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This work draws an analogy between a heated nucleus breaking up into clusters and a
liquid undergoing a phase transition to a gas in which droplets appear. The critical tem-

perature and density in the nucleus are investigated using a Skyrme effective interaction and

finite temperature Hartree-Fock theory. The energy and pressure as a function of density

are calculated. The effects of compressibility, effective mass, and binding energy per parti-
cle on the critical temperature and critical density of nuclear systems is developed. In some

cases, analytic expressions for these quantities can be obtained.

[NUCLEAR REACTIONS Phase transitions in hot nuclear matter. ]

I. INTRODUCTION

There is much current interest in the behavior of
nuclei undergoing violent collisions produced by
high energy incident projectiles. Such collisions
may produce states of nuclear matter which are far
removed from those normally encountered in low
energy collisions. For example, at high densities
and/or temperatures, nucleons in the nucleus may
dissolve into quarks and gluons. At lower tempera-
tures, which can be attained in medium energy
heavy-ion reactions, no such exotic states can be
produced but there is the possibility of a liquid-gas
phase transition leading to the breakup of the heated
nucleus into small clusters (or droplets) of nucleons.

The possibility of such a phase transition was pre-
viously considered by several authors' utilizing
various approaches. In general, liquid-gas phase
transitions occur in systems with short-range repul-
sive and longer-range attractive forces. The nuclear
system satisfies these conditions and is therefore ex-

pected to exhibit such a phase transition. Further
motivation for this expectation comes from the re-
cent results of a Purdue-Fermilab experiment in-

volving the collision of 80—350 GeV protons with

krypton and xenon targets. The isobaric fragment
yields of the experiment were found to be given by a
power law,

Y(Ap) ~ 1 (1.1)
AF'

where A~ is the fragment mass number and ~=2.64.
Such a power law is expected for condensation near
the critical temperature as described by the droplet
model of Fisher, where the power law describes the

size distribution of the resulting droplets and ~ is a
critical exponent that is predicted to have a value in
the interval 2 & ~ & 3. In particular, v =2—, for a van

der Waals gas. The power law also seems to be valid
for heavy fragments in nucleus-nucleus collisions as
shown by Gutbrod et al.

The present work is concerned with investigating
the condensation of a Fermi gas of nucleons in-

teracting through a Skyrme effective interaction.
The equation of state of nuclear matter is calculated
using finite temperature Hartree-Fock theory. In
particular, we wi11 concentrate on the relation of the
critical density and critical temperature to properties
of the nuclear equation of state. The Skyrme in-
teraction is used because of the simplicity it affords
and also because it leads in some cases to analytic
results for the critical temperature and density. In
particular, it allows us to study their dependence on
the nuclear compressibility, effective mass, and
binding energy. It should be pointed out that,
despite its simplicity, the Skyrme interaction yields
an energy density at T=O that agrees in the region
of interest with those derived, for instance, in a re-
normalized nonlinear relativistic mean-field
theory. '

Previous numerical calculations of a nuclear equa-
tion of state with the use of specific versions of the
Skyrme interaction have been carried out by Sauer
et al. ' and also by Curtin et al. In the present
work we obtain an analytical expression for the
equation of state using a more general version of the
Skyrme force. The analytical results provide addi-
tional insight in relating the critical temperature to
other nuclear properties, and in carrying out various
approximations.
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II. THE EFFECTIVE INTERACTION
AND THE EQUILIBRIUM CONDITION

AT T=O

The Skyrme interaction has been used extensively
in nuclear structure calculations, especially since the
work of Vautherin and Brink who showed that,
with relatively few parameters, it is possible in nu-

clear Hartree-Fock calculations to obtain the bind-

ing energies, radii, single particle energies, and other
gross properties of nuclei to a satisfactory degree of
precision and over a wide range of the Periodic
Table. The interaction used in the present paper can
be expressed as

Ir= —to@r12)+ [k @r12)+@rl2)k ]
2

FR
E

(2.4)

Equations (2.2) and (2.3) can then be solved for aa
and a &

in terms of Ett, E», , and (m*/m)0.

A. A 2 m
era p =(I+o)Es +E» +(o —, ) — E», ,

(2.5)

A A 2 m A
0.~3pp EBD+EKD 3 g K0

0
(2.6)

The effective mass is now introduced by the defini-
tion

with

and

t3 r~+ rz
+tqk 5(riq)k+ —

p 5(riq), (2.1)

(Note that if o = —, , aa does not depend explicitly on
the effective mass. )

A simple expression can be obtained for the nu-

clear incompressibility

p
A.

E=R
BR pa

k=(Vi —Vg)/2 .

The last term is density dependent, and the usual
Skyrme interaction corresponds to 0.= 1. By insert-
ing the additional parameter cr a more general densi-

ty dependence is obtained and this allows us to fit
more nuclear properties, such as incompressibility
[see below, Eqs. (2.8) and (2.9)].

At this point it is convenient to introduce the
3

parameters a 0 and a 3 such that a 0 ———,tp and
3

a3 ——4, t3. We also introduce EB, EK, and FR which

are, respectively, the binding energy per particle, the
kinetic energy per particle, and the finite-range
energy per particle. Note that in a Fermi-gas model
A 3
EK ———,eF, where ez is the Fermi energy at T=O.

0 5

The FR is the contribution to the energy per particle
from the finite range (alternatively velocity-
dependent} terms of the Skyrme interaction, i.e.,
those proportional to ti and tz in Eq. (2.1). The en-

ergy per particle in the nuclear ground state, i.e., at
T=O, is then given by

K —ppp+ 3pp+ +FR p (2.2)

where the subscript (0) denotes quantities calculated
at zero temperature. The equilibrium condition at
T=O yields

BEB
pp

——0= 3EK + 3 FRp3 p 3

—aapa+a3{1+a)pp . (2.3}

where R =p ' . One obtains

E =9EB + 4 —3 EK

m+0 9EB —6
0 m*

0

—9 EK0
(2.7}

m~E =168+216o for

m~
K =216+144cr for

m 3 ~ (2 8)

For finite nuclei, the parameters chosen to fit a wide
range of nuclei are Es, 8MeV and E», ——20 MeV. ——
These yield

K =92+ 132o for (m ~/m)0 ——1,
2E = 132+72o for (m ~/m)o ———, . (2.9)

One sees that, in general, K is smaller in finite nuclei
than it is in nuclear matter. Using o = 1, as in the
usual Skyrme interaction, tends to give too high an
incompressibility; lower values of cr are thus

It is observed that this expression is linear in cr.

Thus 0 can be used as a parameter to control the
value of K without changing the binding energy or
mean square radius of the nucleus. For infinite nu-

clear matter, using EB,——16 MeV and EK, ——24

MeV, we find that
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favored. The softest equation of state occurs when
o =0. In this limit the density-dependent part of the
Skyrme interaction has a logarithmic dependence on

p:

of state becomes

P = a,—p'+a, (1+g )p'+~

c5( r ii)ln
po

(2.10) 1+—,
5

po ' P;q(m*) . (3.5)

1 —— P;d(m~),
3 p dm*
2 m dp

(3.1)

where P;d(m~) is the "thermal" pressure at tempera-
ture T of an ideal Fermi gas with particles having a
mass m~. P;d can be calculated from the virial
series:

Pg kT g B„p-—
n=1

(3.2)

where the B„'s are given in Eq. (A9) and, apart from
a numerical coefficient which decreases rapidly with
increasing n, they depend on m* and T. In particu-
lar, we have

Bn-
' [3(n —1)]/2

2 h

m*kT

and B& ——1. The n &2 terms indicate the departure
of the quantal Fermi gas from the corresponding
classical ideal gas. In addition, the dependence of
m* on p must be taken into consideration. For in-
teraction (2.1) the effective mass is given by [see Eq.
(A15) in the Appendix]

(3.3)

III. THE EQUATION OF STATE

Using finite-temperature Hartree-Fock theory, as
discussed for example in Fetter and Walecka, it is
possible to obtain an equation of state (pressure
versus density at finite temperatures) for a Fermi
gas of nucleons interacting through the Skyrme
force of Eq. (2.1). The details of the derivation are
described in the Appendix, but the resulting equa-
tion is relatively simple:

P= —aop +a3(1+a)p +

1+
po

It is worth noting that the interaction pressure and
thermal pressure do not simply add up except for
the case (m*/m)0 ——1.

The isotherms corresponding to this equation of
state resemble those for a Van der Waals gas. This
point will be discussed in more detail in Sec. IVA.
In particular, at low temperatures each isotherm has
two points, a minimum and a maximum, at which
dP/dp vanishes. Between the two points the iso-
thermal compressibility has an unphysical negative
value, a defect that is remedied by the usual
Maxwellian equal-area construction. At the critical
temperature these two points merge so that the criti-
cal isotherm has a point of inflection where both
BP/Bp and d P/dp vanish. This point is the criti-
cal point which can be characterized by the values
T, and p, . Moreover, the critical pressure is given
by P(T„p, ). In what follows we attempt to calcu-
late the critical temperature and density (T, and p, )
for the equation of state (3.5) using various approxi-
mations.

IV. CRITICAL TEMPERATURE
AND CRITICAL DENSITY

A. High temperature, low density approximation

If it is assumed that the critical temperature is
high and the critical density is low, then it is possi-
ble to keep the n=1 term only in the virial series
(3.2). In effect, this means that the Fermi gas is
completely nondegenerate and thus equivalent to a
classical gas. Moreover, the effective mass m* can
be set equal to m for such low densities with very
little error. In this approximation the equation of
state becomes

1+
po

P =pkT —aop +ay(1+o)p +~, (4.1)

where

and the critical density, temperature, and pressure,
given by the conditions

m
m~

0
(3.4)

Qp Q
2

With this forin of density dependence the equation can be easily determined:
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Pc=
ao

Using nuclear matter values Ez ——16 MeV and
0

EK ——24 MeV one obtains

(1+0) 1+—a3
2

20
kTc = &op.1+0.

0+ 1 kT 0+ 1 P(0)
2(a+2) ' ' 2(a+2)

(4 2)

cr =0: pc =poe =0 435po

kT, =20.9 MeV,

4a= 1: p, =—
po ——0.444po,

kT, =28.4 MeV .

(4.6)

1

(1+~)'(1+~/2)
r

EK,+Ea,
X 1+30

EK,+3',
(4.3)

The expression is especially simple in the limit
0~0:

EK +Earp
p, (o~0)=poexp ——+3

EKO+3E&0
(4.4)

while for u= 1 one obtains

po ~KO+ EBO

p, (o =1)=—1+3
EK +3' (4.5)

It is instructive to write p, explicitly in terms of the
binding energy per particle and the kinetic energy
per particle,

The critical density varies only slightly in going
from 0 =0 to 1 while the o dependence of the criti-
cal temperature is more dramatic. Using finite nu-
cleus values E~,——8 MeV and EK ——20 MeV one ob-

tains

0.=0: p, =0.554po kT, =16.1 MeV,

0 =1: pc =0 485po k Tc =20.5 MeV . (4.7)

The rationale behind using finite nucleus values for
Ez and EK is that it may account, in a crude way,0 0

for the surface and Coulomb energies that are not
taken into consideration in the equation of state.
More values for T, and p, calculated in the same
approximation are listed in the first column of Table
I. It is noted that in all cases the critical density is
not low enough to justify the approximation made in
the calculation. This suggests that further terms in
the virial expansion (3.2) are important. The effec-
tive mass must also be treated properly. These
corrections will be discussed in the following sec-
tions.

Despite the approximations involved in arriving

TABLE I. kT, (in MeV) and p, /pp are listed as ordered pairs for various parametrizations of the Skyrme interaction
and for various approximations used in the calculations.

Nondegenerate
Gas
approximation

First order
degeneracy
correction with

mo =m

Degeneracy
treated
exactly with

mp ——m

Degeneracy
treated
exactly with

2mp= m0

Infinite
nuclear

matter

o=1
2o'=
3

o.=0.1

(a3 ——0, mp = 5m)
2

28.4, 0.444
26.2, 0.430
21.7, 0.426

22.9, 0.399
20.5, 0.372

16.0, 0.323

22.9, 0.40
20.5, 0.375

16.0, 0.325

19.2, 0.40
18.0, 0.39

15.5, 0.36
19.8, 0.49

Finite
nuclei

o=1
2o'
3

o.=0.1

(a3 ——0, m =—,m)
10

20.5, 0.485
19.2, 0.481

16.5, 0.524

13.1, 0.386
11.5, 0.353

8.1, 0.272

13.4, 0.39
11.9, 0.36

8.5, 0.29

10.0, 0.35
9.5, 0.33

8.1, 0.30
8.3, 0.30
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t th equation of state (4.1), its simple analytic
form makes it interesting to compare with the eq
tion of state for a van der Waals gas. To make t is
comparison, we usese the corresponding states orm
which involves a change of variables in the equation
of state to the dimensionless quantities

Tt=, v=
Tc

St 3

3v —1

For the equation of state (4.1), one obtains

o.+2 t o.+2 1 2

o+1 v cr vi cr(o+1) v
+i

(4.9)

(4.10)

Figure 1 is a plot of p vs v for the Skyrme and van
der Waals systems with o.=1. The two theories
agree at the critical point p=1, t=1, and V=1 by
construction. romF om the figure we see that the two

V pc P
(4.8)

V p' P

If all ases obeyed the van der Waals equation of
sae e't t their corresponding state representations would
be identical. For a van der Waals gas the equa

'
uation

of state becomes

descriptions agree qualitatively. However, for t&1
the van der Waals system has much deeper minima.
The dots represent points where the pressure is a
maximum or minimum.inimum. Note that the Skyrme
equation of state has no excluded volume effect in-
corporated into it.

B. Lowest-order degeneracy correction

Wh the B term in the virial series (3.2) is alsoen e
included the resulting equation of state becomes
the case (m ~ Im)o ——1, i.e., t, = tz ——0 in (2.1)]

P = —aop +ai(1+o)p + +kTp
3/2

2~2
+

p2

(kT)' 2 g
(4.1 1)

where gs t is the spin-isospin degeneracy factor

(2S+1)(2I+1)=4 .

This equation has the same form as (4.1) with ao re-
placed by

ao ——ao—
3/2

2W'

gS,I5/2 (4.12)

~ ~

Note, however, that ao is T dependent. The critical
density and temperature can be obtained by iteration
using Eqs. (4.2) and starting with the values of kT,
obtained in Sec. IVA to get a first estimate for ao.
This procedure converges rapidly and only
iterations are requ'required. The critical densities and
temperatures calculated with this equation o state
are shown in the second column of Table I. It is ob-
vious romf these results that the B2 term is very im-

rtant since it causes a sizable reduction in opo an
the critical temperature and critica ensi y.

ere formost drastic change occurs for o.=0. w ere,

sreis reduced from 0.524po to 0.272po.

C. Exact treatment of degeneracy
for the case (m «/m )0——1

For the case (m~/m)0=1, the equation of state
(3.1) becomes

I

2
V

P = —aop +a (I+o)p + +kT g B„p",
n=1

(4.13)

FIG. 1. Law of corresponding states. Comparison of
the equation of state for a van der Waals gas and for a
system interacting through a Skyrme force (with 0=1)
when written in the corresponding state form.

h e have made use of the virial series (3.2.w ere we ave
This series converges very rapidly because o e
pid decrease of the B„sas n increases q.see E . (A9)
int e ppen ix.h A d' ] In most cases it is practically suf-
ficient to sum up to n=3 for p&p 2 and
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MeV, or for p &po and kT & 8 MeV. However, cal-
culations in this section have been carried out by
summing up to n=6. The accuracy. attained in this
approximation can be checked by comparing with
the exact values of the Fermi-Dirac integrals. For
p(po and kT) 8 MeV the errors involved are
& 0.17%, while for p &po/2 and kT & 4 MeV the er-
rors are &0.24%. Even at p=pc and kT=4 MeV
the error is less than 3%.

With the thermal pressure calculated numerically
the critical temperature and density are found by
plotting the successive isotherms and finding the
point of infiection. The results are tabulated in the
third column of Table I and are found to be almost
identical with those of the second column even for
the case where the predicted critical temperature is
close to 8 MeV. This indicates that, for the case
(m ~/m)z ——1, the lowest order degeneracy correction
is sufficient.

D. Exact treatment of degeneracy
for the case (m~/m)0& 1

The virial series is again summed up to n=6 to
give the equation of state

I' = —acp +a3(l+cr)p +

2

3 1+Es,/Ex
(4.15)

One also has
n

&opo 2E8 + 2EK (4.16)

For infinite matter (Es =16 MeV and Ex, ——24

MeV),

direction that makes the o dependence of p, rather
weak.

Note that for an effective mass of —, all the criti-
cal densities fall in the range 0.30&p, /pc&0. 40.
This is in contrast with the higher densities
0.43 &p, /pp&0. 52 predicted for a nondegenerate
gas.

It must be pointed out, however, that the effective
mass cannot be made arbitrarily small because then
the density-dependent t3 term of the Skyrme interac-
tion (2.1) becomes negative. The lowest value for
the effective mass is thus obtained by setting r3 —0
in which case the repulsion necessary for saturation
is provided solely by the velocity-dependent terms
involving t~ and t2. The condition t3 (or a3)=0
leads, from Eq. (2.6), to the following value for the
effective mass:

+
1+—,

5

po

1+
po

6
. ' kT g Bp",

8=1
(4.14)

5=1.5, aopo ——76 MeV . (4.17)

For finite nuclei (Es, 8MeV and ——Ez ——20 MeV),

where the notation B„ is used to indicate the depen-
dence on m*, m

5= 1.1, aopo ——50 MeV . (4.18)

y) —[3(s—i))/2

or, using (3.3),

B„= 1+
po

' [3(8—1)]/2

&8

the B„'s being those used for the case (m "/m)o ——1.
Because of the effective mass factor the virial series
does not now converge as fast as before, but the con-
vergence is still fast enough for the summation up to
n=6 to be quite adequate. In particular, it is not
sufficient to sum to n=2 or 3 only, except for the
case (m ~/m) = 1 or b, && 1. For the case

2
(m*/m)o ———, , corresponding to b =0.5, the calcu-
lated T, and p, are displayed in the fourth column
of Table I. The effect of changing the effective
mass from 1 to —, is seen to be a lowering of the crit-
ical temperature, with the change being more pro-
nounced for higher values of o. The effect on the
critical densities is mixed but it appears to be in the

The critical temperatures and densities obtained
with purely velocity-dependent repulsive forces are
shown in the fourth and eighth rows of Table I.

Finally, we point out that the critical tempera-
tures calculated here for infinite nuclear matter are
in good agreement with those calculated earlier in
Refs. 1 and 2. We also note that, in general, the re-
sults agree with the rough argument that
kT, -binding energy per particle.

V. CRITICAL EXPONENTS
FOR THE SKYRME INTERACTION

Critical exponents for the equation of state (4.1)
can be easily derived. These critical exponents pro-
vide information about the thermodynamic proper-
ties of the nuclear system near the critical point. In
the following, the critical exponents are defined and
then their values for the Skyrme equation of state
are presented. In a liquid-gas phase transition the
order parameter is pI —pG, the liquid-gas density
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difference at the end points of the Maxwell con-
struction line. In the theory of critical phenomena
the variation of the order parameter with tempera-
ture near T, is written as

(5.1)

P(A) ~A (6.2)

Moreover, z is related to the critical exponent 6, in-
troduced in Sec. V, by the equation

and p is the chemical potential. At the critical tem-
perature x=1,y=1, and

where
w=2+ —.

1

5
(6.3)

and P is a critical exponent.
The critical isotherm near the critical point is

described by the equation

P P.—I

—p p. I

'sg—n(p —p. » (5.2)

where a second critical exponent 5 is thus intro-
duced. Two more exponents a and y are defined by
the variation of the specific heat at constant volume
and the isothermal compressibility

above and near the critical temperature (e & 0):

C -(—e), K -(e) (5.3)

The values obtained for these exponents with the use
of Eq. (4.1) are

1a=0, P= —,, y= 1, 5=3,
as expected for a mean-field theory.

(5.4)

VI. COMPOSITE PARTICLE EMISSION
AND THE CRITICAL POINT

Fisher, in his droplet model, calculates the proba-
bility of forming a cluster of A particles. Assuming
the binding energy of such a cluster to have a bulk
and a surface term

A~ A

P(A) cc
A

where

pf p+ay+ TSO) [—aop(IJJ —coT))y=e x=e

(6 1)

Eb(A) =avA —ws

[where s is a measure of the surface area
(s =aoA )], and with a similar expression for the
entropy

S(A) =SOA +cos,

Fisher finds that the probability of forming a cluster
of A particles is given by

For a mean-field theory, 5=3, and therefore the ex-

ponent ~ has the value 2 —,.
Equation (6.2) was used by Minich et al. i' to

analyze the isobaric fragment yields of ultrarelativis-
tic proton-nucleus collisions [see the discussion
preceding Eq. (1.1)]. They fit their data using an ex-

ponent v=2.64 (similar values are also found for v

by Gutbrod et al. '). Moreover, they obtain values
for the critical density and temperature p, -p+3
and kT, -3—4 MeV. For comparison, our calculat-
ed values for the critical density are generally in the
range 0.3pp(p (0.4po. The experimentally deter-
mined critical temperature is a factor of 2—3 below
our calculated results for finite nuclei. However,
fluctuations are expected to reduce the calculated
T, . This point is currently being investigated.

VII. CLOSING REMARKS

The problem of critical behavior of nuclei at the
liquid-gas point is drawing considerable attention
both experimentally and theoretically. A good over-
view of the subject was provided by Bertsch. " It is
not clear whether phase equilibrium can be estab-
lished in a heavy ion collision. " Even if it cannot be
established it is still of value to have the equilibrium
quantities P„T„and p, as guideposts.

The work presented here may be regarded as a
preliminary effort to obtain the dependence of the
critical temperature, density, and pressure in terms
of gross properties of nuclei: effective mass,
compressibility, binding energy, Fermi energy, etc.
In the future, the calculations could be improved by
dealing with the nuclear surface in a less
phenomenological way, by considering the effects of
nuclear correlations more explicitly, and by consid-
ering a wider class of equations of state.

Perhaps the main point of the present work is to
show that there is a big difference in the results
when finite nucleus parameters are used instead of
those of infinite nuclear matter (in contrast to ordi-
nary liquids where the surface effects do not alter
the critical temperature). It is surprising that this
has not been pointed out before. Note that in infin-
ite nuclear matter the binding energy per particle is
16 MeV, but in a finite nucleus it is about 8 MeV.
Clearly the much smaller binding energy per particle
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in a finite nucleus should make it much easier to
cause the nucleus to boil off the nucleons.

Support of the National Science Foundation is
gratefully acknowlmiged.

valid for any nonrelativistic ideal gas, which gives

P 2 E 2 1 gsl~ p 3 p

kT 3 VkT 3 VkT (2~)»

APPENDIX
gs, r

fsn(z)iT' (A7)

P=—=
3

d qllq
gs, i

V (2~)

where gs I is the spin-isospin degeneracy factor

nq =
I exp[(eq p) IkT]+1I

p Aq
201

(Al)

(A2)

(A3)

If the temperature is high enough, one can expand
about the nondegenerate solution to get

For an ideal Fermi gas at temperature T, chemical
potential p, and volume V the density is given by

where
00 n

fs/2(z)= g ( —1)"+'
n=1 Pl

(A8)

gsr Pfsn(z)= = g B„p",
kT

(A9)

where

1 ~T
Bi ——1, B2 ——2'" gsi

'

By combining (A4) and (A7), one can eliminate Z
to get the virial series

gs, ip= ', fsn(z»
XT'

3/2
2M2

mkT

f ( ) = g ( —1)"+' "/ ' '

(A4)

B4 ——

1 2

8 9v3

3v6+5v 3 —16 7 r

gal
'

Z =~@/kT
(A5)

2 EP= ——
3 V

(A6)

The pressure can be determined from the relation-
ship

For an interacting Fermi gas in the Hartree-Pock
approximation, Eqs. (Al) and (A2) still hold, but the
single particle energies are given by

Rq
eq —— +fig( q ), (A10)

2@1

A'g(q)= '

s fd q'nq
s f—d q'nqu(q —q')gs, lv (0), 1

(2n. ) (2n. )

and u ( q ) is the Fourier transform of the two-body interparticle potential u ( r ),

v(q)= fd r v(r)e ' '= fd r v(r)[1 —iq r ——(q r) + ],
u( q ) =u (0)[1——,(qa) + ],

where

a =fd ru(r)r Ifd rv(r),

(A 1 1)

(A12)

and the expansion is possible if v (r ) has a finite range. It is useful to note the similarity between (A12) and the
Skyrme interaction which is used in the main part of this paper. Using (A12) the energy spectrum can also be
expanded in powers of q,

f2q 2

E'q =6p+ (A13)2m~

where
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u(0) fd3q n~+, d'q q n~,
gs, r —1 1 u(0)a

(2n. )' (2~)' 6
1

u(0)a mm*=m 1+ 2 p
3&'gs, r

Using (Al), (A7), and (A15), one can rewrite (A14) as

(A14)

(A15)

Ep=

where

gs, r —1

gs, r

3 kT dm~ gsr
dp A,T'(m ') (A16)

u/kT ~ +0z=e =e
' 1/2

2~2
m*kT

The density is given by

(A17)

p [gsrr(~T(~ )) 1f3/2(z) (A18)

and although Eq. (A6) is no longer valid, one can still use the virial series [Eq. (A9)] to eliminate z and write

gs, r
—', fsu(z) = X, Bnp"
kT' n=1

(except that this is not equal to PlkT) and

gs, r —1
E'p =

gs, r

3 kT dm* gB„np —
~ d p (A19)

where B„ is the same as B„except that A, T(m) is replaced by A, T(m*).
It is also possible to invert Eq. (A18) to get z as a power series in p,

(p —eo)/kTz=e

p
+O(p ),

gs, r

which allows the determination of the chemical potential in terms of p and T:

p =ep+kT 1nz,

(A20)

gs, r —1
p(p, T)=

gs, r
u(0)p ——,kT g B„p"+kT ln

1 dm* ~Tp 1 ~Tp 3
m* dp gs, r 2' '

gs, r 16

3 2
A, T P

gs, r

Note that for an ideal gas, the chemical potential is given by

(A21)

~Tp 1 ~Tp 3 1
pd ——kT ln

gs, r 3
p

gs, r
(A22)

Since

I = (aFrax)„, P= (aFyav—),„, —

where F is the Helmholtz free energy, one can calculate P from p using the fact that
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where

P =pl f—(p T»
Bp

(A23)

f(p, T)=F(N, V, T)/V .

using (A23} and (A9) it can be shown that

P 00

p;a kT ——ln + g B„p"
gs, r

By comparing (A21) with (A22) and (A24), it can be inferred that

gs, r m dp gsr n =2

from which it follows that

gs, r J(,T p oo

f(p, T)= '
v(0)p +kT pin —p +kT g p"

2gs, r gs, r

and

gs, r —& 3 d
2 m* dP

(A24)

(A25)

(A26)

(A27)

or

gs, r —& 3 dP = ' v(0) + 1 —— Pg(m~),=2g, , " P 2 ~ dp

where P;d(rrt e} is the pressure for an ideal Fermi gas with particles having a mass m e.

(A28)
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