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The 7w~ -atom and low-energy w-nucleus elastic scattering data have been analyzed sys-
tematically in order to examine their information content with respect to the structure of the
m-nucleus optical potential. We have firmly established the existence of the data’s insensi-
tivity to the potential structure and have examined its consequences in detail. The insensi-
tivity is manifested in the form of correlations between the coefficients of p and p?* in the po-
tential. We have found that such correlations vary slowly as a function of the pion energy
(T,) from the threshold ( the 7~ atoms) through 50 MeV and that, exploiting the correla-
tions, one can define an effective nuclear density, p., at which the pion effectively interacts
with nuclei. p, was also found to increase slowly as T, increases. In contrast, no correla-
tion was observed between the coefficient of the local term and that of the nonlocal
(momentum dependent) term. As a consequence of the above nature of the correlations, we
have established a form of the optical potential which contains the minimum number of
parameters in order to describe the information content of the data.
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I. INTRODUCTION

Low-energy pions of several tens of MeV have
been considered to be a possibly useful probe of nu-
clei. The major reason for this is that the mean free
path of the charged pions (7¥) in nuclei is a few fm
in this energy region, compared to less than 1 fm in
the 3-3 resonance energy region. The positive kaon
(K*) is the only other hadron which has a longer
mean free path (of about 7 fm), but the K *-neutron
scattering amplitude is poorly known and K7 is not
yet as abundantly available as 7*. The low-energy
pions have the additional advantage that pionic
(7~) atoms can provide information about the 7~ -
nucleus interaction at the threshold. Such informa-
tion is supplementary to what we learn from the
low-energy scatterings. Numerous, accurate mea-
surements of energy-level shifts and widths in the
7~ atoms are available, and the data are described
well in terms of the Ericson-Ericson optical poten-
tial,! which was originally introduced based on mul-
tiple scattering theory.

Generally speaking, if one wishes to learn nuclear
structure using a hadron, one must know precisely
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how the hadron-nucleon scattering amplitude (or in-
teraction) enters the hadron-nucleus optical poten-
tial. It is difficult to obtain such reliable informa-
tion and this has been the major obstacle to nuclear
structure study using any hadron. When the
hadron-nucleon interaction is weak (that is, the
mean free path is long), the optical potential can be
approximated by a sum of the hadron-nucleon
scattering amplitudes in free space multiplied by the
nuclear density. This is the lowest-order approxima-
tion in a low-density expansion of the optical poten-
tial. Unfortunately, in the case of the low-energy
m-nucleus elastic scattering and the 7~ atoms, the
lowest-order optical potential has been found to be a
poor approximation.” The approximation is particu-
larly poor in the local (i.e., momentum independent),
scalar part of the potential, where medium correc-
tions are found to be appreciable.

There exists a further complication which is
unique to the pion interaction. The major channel
in the interaction is an absorption of the pion by a
pair of nucleons and results in an optical potential
with real (dispersive) and imaginary (absorptive)
parts. It is rather difficult even to apply the lowest-
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order approximation to these parts because, strictly
speaking, the elementary reaction for the process
does not exist in free space. The absorption by a
deuteron can be useful,! but cannot be used rigorous-
ly as an elementary process because of the loosely
bound structure of the deuteron. In addition, accu-
rate measurements of this process are not yet avail-
able in the low-energy region. Therefore, one must
resort to constructing the absorption terms from the
known #-nucleon amplitudes. It is a difficult task,
since the strength of the terms depends directly on
the off-energy shell behavior of the amplitudes® and
the initial and final nuclear correlations.* As a con-
venient approximation the terms are usually ex-
pressed as being proportional to p*=(p,+p,)*
Here p, and p, are the proton and neutron density
distributions, respectively. The difficulty of evaluat-
ing the absorption terms is manifested in the fact
that only recently authors seem to have reached
agreement on the sign of ReCy, the real coefficient
of p? in the momentum dependent part, that it be at-
tractive.> The other parameter, ReB,, in the
momentum independent part, appears to be close to
zero,” but there is a conflicting result.> Actually the
pion is absorbed mostly by a pair consisting of the
proton and the neutron, but some 7~ (7*) absorp-
tion does occur by a pair of protons (neutrons).® A
more realistic expression of each absorption term
thus requires an additional constant, even if one as-
sumes that the absorption depends only on the isos-
pin of two nucleons, independent of the nuclear
species. Clearly, phenomenological determination of
pn from data is possible only when such a model is
assumed.

One way to circumvent these difficulties is to get
help from phenomenology. That is, by temporarily
forgetting about obtaining the nuclear structure in-
formation and assuming that the potential is ex-
pressed as a functional of the conventional p, and
Pn» one tries to extract information about the func-
tional form by comparing with the m*-scattering
and 7~ atom data. This method should work only if
the data are sensitive to the specific feature of the
functional form that is being examined. A compar-
ison to the data of various nuclei could sharpen the
sensitivity if the projectile is experiencing the poten-
tial somewhat differently for different nuclear tar-
gets. Usually what happens is that more than one
feature of the potential is sensitive to the data and
the sensitivity to one feature can be compensated for
by that to the others. Therefore, it becomes a vital
question whether the data from various nuclei can
provide different information about the potential
structure, that is, whether the projectile experiences
the potential differently for different nuclear targets.
The examination of this question in the low-energy

m-nucleus interactions is an important aspect of this
paper.

In the past, the above phenomenological method
has been (inappropriately) used in efforts to establish
claims that some features of the potential (i.e., corre-
sponding microscopic effects) are significant. What
actually has been done is mere illustration of good
fits or sensitivity of the parameters describing the
particular features to the data, while other parts of
the potential are kept fixed, usually to what was
considered best at that time. Examples of the
features claimed are the Lorentz-Lorenz (Ericson-
Ericson) effect (LLE), the w-nucleon (finite
interaction-range effect, and the nonzero dispersive
(real) parts of the absorption terms in the potential.
As we pointed out above, these claims are invalid
unless one demonstrates that variations due to the
uncertainties of the other features are much smaller
than the sensitivity of the feature considered. To
the best of our knowledge, this demonstration has
never been made, and for that matter, no systematic
examination has been made of the question as to
what and to what extent the low-energy data are
really sensitive.

We wish to emphasize that we have studied this
question in order to determine to what extent the
phenomenology is helpful in the construction of the
low-energy pionic optical potential. That is, the
purpose of our study was to learn the information
content of the elastic pion scattering and pionic
atom data regarding the form of the optical poten-
tial, but it is not a mere numerical exercise in find-
ing another parameter set for the given form of the
potential such as the Ericson-Ericson potential.

In our study, we have observed that the informa-
tion content of the data is far less than we expected
from, for example, the numerous, accurate 7 -atom
data. Phenomenology is not of much help in the
low-energy region, and the above-mentioned claims
have been erroneously made, based on the illusion-
ary sensitivity that was artificially created by keep-
ing other parameters fixed. In a sense this insensi-
tivity is not a surprising finding; since the pion
wavelength is a few fm in this energy region, we
should not expect that the pion is sensitive to de-
tailed potential structure, such as a difference be-
tween p and p? (o=p, +p,) dependence which is ap-
preciable only in the surface region over about 0.5
fm.

The insensitivity of the 7 ~-atom data to the de-
tailed potential structure must have been suspected
among workers in the field for some time, though
this had never been stated explicitly until recent-
Iy~ For example, a frequently quoted relation
for the coefficient of p?, ReBy= —ImB,,, was estab-
lished'?> as a consequence of a phenomenological
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analysis with the constraint that the coefficient of p,
b, is about 0.018u~! (u is the pion mass). On the
other hand, older phenomenlogical analyses'*~!* had
given bo~0.03u ! with the constraint ReB,=0. A
comparison of these analyses clearly suggests a
correlation between the two parameters and thus in-
sensitivity of the data. In fact, in the same year that
our work on the 7~ atoms was reported at a confer-
ence,” Tauscher gave an Erice lecture’ which includ-
ed a numerical demonstration of the insensitivity.
After our work described in this paper was com-
pleted and most of our results were reported’ in
conferences, we were informed of an earlier work!®
by a Joint Institute for Nuclear Research Group and
of concurrent work'®!! by a Michigan State Univer-
sity group. The major aim of the work by these
groups was to demonstrate that the pion scatterings
can be described well by extrapolating the Ericson-
Ericson potential that is fitted to the 7~ -atom data.
The latter group does report an observation of the
insensitivity and an effective nuclear density, but it
is a rather fragmented observation. Our study, in-
stead, a systematic, detailed understanding of the in-
sensitivity of the atomic and scattering data. Let us
elaborate on this, because our work described in this
paper and in the accompanying paper deals with the
same topic as that dealt with by the above groups
and may be regarded as a report of similar results.
In contrast to the work of these groups, we have not
aimed at establishing an optical potential which in-
cludes various microscopic effects and also describes
well the atomic and low-energy scattering data.
Such a potential has a structure of great complexity,
including many parameters. It is not clear then how
much of the potential is verified by experiment or is
a consequence of theoretical models. As described
above, potential parameters are not well determined
microscopically, even within the same model. We
wished to establish a potential of the simplest struc-
ture containing practically all the information that
the atomic and scattering data provide. Parameters
in such a potential are therefore effective parame-
ters, and we wished to establish an explicit recipe re-
garding how one could compare one’s potential
model against this effective potential. As long as
such a recipe is established, it would be a matter of
taste whether the potential has an explicit structure
of theoretically desirable microscopic effects. As
will be discussed in detail in this and in accompany-
ing papers, we have found that the key point of the
recipe is the effective nuclear density, which there-
fore plays the essential role in the low-energy pion
interaction. The major objective of our work is thus
to establish a clear understanding of this quantity.
After having established the effective potential
phenomenologically, we felt that the extrapolation

to low-energy scatterings from the 7~ atoms should
be examined using this potential so as to clarify
what physics is really essential in the unification of
two phenomena. We will report on this part of our
work in the accompanying paper.

II. INSENSITIVITY OF DATA
AND EFFECTIVE NUCLEAR DENSITY

Before we proceed to go over detailed numerical
calculations, we wish to clarify the nature of the in-
sensitivity of the data and to discuss the concept of
nuclear effective density. -‘The effective density is a
consequence of the insensitivity, and these two are
the main themes of this paper. Though we specifi-
cally deal with the m-nucleus interaction in this pa-
per, the basic ideas are applicable to any hadron
scattering. '

In order to examine quantitatively the informa-
tion content of the data with respect to the potential,
we must parametrize the potential. The potential
form should be general enough to include various
features of the pion interaction, but not too compli-
cated so as to get out of hand. The kind of form we
chose to examine is expressed in a low-density ex-
pansion,

o0 00 — —
Vopr= 2, anp"+ 3 a,Vp"V, (1)
n=0 n=0

where each a, and a, is a complex, constant param-
eter whose value depends only on the incident pion
energy I,. Since this form is still too general to
handle, in the numerical analysis described in Secs.
IIT and IV we will use two different, more restricted
forms of Eq. (1), and generalize the results of the
form of Eq. (1). However, discussions in this section
will be general enough to be directly applicable to
the form of Eq. (1). Throughout the paper we refer
the local part of the potential to the first sum on the
right-hand side of Eq. (1) (or terms like it) and the
nonlocal part to the second sum (or terms like it).
The nonlocal form, which stems from the strong -
nucleon p-wave interaction due to the 3-3 resonance,
is clearly too restrictive to include highly nonlocal
effects. For example, the effect of the finite range
in the 7-nucleon interaction can be written in a form
of Eq. (1), but requires higher-order terms of V-V
as a series expansion. Actually, potentials generally
expressed in the form of Eq. (1) have been known to
reproduce the experimental data rather well, and as
described in the following sections we have also
found this to be true. We can thus state that there is
no selective (unless artificially created, as discussed
in Sec. I) significant sensitivity to higher nonlocal
effects, and we have decided not to introduce nonlo-
cal terms any more complicated than those in Eq.
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(1). Of course, the above observation does not mean
that higher nonlocal effects are negligible. They
may be significant, but the data are just not so sensi-
tive that the form of Eq. (1) could serve as a form of
an effective potential. In fact, we have observed
that while we can determine the effective strengths
to the local and nonlocal parts separately, we cannot
determine the individual a, (or a@,) unambiguously.
The nature of the ambiguity is described by linear
correlations among a,’s (or a, ’s) but not by one be-
tween one a,, and one a,,.

The existence of such correlations associated with
the low-energy pion may be expected because of the
long wavelength of the pion, as mentioned in Sec. L.
Actually, the correlations tend to exist at any ener-
gy, though they may not be distinct. We can see
this in the following: Consider two Hamiltonians,
H and H, which differ by AV:

H=T+Vand H=T +V +AV, )
providing the eigenvalue equations
Hy=Ey and Hy=(E +AE)} . 3)

Here T and V denote the kinetic and potential opera-
tors, respectively. We then have a relation

AE=(y|AV|9)/{v|P) @)

without approximation, where (/| AV | ¥) denotes
f YAVYdT, not f III*AVI/}dT, because ¥ and AV
are complex. Let us assume

AV =—8a,p+8a,p* . (5)
Then we have

8a,(p’)=8a,(p)+AE , (6)
where

FY=W p" |9 /Y| P) .

Now suppose AE corresponds to the uncertainty
(times *1) associated with a measurement of the
binding energy of a system which is described by the
Hamiltonian H. If the binding energy is the only in-
formation available as E +AE, H also describes the
system. Actually this H corresponds to the extremes
among Hamiltonians which describe the system and
are parametrized by 8a, and 8a,. That is, Eq. (6)
describes a boundary of a region in 8a; —8a, space,
and Hamiltonian corresponding to this region yield
the same binding energy within the uncertainty.
The region is specified by

|8a,(p) —8a,(p°) | < |AE | .

This equation is a nonlinear equation of 8a; and
8a,, because {(p) and (p>) depend on 8a; and 8a,
through 9 that is determined by AV of Eq. (5).

Clearly, the size and shape of the region depend on
the dynamics (i.e., V) as well as on the magnitude of
AE. We expect that in some cases the region would
be too small to be recognized or even would not exist
at all.

Now let us consider the case of our interest, that
the region does ex1st and that |AE | is small com-
pared to 8a,{p*) and 8a,{p). In this case pertur-
bation theory for V is perhaps applicable, and we
write

sa,  [uprvdr _ (p)
bay f¢p¢d¢ (p) -

Thus we see that when |AE | is “small,” the re-
gion in the plane which yields E within | AE | tends
to be distributed along the linear slope of {p?)/{p).
Therefore we can introduce an effective nuclear den-
sity p, defined as 8a,/8a,. That is,

(p?)=p.{p) (8a)

(7

or
8a,=p.5a; . (8b)

p. thus defined is generally a complex number. Ac-
tually, in our case we found p, to be approximately
real because little interference exists between the real
and imaginary parts of the calculation as a conse-
quence of the rather weak w-nucleus interaction.
We therefore decided to treat p, as being real by ap-
proximating {p") as

("= [ yprpdr/ [ War
~ [y*p"pdr/ [ |y|%dr )

in Eq. (8). This approximation was chosen because
of convenience instead of, say, (p")~Re(p").

The above discussion shows that p, is the correla-
tion parameter for a; and a,, the coefficients of p
and p?. The correlation between them is thus found
to be approximately linear, and the correlation
parameter p, has the property that an exchange in
the potential

PHT)opep(T) (10)

effectively yields approximately the same binding
energy (or the same scattering amplitude in the case
of the continuum, as shown below). Physically, as
can be seen in Eq. (10), p, corresponds to the value
of the nuclear density at which the pion interacts ef-
fectively. However, we note that our definition of
the effective nuclear density is not unique. It can be
defined differently and thus can have a somewhat
different value. For example, we could have defined
it as
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(p)=p.(OR —r)) ,

where 0(x)=1 for x >0 and is otherwise zero. We
did not choose this definition because of the awk-
ward nonanalytic property of the uniform nuclear
distribution 8(R —r). But one can see that the in-
troduction of p, is an effort to describe the pionic
interaction in finite nuclei (therefore involving the
surface) in terms of the interaction in infinite nu-
clear matter, which is always easier to grasp concep-
tually. Because of this, some ambiguity is unavoid-
ably inherent in the definition of the effective densi-
ty. Through this paper and the accompanying one,
we define the effective nuclear density as in Eq. (8)
with the approximation Eq. (9).

In order to clarify the above general discussion,
let us show an example. (The details of the calcula-
tions will be given in Sec. III.) Figure 1 shows a
| AE | contour for the 1s state of the 7~ '2C atom,
when the coefficients b, (of p) and ReB, (of p? in
the Ericson-Ericson potential are varied, but the
other parameters are kept fixed to the minimum X?
values. In the figure there is a minimum. Its dip is
shallow, forming a long valley along the direction of
about 45°. The length of the valley depends on the
choice of | AE [; in the present art of measurement
| AE | ~0.06 keV.!” The valley is described by Eq.
(6), and from the direction of the valley in the figure
we see p, ~ 1 /4> using Eq. (8b).

0.10}

0.05
—
b
— =
~ 0
(]
[--]
D
o
- 0.05}
—-0.10}
0.’01 * 0.03 ! O.‘05
-1
bo (F7)

FIG. 1. A sum of the shift and width deviations (added
in quadrature) from the best-fit values as a function of the
potential parameters b, and ReB, in the 7~ ?C atom in
the 1s state. The dot in the middle of the figure corre-
sponds to the best-fit parameter values. The numbers la-
beling the deviation contours are in keV.

Figure 1 illustrates the correlation between the po-
tential parameters when a single 7~ atom is con-
sidered. What we really have to consider is a super-
position of many such figures for various 7~ atoms
in various angular momentum states. In Sec. III we
will show that most figures have similar valleys in
| AE | contours (therefore yielding similar p,’s) and
that their superposition yields a valley rather than a
well-defined dip (minimum). Therefore, apart from
statistics, the correlation appearing in Fig. 1
represents the same general features of the correla-
tion as a consequence of many 7~ atom data.

So far we have considered only the case of the 7~
atoms. Actually all of the discussion above is also
applicable to the case of the low-energy scattering.
What we have to do is repeat the identical formal-
ism except that we must replace the eigenenergy E
by the scattering amplitudes (times a constant fac-
tor)

F=(o7 " |V [¢'*)
and
fHAf =5 |V +am |3, 11

with the suitable normalization of the wave func-
tions. Here the superscripts (+) and (—) denote
the outgoing and incoming waves, respectively, and
65~ (=¢p) is the plane wave. Equation (11) corre-
sponds to Eq. (3) in the 7~ atom case. Equation (4)
for AE is replaced by

Af =" AV [, (12)

which is valid with no approximation. For AV
given in Eq. (5), we again obtain Eq. (6), in which
we have to use the new definition

(B =" p" 91

The rest of the discussion remains identical, except
that the effective density is described as

Do~ f ¢(—)'pz¢(+)dr/f ¢‘—"p1//‘+’d¢

rather than by Eq. (8a) with Eq. (9).

Closing this section, we make a pertinent com-
ment. It is known!® that there exists a group of
Hamiltonians which yield the same asymptotic form
of the wave functions and therefore the same phase
shift and binding energy. The Hamiltonians are re-
lated through a unitary transformation called the
phase-shift-equivalent (PSE) transformation, which
has the property that it must approach unity in the
asymptotic region. A question arises as to whether
the ambiguity caused by this PSE transformation is
the same as the insensitivity that we have discussed
in this section. Though our reasoning is not a
rigorous proof, we believe that these two have dif-
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ferent origins because of the following observation:
We have observed that a correlation exists between
the p and p? terms in the potential, say, within the
local part, but a correlation does not exist between a
term in the local part and a counter term in the non-
local part. Therefore, if the PSE ambiguity is the
same as our insensitivity, the unitary transformation
U is such that the PSE potential Vpgg,

2/JVPSE‘=2:L_LU_lVoth —[U_IVZ: ul,

must be momentum-independent (local) even when
Vopt is local. (Since only the local part of ¥y is ef-
fective for the #— atoms in the 1s state, this case is
not artificial.) Here I is the reduced pion mass of
the system. After some trials using various forms of
U, we could not find a U satisfying the above re-
quirement. Even if one could prove such a unitary
transformation indeed existed, it would be quite dif-
ficult to show that a similar transformation existed
also for the nonlocal part: These transformations
must not show interference in spite of the fact that
the above relation is bilinear in the transformation
U. Another reason why we believe that the PSE and
the insensitivity are different is that, as seen in Figs.
1, 2, 6, and 8, each X*-contour valley has a finite
length and also a minimum, though it is shallow. If
the PSE and the insensitivity were the same, the
properties of a valley would be independent of the
dynamics and it would not show such features.

III. PIONIC ATOMS

Vopt of Eq. (1) still has too many terms for a prac-
tical numerical calculation. Following the spirit of
the low-density expansion, we therefore wished to
first examine the leading terms of the expansion, the
p and p’ terms. Since preferably we can also exam-
ine physical effects in such an examination, we de-
cided to choose two forms of the potential for a de-
tailed study. The first one is the Ericson-Ericson
potential (EEP) of the form!

(22 /4m)V e (T)=p (bop+b18p)+p2Bop’
—Va/(1—rta) ¥, (13
with
a()=(cop+c18p)/p1+Cop*/p2

where

P=pa(T)+p,(T)
and
Bp=p,(T)—p,(T),

and

pi=1+p/m and p,=14+u/2m

in terms of the nucleon mass m. The second form is
the Kisslinger potential (KIS) (Ref. 19) expressed as

(2;7/477)Vopt(?)=p1(b0p+b18p)
—p1'Vi(cop+c18p)V . (14)

We chose the EEP because it is constructed so as to
explicitly describe two-nucleon absorption processes
and the Lorentz-Lorenz (Ericson-Ericson) effect. In
the EEP the former appears as p® terms and the
latter as nonlinear dependence on p"? in the nonlo-
cal part of the potential. The KIS has no such
structure. In the actual calculations the proton and
neutron distributions were assumed to be the same
(i.e., pn/N =p,/Z) and to have the two-parameter
Fermi form. In Sec. V we will discuss some possible
consequences of removing this restriction from our
analysis. When the proton size is folded, the distri-
butions yield the same rms radius (r2)!/? and
(r*)17* as those of the charge distributions extract-
ed from high-energy electron scatterings?®® and
muonic atoms.

The above potentials were put into the Klein-
Gordon equation?? as

(=V2+ B>+ 20V o y=(E — V)Y , (15)

Here V, is the electromagnetic interaction potential.
It includes the Coulomb and lowest-order vacuum
polarization (Uehling) potentials which are modified
by the finite charge distribution of nuclei. Equation
(15) was numerically integrated using the computer
code MATOM (Ref. 23) to obtain the eigenenergy
after the equation was reduced to the standard form
of second-order differential equations. The eigenen-
ergy was then corrected for small electromagnetic
effects (whenever they were greater than 1 eV) using
perturbation theory. These effects consist of the
vacuum polarization of a(Za)**" and aX(Za) or-
ders, the static electron-shielding effect, and the
center-of-mass motion of the nucleus beyond the re-
duced mass effect. In this way we accurately com-
puted the binding energy of an atom in a given state
once the form of V,,; was chosen.

The | AE | contour in the by —ReBy plane of Fig.
1 was obtained by repeating the above calculation
for various values of the potential parameters b, and
ReB, in the EEP. As discussed in Sec. I, the figure
illustrates the correlation between b, and ReB;. We
also repeated the calculation by varying the potential
parameters ¢g, ReCy, and £ (the LLE parameter) in
the EEP. A similar correlation was found among
these parameters and is illustrated in Fig. 2. Be-
cause of the complexity, only the valley is shown for
various values of £&. We observe that when £ is
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varied, the valley slides up and down along almost
the same direction as that of the valley itself. We
repeated the calculation in other w~ atoms and
found that the valleys of the |AE | contours for
most of the atoms have practically the same direc-
tion in each by —ReBj and c;—ReC| case.
Encouraged with this observation, we proceeded
to do best-parameter searches using the EEP and the
KIS. We selected 59 pionic atoms in which both
shifts and widths had been directly measured®?*
after excluding 7~ atoms in which more than two,
mutually inconsistent data points have been report-
ed. So called upper-width data were also excluded
in order to avoid probable prejudice involved in cas-
cade calculations which must be used in the extrac-
tion of the data from the x-ray intensity measure-
ments. The 7~ atoms of mass number less than 10
were not used in order to avoid complications due to

~ 51
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FIG. 2. The same as Fig. 1 in the 7~ 'V atom in the
2p state as a function of the Lorentz-Lorenz parameter £.
For simplicity only the location of the valley is show for
each £ The length of the valley is described by the sum
of shift and width added in quadrature, o, expressed in
keV.

1/4 corrections (4 is the atomic mass number).

Table I describes results of the best-fit searches
and shows that the EEP and the KIS can be fitted to
the 592 data with equally good statistics. That is,
the data verify neither that the LLE is effective, nor
that the two-nucleon absorption process is dom-
inant. This result, as we shall see, seems to be the
clearest demonstration of the insensitivity of the 7~
atom data to the potential structure. As shown in
this table (and also in the following tables) the chi-
squares per number of degrees of freedom, X2/N,
for the best fits are about 3, somewhat large. We
will discuss this point shortly.

In order to gain insight, we then repeated the
best-fit searches by taking different combinations of
the parameters to be fitted. Here, B, and C, in the
EEP were treated to be complex. Table II shows
some of the results. Various features can be ob-
served: Once £ is searched, the uncertainties in ¢,
and ImC are increased, as seen in the fit b —1 in
contrast to the fits a —1 and a —2. A similar in-
crease in b, generated by the search of ReB, can be
observed in the fits b —1 and b —2; and though not
shown, a similar behavior was also seen in ¢, when
ReC\ was searched for various fixed values of £. In
fact, when all parameters of interest are searched,
little reliable information can be obtained except
perhaps for by, b, and ImB,, as seen in the fit b —4.
When we compare all searches in the table, we no-
tice a tendency of ReBy>0 and of ReCj <0, but
statistically, there is not a conclusive determination
of the signs.

Though the parameter values in these tables vary
greatly from fit to fit, we observed that there are
(linear) relations satisfied by these values. They are

By =b+a;By~(0.03—0.01i)p "
with a;~0.23u°
By =(co+a,Co)/y=(—0.2—0.02i)p 3
with @, ~0.37u* ,

(16)
where

4 41
y=1—" Ecop==1—=-Ecope -

After examining various analyses of 7~ atom data
which had been made previously, we find that Eq.
(16) is satisfied by parameter values found in the
previous analyses.”!?~!% (See also the discussion at
the end of this section.)

If the unperturbed Coulomb wave function were
the correct pionic atom wave function, the r/ depen-
dence in the region of the nucleus would have pro-
vided sensitivity to the details of the potential be-
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TABLE 1. The best-fit parameters of m-nucleus optical potentials. The numbers in
parentheses are kept fixed and not searched. X?/N is the chi-square per degree of freedom. u

is the pion mass.

Fit Ericson-Ericson (EEP) Kisslinger (KIS)

No. a—1 a—2 a-3
bo (™ 0.0283+0.0006 0.0283+0.0006 Reby 0.0285+0.0006
by @w™h 0.12 +0.01 0.12 +0.01 Imb, —0.0102+0.0005
ImB, (=% —0.042 +0.002 —0.043 +0.002 Reb, 0.12 +0.01
co ™) —0.223 +0.007 —0.176 +0.004 Rec, —0.173 +0.004
¢ W) —0.25 +0.05 —0.17 +0.03 Imcg —0.016 £0.002
ImCy (u=° —0.10 +0.01 —0.046 +0.006 Rec, —0.17 +0.03

3 (1.0) (0.0)

X*/N 2.9 32 X*/N 3.0

cause the wave functions of the different 7~ atoms
in different angular momentum states would have
overlapped nuclei in different ways. The insensitivi-
ty, therefore, stems from a systematic distortion of
the wave functions of the various atoms caused by
the strong interaction itself. Figure 3 illustrates this
point. The quantity shown is the ratio of expecta-
tion values of p? and p, {p?)/{p), in 59 atoms that
were used in the best fit searches. The value of this
quantity is equal to 0.24u* for most atoms
throughout the periodic table both in the case of the
EEP and the KIS. This value of {p?)/(p) is
indeed just about equal to the value of ¢, in Eq. (16),
approximately 0.23u>. We have thus numerically
demonstrated that {p?)/{p) is the correlation
parameter, as suggested in Sec. II. Though not
shown, we also observed a similar feature in the case
of

(Vp*V ) /{Vp-V)
for which we obtained 0.38u% again numerically
close to a, in Eq. (16). The effective density is thus
Pe= %po in the local part ,

Pe = %po in the nonlocal part ,

where pg=0. 5u° is the nuclear matter density. Note
that o and p, differ by a small amount:

as=(p,/py)p. for the local part ,
a,=(p/p;)p. for the nonlocal part .

As had been expected, the ratio of two adjacent
powers of p, {p"*')/(p"), was found to approach
po as n becomes large.

Let us examine Fig. 3 in more detail. We observe
in the figure that (p?) /{p) for lighter nuclei in the
same angular momentum state is influenced less by

the strong interaction. The value of (p?)/{p) for
light nuclei is smaller than 0.24u> and the lighter
the nucleus, the smaller the value becomes. It
reaches as low as 0.16u® for very light nuclei in
which generally only the upper-width data are avail-
able. In principle, therefore, 7~ atom data in these
lighter nuclei should provide information about the
potential form that is different from the information
obtained from the data in medium to heavier nuclei
in the same angular momentum state. However, the
shift and width data of these lighter nuclei usually
carry larger relative errors than those of medium
weigh nuclei and therefore weigh less in the best-fit
parameter searches. This is particularly true with
the presently available upper-width data, and the
data serve only as a weak constraint in the searches.
In fact, our best fits in Tables I and II reproduced
the upper width data with X? per datum less than
X?/N in the fits. An inclusion of the upper width
data in our analysis would not have altered the re-
sults significantly.

In the case of heavier nuclei (in the same angular
momentum state, of course) we observe that
(p*)/{p) is changed more appreciably by the
strong interaction. This means that the stronger po-
tential for heavier nuclei distorts the atomic wave
function more than the weaker potential for lighter
nuclei does. Consequently, we obtain roughly the
same {p*)/{p) for medium to heavier nuclei and
the information content of 7~ atom data in these
nuclei is basically the same. As exemplified in Fig.
3 for the case of Pd in the 3p state, we do not gain
much new information about the potential from
measurements in very heavy nuclei, such as E2 mea-
surements.?’ It is rather desirable to obtain more ac-
curate data in light nuclei, i.e., of small shifts and
widths and of upper widths.

The fact that {p*>)/(p) has practically the same
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FIG. 3. The ratio of the expectation values, {p*)/{p)
in 7~ atoms used in this work. The ratio in each atom is
computed by three numerically integrated wave functions:
the one without the strong interaction (the top figure) and
those with the potential parameters of fitsa —1 and a —3
in Table I (the second and third figures). The ratios for
110pq in the 3p states are shown separately by A. The
dotted lines correspond to the ratio of 0.24u~3. Continou-
ous, almost straight curves in the top figure represent the
ratios computed by the use of approximated wave func-
tions proportional to r’, but are being raised by 0.05u> for
comparison.

value both for the EFP and for the KIS means that
the atomic wave functions effectively yield the bind-
ing energies independent of the potential forms.
This insensitivity of the wave function persists even
in the 7~ atoms in which the p-state shift changes
sign (owing to a dominance of the local part of the
potential over the nonlocal part) as 4 increases. Fig-
ure 4 illustrates that the EEP and the KIS predict
shifts remarkably close to each other in these 7~
atoms once the potentials are fitted to the atoms of
lighter nuclei. o

In Fig. 5 we plot {Vp-V)/{p) for the same set
of 59 atoms. We observe that, though values tend to
be larger in higher angular momentum states, they
decrease for heavier atoms within a given angular
momentum state. This feature confirms the proper-
ty of the 7-nucleus interaction, the dominance of the
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FIG. 4. The 2p state strong-interaction shifts in vari-
ous 7~ atoms. The shifts up to the 7~ As (Z=33) atom
are fitted using the potential parameters of fits a —1
(EEP) and a —3 (KIS) in Table I, and shifts beyond this
atom are a prediction. Dotted curves are predicted shifts
without the interference from the finite charge distribu-
tions of nuclei.

local part over the nonlocal part in heavier nuclei,
and is certainly in contrast to what we have ob-
served in Fig. 3 for the quantity (p?)/{p). We
thus conclude that the distortion of the atomic wave
functions due to the strong interaction have the fol-
lowing characteristics: The distortions in different
atoms appear to be almost the same when viewed
through the p and p? terms in the potential, but ap-
pear to be different when viewed through the local
and nonlocal parts of the potential. As a conse-
quence of this delicate difference, a correlation ex-
ists between the coefficients of p and p? but not be-
tween the parameters of the local and nonlocal
parts.

Let us now discuss the problem of the large X2/N
associated with the best fits. After examining de-
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FIG. 5. —(Vp-V)/(p) for 59 7~ atoms calculated
using the wave functions generated by the KIS potential
(fit @ —3 in Table D).
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TABLE II. The best fit parameters of the Ericson-Ericson potentials. The errors in fit
b —4 are quoted in order to show their size and may not be accurate. The numbers in

parentheses are kept fixed and not searched.

Fit No. b—1 b—2 b—3 b—4
bo (™ 0.0286:+0.0006 0.01140.007 0.01240.007 0.0208+0.007
by (™ 0.12 +0.01 0.10 +0.01 0.11 +0.01 0.09 +0.01
ReB, (™) ©.) 0.08 +0.03 0.08 +0.03 0.03 +0.03
ImB, (w™%  —0.042 +0.002 —0.045+0.003  —0.045+0.003  —0.044 +0.003
co 1™ —0.22 +0.05 (—0.21) (—0.21) —0.5 +0.4
e @) —0.25 +0.09 (—0.18) (—0.18) —12  #11
ReCo (1% ©.) —0.05 +0.02 +0.008+0.078 —0.4 +2.8
ImC, (™%  —0.10 +0.07 —0.11 £0.01 —0.09 +0.03 —1.6 +£3.4
I3 1.0 0.8 (1.0) 0.7 +0.5 46 +1.5
X*/N 3.0 2.8 2.8 32

tails of the fits listed in Tables I and II, we found
that the widths in '*0 and “°Ca atoms and the shifts
in F, "'Nd, Th, and U atoms always give large
(>10) X? contributions. When we discarded these
data artificially, we obtained smaller values of about
2 for X?/N, compared with the original values of
about 3. Based on this observation, we had tenta-
tively concluded at the time of the analysis that
these data are inconsistent with the rest. It turns out
that the 80, *°Ca, and U data have indeed been re-
vised substantially in the new data discussed below
(Ref. 26 for '®0 and Ref. 27 for the others).

The degree of the insensitivity does depend on the
accuracy of the measurements. After all of the
computations described so far were completed, new
sets of data were obtained at the Rutherford Labora-
tory?’ and at the Los Alamos Meson Physics Facili-
ty?® in some atoms in the 2p state and higher. These
new data have better accuracy by about an order of
magnitude. We have repeated the computations

after replacing some of the old 2p state data by the
new data from the Rutherford Laboratory in our
selected data set of 59 atoms. The results are shown
in Table III. The new data give larger X2/N of 4.7
for the KIS compared to 3.8 for the EEP. However,
because of the largeness of these values and the
problem of the isovector parameters as discussed
below, we cannot conclude that the data are better
represented by the EEP than by the KIS.

When we compared the new fits with the old, we
noticed that the major change occurred in the iso-
vector parameters (as well as in C,). Fit a —3 in
Table I and fit @ —3R in Table III tell us that the
magnitude of the positive b; has increased by about
25% and the magnitude of the negative c¢; has de-
creased by about 35%. That is, a shift has occurred
within the strength of the isovector part of the po-
tential. Let us look into more detail. Using the KIS
we write the effective strength of the isovector part
as

TABLE III. The best fit parameters for the data including the new 2p data (Ref. 27).
Blank entries mean that the value is fixed to be zero and is not searched. The numbers in
parentheses are kept fixed and not searched.

Fit No. a—IR a—3R b—2R b—3R
Reb, 0.0285+0.0007 0.0287+0.0008 —0.003+0.008 0.000+0.009
Imb, —0.0098+0.005

b, 0.14 +0.01 0.15 +0.01 0.143+0.006 0.11 +0.01
ReB, 0.15 +0.04 0.13 +0.04
ImB, —0.044 +0.003 —0.046+0.003 —0.050+0.004
Reco —0.252 +0.004 —0.193 +0.002 (—0.21) (—0.21)

Imc, —0.013 +0.002

e —0.138 +0.05 —0.11 +0.03 (—0.18) (—0.18)

ReC, —0.11 +0.01 —0.7 0.3
ImC, —0.077 +0.008 —0.09 +0.01 —0.3 0.1
I3 (1.0) (1.0) 2.5 +0.6
X*/N 3.8 4.7 3.5 3.4
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Sy =b; _Pl_zcl<€(Pn —Pp)’ﬁ)/<pn _pp>
=b1"P1_26‘1<€P'€)/<P> )

where the second equality is a consequence of the re-
stricted model used in our work, p,/Z =p,/N. As
seen in Fig. 5, (Vp-V)/{p) is negative and its
magnitude increases from nearly zero to about 1u?
as the angular momentum of the state increases.
Comparing Tables I and III with Fig. 5, we observe
that S;v consists of about 0.12u~! (=b,) and
—0.06u~! (= the second term) in the case of fit
a —3 while it consists of about 0.15u~! (=b,) and
—0.04u~! (= the second term) in the case of fit
a —3R. Thus the strength of the isovector part has
increased by the inclusion of the new 2p data that
dominate the best-fit searches. In fact, the analysis
accompanying the report of the new data em-
phasizes the fact that the new data require a larger
value of b;, 0.13u~!, than the value 0.08u~!
favored by some of the old analyses.

A close examination of fit @ —3R shows that a
substantial contribution to the X?/N now comes
from the 1s state atoms, compared with fita —3. It
is tempting to assert that the new 2p data are incon-
sistent with the old 1s data, but the assertion is not
conclusive because of the ambiguity associated with
the determination of the isovector parameters. The
ambiguity is caused by the fact that the isovector
density distribution 8p=p, —p, is quite sensitive to
the choice of the radial dependences of p, and p,.
For example, the restricted form p, /Z =p, /N used
in our analysis yields p «p, but an incompressible
nuclear model yields §p appreciable near the nuclear
surface for N > Z. Therefore, the values of the iso-
vector parameters, b, and c;, depend sensitively on
the form of 8p used, because the data contain the in-
formation of the product of b; (or c¢;) and 8p, but
not that of each quantity separately. Our values of
the isovector parameters are indeed a consequence of
our constraint p,/Z =p, /N imposed at the outset
of the analysis, and should not be quoted without
this constraint. In the case of the isoscalar parame-

ters, the statement is in principle true, but the varia-
tion of p=p, +p, among various nuclear models is
comparatively so small that the values of the isoscal-
ar parameters are approximately the same among
different analyses. The values of isovector parame-
ters thus vary among analyses, and their determina-
tion requires extra care. We will discuss this prob-
lem further in connection with pion scattering at the
end of the accompanying paper.

Recently further new atomic data have been re-
ported.!”262°  Unfortunately, in analyses®® which
have followed the report of the data, the authors do
not use all available data but only selected ones, ex-
amining each of some interesting features of the op-
tical potential as a separate analysis. On the other
hand, a different group®® has made a serious effort
to use the Hartree-Fock nuclear density distributions
in the analysis of 2p atom data of various isotopes.
But again, only selected data among the existing
ones are used. Clearly, what should be done is a
careful analysis including all available data with the
most realistic nuclear distributions available. Until
such an analysis is done, it is not clear how much in-
formation the presently available data can provide
beyond the effective potential. Because of the great
amount of effort needed to carry out such an
analysis, we have decided to leave it for future work.

IV. PION SCATTERING

Various data have been available for low-energy
pion elastic scattering.’! Because of convenience
and availability, we chose a systematic data set*? of
w1 elastic scattering from various nuclei at
T,=29.0, 40.0, and about 50 MeV obtained at the
Los Alamos Meson Physics Facility. Based upon
the above experience with 7~ atoms, we decided to
examine the data using just the KIS. In addition,
because angular transformation terms®® (ATT) were
known to play an important role in scattering, we
also decided to use a modified Kisslinger potential
(MKIS). The MKIS has the form 7¥,

(2 /4m)V 5 (F)=p' (bopTFb18p) — {co( V-V —€Vp) e, (Vp-V —eV26p)} /pi (17)

where p] =1+2¢€ and
e.,__('11’2_*_](2)1/2/2”1

in terms of k, the 7-nucleus c.m. momentum. In
Eq. (17) the ATT are those with V2, and without
these terms the equation becomes that of the KIS.
The KIS for the 7~ atoms then has the same form
as Eq. (14), except for pj#p,, but p;—p, at the
threshold.

In the actual analysis we used the same nuclear
densities as those used in the 7 -atom analysis (Sec.

[
III). We then modified the above-mentioned KIS
and MKIS by replacing byp by

bop+(p3 /P )Bop’®

and cop by

cop+(p1/p2)Cop?

so as the examine the correlations between the p and
p* terms. Here py=1+€. This was done first by
numerically integrating the Klein-Gordon equation
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using our modified version of a computer code FITPI
(Ref. 34) for various values of Reby—ReB, and of
Recy—ReCy so as to generate X 2 contours. We then
examined X? contours in each of the Reb,—ReB,
and Recy —ReC planes for the existence of the val-
ley. Here we avoided a mere diagonalization of the
error matrix near the maximum since we wanted to
view the entire valley without the prejudice of
linearity. Nevertheless, we have indeed seen a long
linear valley in each case and have observed that the
direction of the valley varies slowly as the energy in-
creases.

As an example, Fig. 6 illustrates such a valley in
the Reb,—ReB,, plane for the 7*-1°0 scattering at
49.7 MeV. Choosing three points in the valley, we
show in Fig. 7 how the parameters Reb, and ReB,
corresponding to these points reproduce the experi-
mental data. Agreement with the data is of course
satisfactory in all three cases, reflecting the fact that
the chi-square per number of freedom, X 2/N, is less
than 1.5 for them. We observe, however, an in-
teresting variation in fitting as the parameters Reb
and ReB, vary from the values corresponding to one
end of the valley to those corresponding to the other
end, as shown in Fig. 6. A close examination of the
Figs. 6 and 7 tells us that appreciable variations
occur at the first dip and the shoulder at large an-
gles and confirms an expectation that the accurate
measurement at these angles would decrease the
amount of the correlation and improve the sensitivi-
ty of the data. Note that, when the X 2 contours in
Fig. 6 were obtained in the Reby—ReB, plane, the
other parameters were not varied, but kept fixed to
the minimum X? values (i.e., corresponding to point
b in Fig. 6). We also calculated the X 2 contours by
searching the best-fit values for the other parameters

0 0.04 0.08 0.12
Re bo ()
FIG. 6. The Xx? contours in the Reby—ReB, plane for
m+-160 elastic scattering at 49.7 MeV. Three points a, b,
and c in the valley correspond to the curves in Fig. 7.
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FIG. 7. 7+-'%0 elastic scattering cross section at 49.7
MeV. The data are from Ref. 31. Three curves labeled a,
b, and ¢ correspond to the points in the valleys of the X2
contour in Fig. 6.

at each point in the Reby—ReB,. In this case the
valley was found to be shallower and longer. That
is, the insensitivity of the data increased. Figures 6
and 7 thus correspond to the more restricted way of
demonstrating the insensitivity of data. We
thought, however, that this restricted way more ap-
propriately illustrates our point, and therefore used
it for the rest of the analysis.

We repeated the analysis for each nucleus at each
energy for the Reby—ReB, and Recy —ReC planes
for the two different potential forms so as to obtain
a total of 60 (=5X3Xx2X2) X* contour maps. As
an example, Fig. 8 illustrates an intermediate sum-
mary of the analysis at 29.0 MeV for the ReB, for
the KIS by showing the valleys for the various nu-
clei. Here, the valleys are seen to be indeed linear.

Since all valleys in all X? contour maps turned out
to be linear, we decided to describe the valleys using
an expression similar to Eq. (16) in the 7~ atom
analysis.

Ref3; =Reby+a,ReB, ,

(18)
Ref, =Reco+a,ReCy .

(Note that these equations include the isovector
parts, as will be seen below.) Thus a,, a,, B;, and
B, now play the central role in our analysis. We
again note that a and p, are different by a small
amount:

as;=(p3/p})p. for the local part ,
a,=(p}/p3)p; for the nonlocal part .

Figures 9 and 10 show how the parameters vary for
each nucleus at each energy for the two potential
forms. These figures represent the final summary of



27 UNIFIED ANALYSIS OF PIONIC ATOMS AND LOW-ENERGY ... 2811

1 Rebo (v")

T» = 29.0 MeV

Zr
+-005

FIG. 8. Valleys of the X? contour in the Reb,—ReB,
plane at 29.0 MeV. The width of each valley is indicated
by error bars which correspond to an increase of X2 by the
number of degrees of freedom. The range of the valleys
that is defined in the same way is shown by the best-fit
straight line. Note that the range for Pb exceeds beyond
the lower right corner.

our analysis of the low-energy scattering. The fig-
ures also include Eq. (16) and a result from the ac-
companying paper, the threshold values of the a’s
and B’s. In Figs. 9 and 10 we observe that, though
the values of the a’s (B’s) tend to increase (decrease)
in magnitude for heavier nuclei, the values do not
scatter too widely among the various nuclei at each
energy for each potential form.

As the pion energy increases, the a’s and f’s are
seen to increase in magnitude. The values of the a’s
for the KIS are slightly (by about 5%) greater than
those for the MKIS. The errors in the a’s are diffi-
cult to estimate, but we assess them to be in the
neighborhood of 0.02u%, which is comparable to the
difference in the values of the a’s for the KIS and
MKIS. The energy dependence of the a’s in our en-
ergy range (up to 50 MeV) may be taken to be linear
(particularly in the case of the MKIS) as a crude but
convenient description, even though a slight devia-
tion from the linear dependence seems to appear at
30 MeV. For the MKIS we obtain, by inspection,

a; =0.22+0.00267T, (1°) ,

\ (19)
@, =0.33+0.0016T,, (1),

where T, is expressed in MeV. Strictly speaking,
the a’s include those for the N =Z (C, O, and Ca)
and N >Z (Zr and Pb) nuclei. We neither know
a priori how to separate out the isovector com-
ponents of the a’s nor see a clear pattern of the isos-
pin dependence in Fig. 9. In view of the poor accu-
racy in the determination of the a’s, further detailed
examination does not seem worthwhile at present.
In this sense Eq. (19) should be regarded as an ex-
pression of the general trend, not as a precise fit.

In the case of the B’s, however, we know that they
are the coefficients of the p’s in the potential when
the KIS and MKIS are regarded as effective poten-
tials. The B’s are then linear sums of the isoscalar
and isovector parts, that is, of the effective by (cy)
and b, (c;) at the given energy. We therefore exam-
ine the N =Z and N > Z nuclei cases separately in
Fig. 10. For the N =Z nuclei, the 8’s for the MKIS
increase more slowly than for the KIS as the energy
increases. In magnitude, the B’s for the KIS are
larger than for the MKIS except at the threshold
(the 7~ atoms) where 3, for the KIS is smaller than
for the MKIS. This abnormality turns out to be a
reflection of an interesting sign change in the ATT
contribution and will be discussed in the accom-
panying paper. As a convenient summary of Fig. 10
for the N =Z nuclei we again show a linear fit for
the MKIS, by inspection:

bo(T,)=ReB; =0.031+0.00028T, (u™"),
(20)
¢o(T,)=Ref,=—0.163—0.00060T , (1~>) ,

where T, is in MeV.

In order to extract the isovector parts as accurate-
ly as possible, we averaged the f’s for the N =Z nu-
clei [i.e., bo(T,) and ¢o(T,)] at each energy and
then computed b,(T,) and ¢(T,) from the s for
the N > Z nuclei. The computation was done using
a relation

Z—-N

Bs=bo(T,)+ ZIN

b(T,)

and a similar one for B,, ¢, and ¢, which were ob-
tained exploiting the assumption p, /Z =p, /N.
Table IV shows these phenomenological parame-

“ter values thus computed. The isovector parameters

tend to have smaller magnitudes but the same signs
as the pionic atom values. The values for Zr and Pb
are unfortunately different, those for Zr being close
to zero, but the statistics for these nuclei, particular-
ly for Zr, are not good. The small isovector parame-
ters obtained here will cause some problems when
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FIG. 9. The energy and atomic-mass number variations of the correlations parameters a; and a, obtained using the
KIS [part (a)] and the MKIS [part (b)] potentials. C, O, X, A, and + denote nuclei of *C, '°O, “Ca, *Zr, and 2%Pb,
respectively. In part (a) ® corresponds to the pionic atom value in Eq. (16) and in part (b) @ is also the pionic atom value,

but is taken from the analysis in the following paper.

we try to understand the 7~ atoms and the scatter-
ing in a unified fashion, as described in the accom-
panying paper.

Closing this section, let us discuss a shortcoming
in our analysis of the scattering. The recent elastic
differential cross-section data that are used have two
types of errors, a relative error and a normalization
error. Different values of the former are assigned to
different data points, while, for the latter, a single
value is usually assigned to all data points for each
target of the same experiment. In magnitude the
latter is often larger than the former. Since the two
types of errors are of different origin, a best-fit
parameter search should be done taking into account
such a difference. For simplicity, what we did in
our analysis was to add in quadrature the two types
of errors for each data point and assign the resultant
error to each point. Clearly this is an overestima-
tion of the errors. We have, however, examined a
few cases, assigning smaller errors by excluding the
normalization error, and we have again observed the
linear valleys of the X? contour in the p—p? parame-

ter planes with practically the same direction for all
nuclei at a given energy. The only recognizable
feature was that the length and width of a valley
were shorter compared to the results we have report-
ed. We therefore believe that what we have reported
in this section is correct, though the errors assigned
to the results of our analysis may be somewhat
overestimated.

V. DISCUSSION AND CONCLUSIONS

Our phenomenological analysis is restricted by the
choice of the potential forms of the general type Eq.
(1). However, since we did not observe any signifi-
cant difficulty in fitting potentials to the low-energy
data presently available, highly nonlocal effects
which depend on large powers of momentum must
have been included effectively in the fitted parame-
ter values of our analysis. An example of such ef-
fects is the effect due to the finite range of the =-
nucleon interaction. A recent, restricted analysis®
concentrating on this effect seems to bear out this
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but taken from the analysis in the following paper.

assertion. At any rate, we have firmly established
that there exists an intrinsic insensitivity of the 7~
atom and low-energy w-nucleus scattering data to
the detailed structure of the optical potential. In
this sense good agreement to the data is merely a
necessary condition for the soundness of a theory of
the optical potential, but not a sufficient one. The

present state of the art does not provide concrete,
phenomenological evidence of various microscopic
effects such as the Lorentz-Lorenz (Ericson-Ericson)
effect and the finite 7-nucleon interaction-range ef-
fect.

In our analysis we did not consider the effect of
uncertainties in the p, and p,. (Actually, what are

TABLE IV. Averaged best-fit isoscalar parameters for C, O, and Ca and deduced isovector
parameters for Zr and Pb. The potential form used is the MKIS.

T, Reb, (y“) Reb; (;L_‘) Recy (,u") Rec, (/,L’3)
30 MeV 0.041+0.001 —0.187+0.009

Zr 0.03+0.04 —0.2 +0.1

Pb 0.09+0.14 . —0.02+0.30
40 MeV 0.041+0.002 —0.182+0.002

Zr 0.03+0.02 0.04+0.04

Pb 0.08+0.03 —0.10+0.05
50 MeV 0.045+0.001 —0.192+0.005

Zr —0.01+£0.01 0.01+0.05

Pb 0.06+0.01 —0.16+£0.03
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relevant are not just uncertainties in the p’s, but
those in the proper moments of the p’s involved in
the 7~ atoms and the low-energy scattering.) Even
if the restriction p,/Z =p, /N were to be correct, it
would still be difficult to assess the influence of un-
certainties in p, on the potential-parameter deter-
mination. However, as an order-of-magnitude esti-
mate, we may suggest doubling the errors of the iso-
scalar parameters. The reasons for this suggestion
are as follows:

(1) pp’s for most of the nuclei are determined
from p~-atom data.

(2) The corresponding transition energies in 7~
and p~ atoms are similar for a given nucleus.

(3) The relative uncertainties in energy measure-
ments in these atoms are similar (though generally
better in .~ atoms).

(4) Therefore the part of the errors caused by the
uncertainties in the p,’s is about the same as that
caused by the uncertainties in the 7~ atoms data.
Effectively this argument suggests that we increase
the experimental uncertainties in the shift and width
data in order to account for the uncertanties in p,’s.
When this suggestion is followed rigorously, the er-
rors of the isoscalar parameters should be increased
by V2~1.4 rather than doubled. We feel that the
overestimate of doubling the errors would be more
realistic in view of our restriction p,/Z =p, /N.

The influence of this restriction appears directly
in the isovector parameters which depend on the
form of p, —p,. For reasonable choices of individu-
al p, and p, after removing the restriction, the radi-
al dependence of p, —p, varies so greatly that we do
not dare make an estimate of the errors in the iso-
vector parameters. These errors are one of the seri-
ous problems in 7~ atom analyses, and we will dis-
cuss this further at the end of the accompanying pa-
per in connection with our hybrid analysis of the
low-energy scattering.

Judging from our experience in this work, we feel
that, given the present state of the art, a purely
phenomenological extraction of the forms of p, and
pn is difficult and unreliable and requires much
care, particularly in the new sensitivities to various
other parameters. This is a general statement.
There seems to be,’® however, an exception to this:
The low-energy 7~ interacts very weakly with the
protons. Therefore, if one uses our (effective) KIS
or MKIS potential, the 77~ differential cross sections
depend on two potential parameters, the 7~ -neutron
parameters in the local and nonlocal parts, as well as
on the p,. When a ratio of the 7~ cross sections for
two isotopes is considered, the ratio then depends ef-
fectively only on the single parameter, the ratio of
the 7~ -neutron parameters, in addition to the ratio
of the p,’s for the isotopes. The ratio of the p,’s is

interpreted to correspond to the difference in the
neutron rms radius. Thus effectively only two
parameters are involved in fitting to the data and
they can be determined relatively unambiguously.
Note that our p, corresponds roughly to the nuclear
density at the rms radius in the case of light nuclei
so that -the extraction of the rms radius seems to be
reasonable. What we have described so far shows
why the above technique of extracting the neutron
rms radius for two isotopes works, as was demon-
strated recently.*® But it also demonstrates how use-
ful it is to apply the concept of the effective nuclear
density to low-energy phenomena. We will make an
additional comment on the above technique at the
end of the accompanying paper.

Concluding this paper, let us summarize the con-
cept of the effective nuclear density: Despite the in-
sensitivity of the data to the detailed potential struc-
ture or because of the insensitivity, we found that we
can define the effective nuclear density p,. It has
the double role of describing the correlation between
the p and p? terms in the potential and of defining
the approximate region where the 7-nucleus interac-
tion is taking place. The value of p, was found to be
greater than one-half of the nuclear matter density,
to be approximately independent of the atomic mass
number of the nuclei, and to increase rather slowly
as a function of the pion energy up to 50 MeV.

The concept of p, is perhaps most useful in calcu-
lations involving a local density approximation or in
nuclear matter calculations. For example, p,
represents an approximate nuclear density at which
the potential parameters were determined. In this
sense, the 7~ atom data supply information about
the potential at p, =(%)po for the local part and at
Pe :(%)po for the nonlocal part. Therefore, it is an
extrapolation to apply such a potential to phenome-
na which involve another region of the nuclear den-
sity distribution. For example, our parameters in
Eq. (14) and Tables I and II, multiplied by p, satisfy
the Ericson-Myhrer®’ criterion of the existence of a
strongly bound state in sufficiently neutron rich nu-
clei. However, this test does not give us a definite
conclusion on the existence of such bound states.
[Note that the criterion is not satisfied at p, =( % )Po
even for **Na, though this information is not really
relevant.]
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