; m-nucleus optical potential.

I. INTRODUCTION

Bunatyan and poi' (hereafter referred to as
JINR) and Stricker et al. (Refs. 2 and 3 referred to
as MU1 and MSU2, respectively) have demonstrated
an interesting, simultaneous description of both tr
atoms and low-energy m.-nucleus scatterings.
Though they extend their analyses to higher energy
regions, we concentrate here on the region up to
about 50 MeV. In their work the m-nucleus optical
potential of Ericson and Ericson that fits tr -atom
data is shown to be also capable of reproducing
low-energy scattering data after some modifications.
The major modifications include the energy depen-
dence of the coefficient of p (=nuclear density dis-
tribution) and the effect due to angular transforma-
tion terms (ATT). However, MSU1 included the
former only in the imaginary parts and JINR used
the m -atom potential parameters that were ob-
tained without ATT. As to the coefficients of p,
MSU1 assumed ReBO ———ImBO and ReCO
= —ImCO, and JINR assumed ReBO ——ReCO ——0,
both using the full Lorentz-Lorenz effect g= 1, and

MSU2 tried to incorporate a theoretical calculation
of these parameters with a few values of g&1. As
pointed out in the preceding paper, the low-energy
data (n. atoms and m-nucleus scattering) are insens-

itive to details of the tr-nucleus optical potential. In
particular, the potential of Ericson-Ericson is too
complicated for all the parameters to be determined
phenomenologically. As was done in these works,
one way to handle this problem is to fix some
parameters to the values judged to be the best and to
assign their energy dependence, based on some
theoretical reasoning. Since the potential form of
Ericson-Ericson seems to include most of the signi-
ficant physics and to be the most convenient as a
description of the low-energy phenomena, this way
of handling the problem may be considered to be
quite reasonable and, in fact, these authors are suc-
cessful in the extrapolation of this potential from
the threshold (the natoms) to. the low-energy
scattering. However, because there are too many
parameters and too much uncertainty, it is not clear
what is really the essential physics responsible for
the successful extrapolation.
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Although the data are insensitive to the details of
the potential, they do determine the effective param-
eter values rather reliably, as discussed in the
preceding paper. Thus care must be taken so that,
when some parameters are fixed in the way men-
tioned above, the final set of the parameters does
yield the correct effective parameter values. For ex-
ample, we found that the parameters proposed by
MSU1 do not reproduce the m -atom data well.
The chi-square per degree of freedom (X /X) that
we obtained is about 17 for their set 1 and about 14
for their set 2 by using the m -atom data without
including the new, accurate data. Certainly the ex-
act values of 7 /E vary depending on the choice of
the nuclear densities, but these values of X /E ap-
pear quite large.

In view of these situations, we decided, by follow-
ing the preceding paper, (1) to use an effective po-
tential which has the minimum number of parame-
ters needed to represent the data; (2) to determine
the parameter values by a rigorous best-fit search to
the m. -atom data; and then (3) to extrapolate these
parameters up to 50 MeV scattering with the least
number of corrections including the most significant
physics based on a simple, clearcut microscopic

I

theory. As was the case in the other work men-
tioned above, this method is also a hybrid one, being
a combination of phenomenological and theoretical
calculations. But in our work the two parts of the
calculations are clearly separated and care is taken
to avoid as much phenomenological and theoretical
ambiguity as possible.

Based on the work described in the preceding pa-
per, the effective potential is constructed by exploit-
ing the facts that the insensitivity of the data mani-
fests itself in correlations between the coefficients of
p and p in the potential and that the correlations
are approximately independent of the atomic mass
number and vary slowly as the pion energy in-
creases. Therefore, our effective potential is simply
proportional to p without p terms and the Lorentz-
Lorenz effect. In this form of the potential we in-

clude the ATT because it has a kinematic rather
than a dynamic origin (as a consequence of transfor-
mation from the m.-nucleon c.m. system to the m.-

nucleus c.m. system) and also because it has been
shown to be important in scattering problems. The
potential is referred to as the MKIS (modified Kiss-
linger) in the preceding paper and has as a form for

+

2PV+ (r)=4np&(b-op+b~5p) 4m[co(Vp —V —eV p)+c~(V5p. V eV 5—p))/p&,

where, in terms of the proton (pz) and neutron (p„)
densities, p and 6p are defined as p=p„+p& and
5p=p„—p~. We also define the kinematic factors
as p~ ——1+2e and

E=(p +J: )' /2m

in terms of the pion (p) and nucleon (m) masses and
of the m.-nucleus c.m. ( =m. lab) momentum k. P is
the reduced pion mass of the system. In Eq. (1) the
ATT are those with V .

%e emphasize that the reason to use this simple
form of the potential is not that it is a realistic po-
tential, but because it is a practical one. That is, the
detailed structure of the MKIS may not be physical,
but it serves the purpose of reproducing the elastic
data (i.e., the shifts and widths in the ~ atoms, and
the scattering cross sections of the complicated ~-
nucleus interaction). In this sense it is an effective
potential and the parameters are the effective
parameters.

The major part of this work was reported at the
8th International Conference on High Energy Phys-
ics and Nuclear Structure (Vancouver, 1979) and its
short version has appeared as a Letter. After this
work was completed, we were informed about
MSU2. As described above and in the Introduction
of the preceding paper, MSU2 and our work deal

with the same topic but differ in the way it is inves-
tigated: Apart from the fact that MSU2 uses the
Ericson-Ericson potential while we use the MKIS,
MSU2 merely reports an observation of the effective
parameters, while in our work they are the crux of
our unification of the ~ -atom and scattering data.
As seen in the following sections, we report a care-
ful, systematic treatment of the effective potential
using the effective density and also a clear con-
clusion as to which microscopic effects are really
essential in such a unification.

II. ANGULAR TRANSFORMATION TERMS (ATT)

Before we proceed to discuss the details of our
analysis, let us describe an interesting property of
the ATT which we found. The quantitative feature
of what we are going to describe certainly depends
on our choice of the potential form, but we believe
that the qualitative feature is common to other
forms of the potential.

In order to examine the property of the ATT, we

first generated m -atom data shifts and widths with
and without the ATT and examined the differences
between the two. The potential parameter set used
for this comparison is the best fit to 59 m. -atom
data without the ATT, and is listed in the first
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column of Table I. We observed that the ATT is at
tractive in all states of the m atoms, decreasing the
magnitude of 1s shifts by a few to about 10%, and
increasing the magnitude of higher state shifts by a
greater amount, near 20%. Little effect was ob-
served on the widths. We repeated the same pro-
cedure on the m+--' C scatterings by comparing the
partial wave scattering amplitudes for 30—50 MeV.
When the ATT are included, the magnitude of the
negative real part of the s-wave amplitude was ob-
served to increase by nearly 50%, but the magni-
tudes of the positive real parts of the higher-wave
amplitude were observed to increase only by at most
5%. The changes in the imaginary parts were seen
to be generally small. Thus in these scattering ener-
gies the ATT becomes repulsive for 1=0, but attrac-
tive for l&0. We illustrate the behavior of the s-
wave amplitude in Fig. 1.

This effect, being repulsive and attractive above
and below the threshold, respectively, for 1=0, while
attractive throughout for l&0, is easily understood
when we examine the behavior of the ATT as a
function of r As ca.n be observed in Eq. (1), the real
part of the ATT is not zero only in the region of the
nuclear surface, being positive inside and turning
negative at R a little beyond the half nuclear-density
radius, as shown in Fig. 2. Note that in the case of
two parameter Fermi distributions proportional to

I I+exp[41n3(r c)/t J—I

we have

R =c(1+ri2——,r)4+ ),2

where ri=(gin3)t/c. In the case of the ~ atoms
the atomic wave function behaves as r' for i &0,
while for 1=0 it is pushed out by the repulsive (and
also absorptive) local interaction. Thus the contri-
bution from the negative region of the ATT
outweighs that from the positive region so as to
yield the attractive effect. On the other hand, for

the scattering energies of our interest the value of
kR is rather close to ~/2 (about 1.5 even for ' C at
30 MeV). As seen in the unperturbed form of the
wave function jo(kr), the inner repulsive becomes
strong so as to yield the net repulsive effect. As for
l&0, the centrifugal barrier again pushes out the
wave function and the outer attraction dominates.
In the case of light nuclei such as ' C and ' 0, the
null effect of the ATT on the s wave was numerical-
ly found to occur at about 15 MeV above the thresh-
old for mr+ and at a little less than 10 MeV for m

as seen in Fig. 1. In heavier nuclei the energy tends
to be higher for rr+ and lower for n, an.d the ATT
can change sign more than once owing to a compli-
cated distortion of the wave function. We feel that,
because of its strong energy dependence, the ATT
effect may not be evaluated reliably by comparing
the m-nucleus scattering length, as was done by
MSU1.

Before closing the discussion on the ATT effect,
we wish to clarify the strength of this effect. In the
above comparison of the atomic-level shifts and

phase shifts with and without the ATT, we observed
a significant difference in the energy shifts of i& 0
atomic states and in l=O scattering phase shifts.
These shifts are a consequence of two opposing ef-
fects of the local and nonlocal parts of the potential,
as illustrated by their sign changes in the p-state
atomic shift for large nuclei and in the s-wave phase
shift at a higher energy. A large difference is thus
created by upsetting the appreciable cancellation be-
tween two effects. As seen in the following, the in-

clusion of the ATT changes the best-fit potential-
parameter values only by a little (generally, ( 10%).

III. THE MKIS PARAMETERS

In the preceding paper we analyzed the ~ -atom
data using the Kisslinger form of the potential

TABLE I. Optical potential parameters at the threshold for the Kisslinger form of the po-
tential (KIS) and for the modified Kisslinger form [as shown in Eq. (1), MKIS]. The m. -atom
parameters are the best fit to 59 atoms and the free m-nucleon values are taken from Rowe,
Salomon, and Landau (Ref. 11). Errors using the KIS are practically the same as those using
the MKIS.

KIS
atom

MKIS Free m nucleon

Rebp
Imbp

bl
Recp
Imcp
c&

X'/&

(p ')
(p ')
(p ')
(p ')
(p ')
(p ')

0.0285
—0.0102

0.12
—0.173
—0.016
—0.17

3.0

0.0310+0.0007
—0.0103+0.0006

0.14 +0.02
—0.163 +0.004
—0.019 +0.002
—0.20 %0.03

2.9

0.0037
0.000
0.094

—0.230
0.000

—0.151
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FIG. 1. Argand diagrams for the s-wave m
—-' C scattering amplitude with (MKIS) and without (KIS) the angular

transformation terms (ATT). In each case the MKIS and KIS parameters fitted to the m -atom data are used, and the re-
sults are denoted as MKIS parameter and KIS parameter, respectively. %hen the MKIS and KIS curves cross in each fig-
ure, the ATT has the null effect.

without the ATT. In order to carry out a consistent
analysis of the low-energy phenomena, we
reanalyzed the data using the MKIS. As discussed
in Sec. III of the preceding paper, the isoscalar
parameters have been found to be approximately the
same in the analyses of different sets of data, but the
isovectors have been found to be rather difficult to
determine, even including the new data that have
been reported in the last few years. It has also been
observed that the new data yield large P lN values
of 4—5 while the old data yield 2—4, and that the
origin of such an increase has not been explained.
Under these circumstances and also for the sake of
convenience of comparison, we continued to use in
this analysis the old data set of 59 m. atoms
described in the preceding paper. (A further, critical
discussion on the isovector parameters using the new
data will be given in Sec. IV in connection with a
comparison to n-scattering data for N yZ nuclei. )

Using these ~ -atom data, the best-fit potential
parameters were searched in the same way as
described in Sec. III of the preceding paper. The

parameters values thus found are listed in the second
column of Table I, labeled MKIS. In Table I the
difference between the second column and the first
column (labeled KIS) corresponds to the effect of

8-

+B
12C

m 4

hII

6
CV

Q e
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FIG. 2. The radial variation of the real part of the
modified Kisslinger (MKIS) potential for ' C. Curve A is
the Kisslinger (KIS) local part of the potential, curve B is
the angular transformation terms (ATT), and curve A +B
is a sum of the two, the full MKIS (local part) potential.
Note that the radial integration of curve B is zero.
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the ATT at the threshold. As discussed in Sec. II,
the ATT contribute as attractive; therefore the
repulsive parameter bo increases and the attractive
parameter co decreases in magnitude so as to accom-
modate the ATT contribution.

In order to use the potential parameters in low-
energy scattering we must correct them for changes
which occur because of an increase in the pion ener-

gy (T~) We. do this by adding to the MKIS param-
eters the difference of the vr-nucleon amplitudes in
the nuclear medium that are evaluated at T & 0 and
T„=O. In this way the energy dependence of the
quasielastic scattering part is taken into account, but
the inelastic scattering part, such as two-nucleon ab-
sorption, is not properly included. The latter pro-
cess is known to cause a somewhat weak energy
dependence in the potential parameters as a result of
the kinematics. %hen this part of the energy depen-
dence is included by following a parametrization
given by Landau and Thomas, ' we notice some
variation in the differential cross sections. However,
from the restricted amount of the presently available
data on the process m. ++d ~p +p, we cannot make
the partial-wave decomposition unambiguously and
thus cannot determine precisely how large a change
occurs in the individual parameters as the energy in-
creases. Furthermore, the quantities whose energy
dependences are in question are not just the coeffi-
cients of say, p (r), but the effective coefficients of
p(r) including a part of p (r) after p (r) is interpret-
ed as p(r) times the effective density. Because so
much ambiguity is thus involved, we decided not to
include the energy dependence in the absorption pro-
cess.

The bound m.-nucleon amplitudes are determined
by evaluating a relation

r=t+t(G —G, }r, (2)

where t and r are the free and bound ~-nucleon t
matrices, respectively. Go and G are the m-nucleon
Green's functions in free space and in the nuclear
medium, respectively. Using the Fermi gas model,
we evaluated Eq. (2) by including the effect of Pauli
blocking (the PBE) and Fermi averaging (the FAE).
%e show the details of the calculation in Appendix
A. As the free m.-nucleon amplitudes, we used the
analytic forms given by Rowe, Salomon, and Lan-
dau. The Fermi momentum pF used is the one
evaluated by the effective density at the threshold,

p, (0), rather than p~ evaluated by the nuclear matter
density po ——0.51M . The bound m-nucleon amplitudes
therefore depend on p, through the choice of p~.

In Fig. 3 we show the real part of the s-wave-
bound-m-nucleon amplitude thus calculated, in com-
parison to the free n.-nucleon amplitude. We see
that a cusp at the threshold practically disappears in

the bound m-nucleon amplitude. The disappearance
of the cusp is due to the inclusion of the PBE and
corresponds to the fact that the Pauli exclusion prin-
ciple makes the amplitude less singular by eliminat-
ing the leading singularity at the threshold. %e em-
phasize that the threshold cusp does not disappear if
we evaluate an expression obtained by terminating
the series expansion of Eq. (2),

r=t +t (6 —Gp)t +t(G —Go)t (G —Go)t +
after a finite number of terms. We suspect that this
mechanism of the disappearance of the threshold
cusp in the bound amplitude is known among some
workers in this field, but we are not aware of any
previous work which explicitly points out the
mechanism. (The other mechanism discussed' is
going off-shdl by including the binding energy of
the nucleon. ) Therefore, partly for pedagogical pur-
poses, we present a simple, demonstrative proof of
the mechanism in Appendix B.

Let us make a further technical remark: As we
have seen so far, the PBE is a crucial medium
correction, as is apparent from its role of removing
the threshold cusp. On the other hand, the FAE can
be shown to be a small effect in this low-energy re-
gion except for the p-wave imaginary part, whose
energy dependence is rather strong near the thresh-
old. Actually, it is a somewhat complicated matter
to assess the significance of the FAE because the
FAE in our calculation does not appear separately,
but rather enters in an evaluation of the PBE as a
momentum averaging as well as an energy averag-
ing. The method of Appendix A includes the PBE
with the FAE, while that of Appendix B includes
only the PBE, basically because of the static approx-
imation. The amplitudes calculated by two methods
are generally numerically close, but differ noticeably
in the p-wave imaginary part, because in the method
of Appendix B the PBE is evaluated at a fixed ener-

gy and fails to include a contribution from the rap-
idly increasing imaginary part on the higher energy
side. In the actual calculations which will be dis-
cussed in the next section, we used the method of
Appendix A.

Once the bound m-nucleon amplitudes are deter-
mined at a given energy, we compute the potential
parameters using the relation for bo

bo(T }=ho(atom)+b(T ),
where

&(& ) = b(o&,p, ( )0) —bo(0,p, (0)),
and also using similar relations for other parame-
ters. Here bo(T,p, (0)) is the calculated potential
parameter which equals the negative of the bound
n.-nucleon amplitude (described above). In Eq. (4)
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we explicitly show the p, (0) dependence because we
wish to discuss in Sec. V a subtle ambiguity caused
by the choice of p, with which be is calculated.

As seen in Fig. 3, once the PBE is included, bo is
practically a linear function of T . Since the
energy-dependence correction, 5(T ), equals the
di fference of the h 0 's at T and 0, 6( T ) can be set,
as a good approximation, to be the difference at
T„+e and e for some small e. The same statement
is also applicable tc other potential parameters. It is
known' ' that the nuclear binding effect is mostly
accounted for by evaluating the amplitudes at the
proper three-body energy, which is somewhat lower
than the actual scattering energy. Therefore, we ex-
pect that the nuclear binding effect is negligible in
the energy dependence correction after the PBE is in
eluded, and we do not consider this effect any fur-
ther. We here emphasize our points, that, in short,
the nuclear binding effect is energy independent
once the PBE is included and that this binding ef-
fect may contribute significantly to the amplitudes
themselves at a given energy, but in our calculation
this contribution is already included in the
phenomenological threshold values.

l.et us summarize what we have discussed so far
in this section. In order to extrapolate the potential
parameters which are phenomenologically deter-
mined at the threshold, we add to them the energy-
dependence corrections, b,(T )'s. As indicated in
Eq. (4), h(T~) is the difference between the ampli-
tude (times the minus sign) at T~ and 0 after the
I'BE with the FAE is included. Throughout the rest
of this paper we simply refer to this complicated
correction with the PBE and the FAE 5( T„)as "the
energy-dependence correction, " unless specified oth-
erwise.

Taking the example of ' C at T~=50 MeV, we
show in Table II the size of the energy-dependence

25 50

Tm (MeV)

75

corrections to the parameters that have to be made
in order to extrapolate to low-energy scattering. In
Table III the extrapolated (MKIS) values and the
phenomenological values at 50 MeV obtained in the
preceding paper are shown for comparison. The ex-
trapolated values happen to be in very good agree-

FIG. 3. The potential parameter Rebp as a function of
the pion energy T„. The broken curve is the free m-

nucleon scattering amplitude of Ref. 8 with the minus
sign. The continuous curve is the parameter calculated
from this amplitude, including the Pauli-blocking and
Fermi-averaging effects in the method of Appendix A.

TABLE II. The energy-dependence corrections to be made for an extrapolation from the
threshold to 50 MeV. 6 (free, 50 MeV) is a correction directly computed from the free m-

nucleon amplitude without the PBE and the FAE. 6 (50 MeV) is the correction including the
PBE and FAE according to the method of Appendix A (as discussed in Sec. III) and is used in
the actual calculations. 6' (50 MeV) is another possible value shown for comparison, as dis-
cussed in Sec. V.

Rebp (p ')
Imb, (p-')
Reb) (p ')
Imbg (p ')
Recp (p 3)

Imcp (p )

Rec~ (p 3)

Imc& (p )

6, (free, 50 MeV)

0.0175
—0.0137
—0.0016

0.0036
—0.035
—0.032
—0.009
—0.016

6 (50 MeV)

0.010
—0.006

0.003
0.001

—0.019
—0.005
—0.002
—0.002

6' (50 MeV)

0.014
—0.004

0.002
0.001

—0.012
—0.004
—0.003
—0.002
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TABLE III. Optical potential parameters at 50 MeV. The MKIS parameters are the hy-

brid analysis values and were used to compute the final results. They equal the MKIS value of
Table I plus 6 (50 MeV) of Table II. The Phenom. I is the best-fit parameters to the 49.0
MeV m+-' C data using the MKIS and the Phenom. II is an average of the best fits to the ~+-
' C, -' 0, and - Ca scatterings near 50 MeV also using the MKIS.

Rebp
Imbp

bi
Recp
Imcp

Ci

X'IN

(p ')
(p ')
(p-')
(p ')
(p ')
(p ')

MKIS

0.041+0.004
—0.016+0.002

0.14 +0.02
—0.18 +0.01
—0.024+0.003
—0.20+0.03

Phenom. I

0.043 +0.002
—0.012+0.003

—0.188+0.002
—0.02+0.01

Phenom. II

0.045 +0.001
—0.005+0.002

—0.192+0.005
—0.036%0.005

ment with the phenomenological values in this case.
Note that, as shown in Table II, our corrections to
the imaginary part of the isovector parameters are
relatively small. Since we had already set the isovec-
tor parameters to be real in the m -atom analysis,
we decided to discard these corrections to the ima-
ginary parts.

The energy dependence corrections thus calculat-
ed have imaginary parts whose magnitudes increase
slowly from zero at the threshold as the energy in-
creases. Since we have neglected the energy depen-
dence in the imaginary part due to the pion absorp-
tion, these imaginary parts represent quasielastic
scatterings. Therefore, within our approximation a
quantity

~
5(lmb0)+5(lmc0)k

~
/~ Imba+(Imca)k

is a crude estimate of the ratio of the quasielastic
and absorption cross sections. Here, k is an effec-
tive (local) pion momentum defined to be

k'—=—
& ~p ~)/(p),

where (p) denotes an expectation value of p
and a similar value for ( Vp V ). 5 denotes an in-
crease from the threshold value, and Imba and Imca
in the denominator are the threshold values. The
above quantity is independent of the nuclear species
(but N =Z) and thus the ratio of two cross sections
must be independent of them. Using the parameter
values at 50 MeV in Table I we find that the ratio is
about 1/3. These results roughly agree with a more
detailed calculation of the MSU1, and we feel that
such agreement provides further evidence of the
soundness of our approach.

IV. COMPARISON TO SCATTERING DATA

In Fig. 4(a), using an example of the m.+-' C
scattering at 50 MeV, we illustrate how the ATT

and the energy-dependence corrections improve the
agreement with the data. We observe that, while the
ATT brings the first dip forward to about the ob-
served location, the energy-dependence corrections
raise the cross section closer to the data at the angles
beyond the dip. Our final result including these
corrections is shown in the figure as a continuous
curve labeled MKIS. This final result of ours tends
to be smaller around the plateau in large angles, but
it is difficult to assess this tendency because various
small effects other than those we have considered
would contribute to the cross sections at these an-

gles. Our assessment is then that the overall fit is
reasonable and that the hybrid calculation is reliable
for light isoscalar nuclei. In Fig. 4(b) we also show
our prediction of the m. -' C scattering at 50 MeV.

In Figs. 5—7 we show further comparisons with
the data using only our final results of the calcula-
tion, i.e., with the ATT and the energy-dependence
correction. For the m+-' C scattering the agreement
between the calculation and the data is also good in
the energies below 50 MeV, as shown in Figs. 5(a)
and 6. A similarly good agreement is also achieved
in scatterings from heavier, isoscalar nuclei, as
demonstrated in Fig. 7 for the case of Ca. As il-

lustrated in Fig. 5(b) for the ~ -' C scattering at 30
MeV, the agreement seems somewhat better in the
case of nscattering. .

While the agreement is good for these N =Z nu-

clei, we found that our calculation shows some
disagreement with the data for heavy N & Z nuclei.
Figure 8 shows (as curve A) the sr+- Pb cross sec-
tions at 50 MeV using the hybrid (MKIS) parame-
ters of Table III. We observe that the calculated dip
is deeper and the calculated cross sections at large
angles are smaller than the ones observed. The ma-

jor reason for the disagreement seems to be the iso-
vector parameters, which are poorly determined by
the ~ -atom data. The isovector parameter values
used in this calculation are (b&, c&)=(0.14'
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dq
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FIG. 4. (a) Effects of the energy dependence correc-
tion, 5 (50 MeV), and the angular transformation terms in
~+-' C elastic scattering cross section at 50 MeV. Dotted
curves are the cross section calculated using the m. -atom
parameters, and solid curves are those calculated includ-

ing 6 (50 MeV) and the energy dependence correction
with the Pauli-blocking and Fermi averaging effects. The
MKIS refers to the KIS plus the angular transform terms.
[See Eq. (Il.] The data at 49.9 MeV are from LAMPF
(Ref. 13) and at 48.9 MeV from TRIUMF (Ref. 14). (b)

m -' C elastic scattering cross section at 50 MeV calculat-
ed using the modified Kisslinger potential (MKIS) with
the energy-dependence correction including the Pauli-
blocking and Fermi-averaging effects.

I
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I

90
I I I
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, „ (deg)

FIG. 5. (a) m. +-' C elastic scattering cross section at 30
MeV calculated as in Fig. 4(b). The data are also at 30
MeV (Ref. 15). (b) m -' C elastic scattering cross section
at 30 MeV calculated as in Fig. 4(b). The data are at 29
MeV (Ref. 16).

—0.20@ ) as shown in Table III, while the best-fit
phenomenological values are (0.06@ ', —0.16p ),
as given in Table IV of the preceding paper.

In fact, the major portion of the difference could
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FIG. 6. m
—+-' C elastic scattering cross section at 40

MeV calculated as in Fig. 4(b). The m+ are also at 40
MeV (Ref. 17).

FIG. 8. Influence of the new bl value (obtained from
new m -atom 1s-state data) on m.+- Pb scattering at 49.9
MeV. Curve 2 is obtained using the hybrid MKIS
parameters of Table III and curve B is calculated using
the new b& value fitted to new m -atom data in the 1s
state together with the ci value fitted to the m -' 'Pb
atom data. (See the text for details. ) The dotted curve is
calculated using the potential parameters fitted to the 59
m -atom data without any energy-dependence correction
and is shown for the purpose of comparison. The data
are from Ref. 15.
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FIG. 7. m.+—- Ca elastic scattering cross section at 30,
40, and 50 MeV calculated as in Fig. 4(b). The m+ data
are also at 30 and 50 MeV (Ref. 15) and at 40 MeV (Ref.
17).

be accounted for using more realistic isovector-
parameter values, particularly for b &. For example,
we tried (bi, c&)=(0.08@ ', —0.15p ), which are
rather close to the best-fit values, and Fig. 8 indeed
shows (curve B) that these parameter values yield a
better agreement with the data. Let us describe how
we chose these values: After our calculation
described so far had been completed, some new m

atom data in the 1s state were reported by a Basel
group' and a TRIUMF group. ' The new data in-
clude an accurate ' 0 datum' which is substantially
different from the old, less accurate one. We noted
in the previous paper that the old ' 0 datum had al-
ways contributed a large X in our fittings and that
we had been suspicious of the datum. The other
newly reported data include those' for N@Z nuclei
of He, "B, and ' C. Being the datum for the
X —Z=2 nucleus with the largest A among these
nuclei, the ' 0 datum has an important role in the
phenomenological determination of the b

&
parame-

ter. In order to investigate the m+- Pb scattering
problem, we decided to take b& ——0.08p ' from very



R. SEKI, K. MASUTANI, AND K. YAZAKI

recent analyses by Friedman and Gal and Fried-
man ' rather than to redo our entire m -atom
analysis. In these new analyses the new data are
used with a more realistic p„(i.e., with

p„/N&pr/Z) but unfortunately altogether only six
n atoms in the Is and 2p are used for the actual
fitting and no data for heavy nuclei are used. We
therefore find the c~ value by fitting to the m - Pb
atom data using the same isoscalar parameter
values as the hybrid MKIS values (at 50 MeV) in
Table I. The c& value turns out to be —0.15p .
Here we did not make the energy-dependence
corrections to the b

&
and c ~ values because our nu-

clear matter calculation of Table II shows the
corrections to the isovector parameters to be small
{though we are aware of limitations in extrapolating
a result of such a calculation to N & Z nuclei).

Actually, Table III shows an inequality,

b~/Rebo &&c~/Recc,

1000-

100-
(h

J3
E

& C
10-

.9MeV)

to hold. Therefore, the crucial parameter is b, in
the sense that a change in the b

&
value influences the

cross sections more significantly than the same (per-
cent) change in the et value does. In fact, we ob-
serve that, even if c ~ is varied by several tens of per-
cent, the cross sections do not change appreciably
and that, once the b

~
value is properly chosen, even

the use of a different p„[&(N/Z)pz] does not sub-
stantially alter the good agreement with the m+

scattering data (but not with the m. scattering data,
as discussed later in this section). Note that we do
not, of course, imply that the precise value of c&

cannot be determined phenomenologically: It can
be, once p„and pz are known, and vice versa.

We illustrate the above observation in Fig. 9,
which shows two curves C and D in comparison to
curve B that is identical to curve B in Fig. 8. Curves
C and D differ from curve B in the use of a more
realistic p„&(N/Z)pz of Pb: Curves B and C use
the same potential parameters, but a more realistic
p„of 'Pb is used for the computation of curve C
while, as explained previously, p„=(N/Z)pz is used
for curve B. Curve D is generated with
c& ———0.22@ that was obtained by fitting to the

Pb atom data with the realistic p„. Curve D
corresponds to a consistent calculation using the
realistic p„. Curves B, C, and D are indeed rather
close to each other. This realistic p„has the two-
parameter Fermi distribution form with the density
parameter values (c, t)=(6.88 fm, 2.30 fm) which
closely simulates Negele's density-dependent
Hartree-Fock density.

From these computations for the m+- Pb
scattering we see that the original disagreement of
curve A with the data at the dip is mainly due to a
poor determination of b~ which was originated in

30 a'0 150

ec.m. ««)
FIG. 9. Effect of the use of a realistic p„[&(N/Z)p~]

on sr+- 'Pb scattering at 49.9 MeV. Curve 8 is identical
to curve B in Fig. 8. Curves D and C are ca)culated using

p„of a two-parameter Fermi distribution form which
simulates Negele's density dependent Hartree-Fock neut-
ron density of Pb. The potential parameters used are
the same as or close to those used for curve 8. Curve D
corresponds to the most consistent use of the realistic p„.
(See the text for details. ) The data are from Ref. 15.

(Rec)p(r) =Re(c'+ Cp, )p(r)

~Re[c'p(r)+ Cp (r)],
using thc cffcctlvc density p~ fol thc 7T " Pb
scattering at 50 MeV. Here c, c', and C are sums of
the isoscalar and isovector parts for the m+- Pb in-
teraction. Despite the p term with different signs,
three curves agree closely with the data. The
disagreement at the dip is not certainly an indication
of the limitation of our approach.

the m -atom analysis. The disagreement at the dip
is certainly not because of our neglect of the
Lorentz-Lorenz effect or any other detailed struc-
ture of the potential. We present further evidence of
this statement in Fig. 10. The figure shows three
curves computed from the potentials which have the
nonlocal p term with positive (A), zero (B), and
negative (C) coefficients, respectively. These poten-
tials are chosen in a way that they are effectively
equivalent, as discussed in the preceding paper.
That is, the nonlocal parts of these potentials are re-
lated via
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FIG. 10. The best-fit m+- Pb cross sections at 49.9
MeV using potential parameters which give the same ef-
fective values. The potential form used is the KIS with
an additional nonlocal term V ReCp (r) V. ReC is varied
as —0.465@ (the corresponding cross sections shown as
curve A), zero (curve B), and + 0.155p (curve C). For
these values of ReC the value of c is adjusted so that
Re(c+Cp, ) remains about the same, —0.18p '. The g2
value is varied as 36.2, 19.4, and 33.4 for these combina-
tions of ReC and Rec, respectively. (ReC=O is just about
the best fit. ) The densities used obey the assumption
p„/N =pp/Z.
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FIG. 11. Effects of the new b~ value and of the use of
a realistic p„on m - 'Pb scattering at 50 MeV. Curves
A —D are obtained in the same way as described in Figs. 8

and 9. Curves C and D, in which the realistic p„ is used,
are noticeably different from the other curves in which
the p„[=(N/Z)p~] is used. The data are at 50 MeV
from Ref. 23.

Our calculations so far described demonstrate a
usefulness of analyses in which m (atom or scatter-
ing) data and n+scatterin. g data are combined. The
reason for this is two groups of the data yield infor-
mation about the optical potential with different
signs of the isovector parts: As seen in Eq. (1) and
Tables I—III, isoscalar and isovector parameters
have the same sign in both the local and nonlocal
parts of the potential for the n interaction, but the
parameters have opposite signs for the a+interac-.
tion.

We have repeated the above computations of
curves A Dalso in the case—of the m - Pb scatter-
ing. Figure 11 illustrates these curves in this case.
The major difference between this m case and the
previous n+ case lies in the fact that a different
choice of p„, not of b„makes the cross sections dif-
ferent in the n case, while a choice of b~, not of
p„, makes a difference in the or+ case. In Fig. 11,
curves 3 and 8 are close, and curves C and D are
close, forming two groups of curves. The sensitivity

of the n. scattering to p„has recently been exploit-
ed to extract a difference of the neutron RMS radii
between isotopes. Using the idea of the effective
density, we presented at the end of the preceding pa-

per an explanation of why this particular method

may be reliable despite the seemingly many parame-
ters involved.

Closing this section, we make a pertinent techni-
cal comment. During the investigation of the dip in

the m+- Pb scattering at 50 MeV, we realized that
the nonrelativistic treatment of the Coulomb poten-
tial in the Klein-Gordon equation is partially re-

sponsible for the dip being much deeper than that
observed. The Coulomb potential near the nuclear
surface of Pb reaches about 15 MeV and the rela-
tivistic correction of the quadratic Coulomb poten-
tial term is no longer negligible. %e remedied this
problem basically by applying the method of Coop-
er, Jeppesen, and Johnson except that we actually
computed the low-partial-wave contribution by nu-

merically integrating out to a reasonably large dis-

tance.
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V. DISCUSSION AND CONCLUSION

During the course of this work we encountered a
subtle ambiguity in our hybrid method of the extra-
polation from the threshold to a scattering energy
T (&50 MeV). The effect of the ambiguity turns
out to be roughly the same size as the effect due to
the choice of p„ in the m+ scattering discussed in the
previous section, and thus the ambiguity is not a
very serious problem. However, it does indicate a
limitation of our approach, the method of the effec-
tive nuclear density, and it deserves some discussion.

In the calculation described in the preceding sec-
tions, we have used the value of the effective density
only at the threshold, p, (0), in the computation of
the energy-dependence corrections, b,(T ). Here p,
was regarded to be independent of T„,but it actual-
ly increases slowly as T increases, as described in
the preceding paper. If one tries to include explicit-
ly the T~ dependence in p, so as to compute the po-
tential parameters consistently, one must know the
detailed structure of the potential and how its
parameters depend on T . In the absence of such
knowledge one has to make some assumptions, and
assumptions create ambiguity.

Let us use a concrete example. Instead of h(T„)
of Eq. (4) we could use

~'(T )=bo(T,p, (T ))—bo(0,p, (0)),
which differs from b,(T ) in the use of p, (T„) in
the first bo This choi. ce is equivalent to the relation

ing of microscopic theory of the potential (so that
we know how the coefficients depend on p, ) and a
phenomenological analysis using the potential (so
that we know the value of p, ). Once we know this
much, the benefit of using p, is only that it is a con-
venient language of bookkeeping.

Thus we see that without further microscopic
knowledge it is hard to judge which of b(T ) and
6'(T~) is appropriate and therefore the choice be-
comes an ambiguity of our method. In this paper
we used b(T„) for simplicity because it requires
only p, (0). [As seen below, this p, (0) can be re-
placed by p, (T ) of any T with little numerical
change in the results. ]

In Table II we compare 6 (50 MeV) and b,
' (50

MeV) for all potential parameters. We see that b,

and 5' for Rebo and Reco are particularly larger
than for other parameters and differ noticeably from
each other. We therefore illustrate in Fig. 12 how

p,(50)
p&(30)
p&(0)

5(T )=5(0),

where

(6)

"0.0)

5(T„)=bo(T~) —bo(T, 5,(T„)),
5(0) =bo(atom) —bo(0, 5,(0)) .

That is, 5 is what is missing in bo compared with
the true bo, and Eq. (6) states that it is independent
of T . Now, bo was computed as the m.-nucleon
scattering amplitude in the nuclear medium without
any correction arising from reaction processes, of
which the major process is the ~ absorption. There-
fore, Eq. (6) is the same statement as that we neglect
the energy dependence of the ~ absorption when its
effect is interpreted as potential terms proportional
to p(r) It is a dif.ficult task to justify this statement
because, in order to do it, we have to have a (nearly)
complete microscopic theory of the potential. Let
us elaborate on this: The effect of the m. absorption
is interpreted using the effective nuclear density p„
but in order to interpret it properly we must know
the value of p, at T and how the coefficients of
p (r) depend on p, . That is, the requirements for
the proper interpretation are a thorough understand-

0 25
T» (~&V)

50

p&(0)

p (30)
p,(50)

)(
"-Q)6

FIG. 12. The calculated potential parameters bo and co
using various values of the effective density. (See the text
for details. ) x indicates the phenomenological threshold
value determined from the ~ -atom data. The major con-
tribution to the difference between x and the calculated
value at the threshold comes from the m absorption pro-
cess.
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FIG. 13. Effect of the choice of either A(T„) or 6'(T )

on m+—- Pb scatterings at 50 MeV. Curve A is the same
as curve A in Fig. 8; that is, it is obtained using h(T ).
Curve E is calculated using 5'( T ) under the same condi-
tions.

different bo(T„,p, ) and co(T,p, ) depend on the
choice of p, . This figure indicates the degree of am-

biguity contained in our calculation. Note that the
figure shows that b 0 and c 0 as functions of T„sim-
ply shift up or down when a different p, is chosen.
Therefore, if p, (0) is replaced by, say, p, (50 MeV)
in both terms of b,(T ) of Eq. (4), A(T ) remains
roughly the same numerically. This provides extra
convenience for using h(T ) because we are free to
choose p, at any energy as long as it is used in both
terms of b ( T„).

In Fig. 13 we illustrate how actually different the
Pb cross sections are by the choice of h(T )

or b, '( T ). The cross sections do not differ much by
different choices, but in the case of m. + the differ-
ence is roughly the same size as the consequence of

different choices of p„shown in Fig. 9. As dis-
cussed above, this difference indicates how well we
can describe the scattering data without knowing the
energy dependence of the reaction processes.

In conclusion, within the above limitation, our
method of using the effective nuclear density works
well and the calculations shown demonstrate that it
is a useful way to describe the low-energy m-nucleus
elastic scattering. In view of the fact that the num-
ber of potential parameters is kept at a minimum
(contrary to the work of other authors), we believe
that our calculations show the energy dependence
correction, after the Pauli-blocking the Fermi-
averaging effects are included, to be the crucial mi-
croscopic corrections for the extrapolation from the
threshold to a low (scattering) energy. We find that
the angular transformation terms also play the cru-
cial role in the extrapolation. However, the calcula-
tions do not show that other complicated features of
the potential such as the Lorentz-Lorenz effect or
some highly nonlocal effects are essential for the ex-
trapolation.
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APPENDIX A: EVALUATION OF
EqVATION (2)

We evaluate Eq. (2) first by including the Pauli-blocking effect in the Fermi gas model. Equation (2) be-
comes

3 II
r(k', k;K,E)=t(k', k;E)—I t(k', k";E)Q(k",K)GO(k",E)r(k",k;K,E),

(2m )

where Q (k ",K) describes the effect of the Pauli exclusion principle and is

(Al)
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1 for IÃ ""I&pF
Q(k ",K) = '

+

0 for ~gK —k ~&pF
(A2)

in terms of the Fermi momentum pF and
g=—m/(m+ W) with W(=T +p) the pion energy.
Here k 's are the ~-nucleon relative momenta. K is
the total momentum of the m-nucleon system, and E
is the ~-nucleon c.Li. total energy. Note that in our
on-the-mass-shell problem E is not an independent
parameter because it is fixed once k is given.
Go(k, E) is expressed as either "a relativistic
Schrodinger form"

Go '(k, E)=E—m —k /2m —(k +p )' +i@,

(A3)

or "a Klein-Gordon form"

Go '(k, E)=(E—m —k /2m) —(k +p )+ie,
(A4)

where (in both forms) the nucleon is treated nonrela-
tivistically and @~+0. Since Q(k",K) depends
on an angle between k" and K, Eq. (Al) becomes
(infinite) coupled equations when the equation is
decomposed in partial waves. We therefore average
Q(k ",K) over this angle:

r

1 for gK+k &pF

Q(k ",K)~Qp(k ",K)= ~ 0 for
~
gK —k"

~ &p~

[pp (gE k—") ]/4—$Ek" otherwise .

(A5)

Let us apply these expressions to the nuclear matter (N =Z) so that Q ( k ",K) is independent of the isospin,
and each isospin component of Eq. (Al) does not couple with others. Substituting Eqs. (A3) and (A5) into Eq.
(Al), we obtain for the s wave,

r

k dka(K,E)=a(E) ~ 1 — f Qo(k, K)GO(k, E) .
(A6)

for which we used

t(k ', k;E)= —4ma (E)/2(co'co)'i

~(k ', k;K,E)= 4ma(K, E)/—2(co'.co)'~

Hereco=(k +p )' andco'=(k' +ic )'

(A7)

For the p wave, we obtain similarly

a(K,E)=a(E) 1 — f Qo(k, K)Go(k, E) .

for which we used

t(k ', k;E)= —4m 3a(E)k ' k/2(co'co)'~

~(k ', k;K,E)= —4n" 3a(K,E)k ' k/2(co'co)'~

(A9)

after an angular average

k'k "k".k —+ —,k" (k' k) .

When the Klein-Gordon form, Eq. (A4), is used in-
stead of the relativistic Schrodinger form, Eq. (A3),
2co and 2co' are replaced by unity in Eqs. (A6)—(A9).

Finally we average a(K,E)'s over the initial nu-
cleon laboratory momentum in the Fermi gas so as
to include the effect of the Fermi motion. As a

I

consequence, a 's become functions of only T .
These Fermi-averaged a 's are related to the poten-
tial parameters as —p ~bo, etc., when the impulse ap-
proximation in the lowest order of nuclear density
expansion is applied. In the actual numerical calcu-
lation we computed a 's using the IGein-Gordon
form of Go(k, E), Eq. (A4), though we observed lit-
tle difference in numerical results using the two
forms in our energy range.

APPENDIX 8: THE DISAPPEARANCE
OF THE THRESHOLD CUSP

IN THE BOUND m-NUCLEON AMPLITUDE

The disappearance of the s-wave threshold cusp in
the lowest order of the m-nucleus relative momen-
tum, k, is due to the Pauh exclusion principle and is
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a general property of the scattering amplitude in the
nuclear medium. In our actual calculation we do in-
clude the nucleon recoil effect and Fermi motion of
the nucleon. Consequently the bound m-nucleon
amplitude is expressed in terms of a complicated in-

tegral and has to be evaluated numerically, as can be
seen in Appendix A. If we were to ignore these ef-
fects, the amplitude could be expressed analytically
and the disappearance of the threshold cusp could
be demonstrated explicitly. In this appendix we
show such a simplified expression of the amplitude

I

in order to demonstrate and elucidate the disappear-
ance of the cusp at the threshold. To be explicit, we
use in the evaluation of the propagators the follow-
ing approximations: (1) neglect of the nucleon rmoil
energy (i.e., a static approximation); (2) neglect of
the initial pion momentum compared to the initial
nucleon momentum; and (3) neglect of the coupling
among partial waves which arises from the use
of Q(k ",K) of Eq. (A2) rather than of go(k ",K)
of Eq. (A5). By use of the Klein-Gordon form of
Go( k, E), Eq. (Al) then becomes for the s wave

4na(c—0)= 4na—(co).

(Bl)
d'p d'p' I @S

'
SF)——1 i@pe—u) d'p+(—4m ) a(co)a(co) , e(i F p), —

(2m ) co~ p2 —( p —p ')~+i s (2n )

where 8(x)=1 for x )0, or 0 for x &0 is the step function, and p and p
' are the initial and intermediate nu-

cleon momenta, respectively, in the laboratory system. This equation yields

a(c0) =a(co) I 1+ri(co)a(co) j

where for co &p

(B2)

ri(co)= pF 1 ——, Pln + —,P (P —3)ln
3 4 1+P

2m
'

1 —P 1 —P
, P' +—&—P1 P+ P—'.—()(i ——P)

and for co &p

(B3)

g(co) = pF 1 —— 2p'tan —,——p' (p' +3)ln
3 4 i —t 1 i,p, 2 I+p'

2n. ' P' pl 2 (B4)

Here

P—(~2 2)1/2y2

cT(k)= & '+ pF+d'(k )2' (B7)

ri(k)= pF+ik+d'(k') .2' (B5)

Since near the threshold a behaves as

a(E)=[A ' ik+P(k )]— (B6)

in terms of the scattering length A, we observe that
+ik in Eqs. (85) and (B6) cancel each other when
these equations are substituted into Eq. (82). a(k)
then behaves as

and p'=
~
p~. Upon evaluating co, we neglect the

nucleon energy and thus p=k/2pz in terms of the
pion-nucleus c.m. momentum, k. Near the thresh-
old, P~O, g thus behaves as

which does not contain the nonanalytic term, +ik,
and has no prominent cusp near the threshold.

In the case of the p wave we can also prove in the
same manner that the nonanalytic term, +ik, in
a(k) cancels the similar term in g(k), and conse-
quently i(k) is analytic in the lowest order of k.
The p-wave cusp in a (k) is generally not prominent,
but this cancellation makes it negligible in a(k).

Let us make two comments: (1) The leading term
in Eq. (85) for the s wave and a similar term for the
p wave agrees with the expressions given by
Hufner; (2) the analytic expressions thus obtained
generally yield results very close to those calculated
by the more elaborate numerical method of Appen-
dix A without the above three approximations. Ex-
ceptions occur for the imaginary parts of the p-wave
parameters, as discussed in the main text.
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