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In the meson-nucleon model of nuclei, the decomposition of the meson and nucleon field

operators into internal and external parts provides a way of treating orthogonality effects in

the scattering of hadrons by a nucleus. Under this decomposition, the Hamiltonian of the

system splits into an internal part and terms that couple external modes. The internal part
of the Hamiltonian is the Hamiltonian of the meson-nucleon shell model, and its eigenstates

are approximations to the bound nuclear states. The rest of the Hamiltonian describes the
external quanta of the fields and their interactions with the internal states. The internal

mode functions are chosen so as to minimize the coupling of the external modes to the low-

lying internal states. The Green's functions for the external fields and the diagrammatic

representation of the perturbation series are presented and used to describe the treatment of
hadron scattering in the one-external-hadron sector.

NUCLEAR STRUCTURE m-nucleus and nucleon-nucleus scattering

theory.

I. INTRODUCTION

There are various models of the nucleus that can
be used as bases for computing nuclear properties.
In the nucleon-nucleon model of the nucleus, the nu-

cleus is regarded as consisting of nucleons interact-
ing via two-body forces or potentials; this is the old-
est and most thoroughly explored of the nuclear
models. The more recent meson-nucleon model
treats the nucleus as composed of nucleons and
meson field, with the fundamental interactions being
the virtual emission or absorption of a meson by a
nucleon. A third model in which the nucleus is
treated as consisting of quarks and nonlinear meson
field is still in its early stages. Previously, the
meson-nucleon model was used to treat bound states
of nuclei. In this paper it is shown that the meson-
nucleon framework is useful also in treating scatter-
ing problems and that it provides a unified picture
of hadron scattering by nuclei.

In the meson-nucleon model the treatment of
meson fields that can have an expectation value in
the ground state of the nucleus is straightforward.
In that case the ground-state expectation value of
the meson field can be treated as a classical field;
this meson mean field then acts as a potential in
which the nucleons move. In order to treat fields
like the pion field that do not have a ground-state
expectation value, the mean-field technique has re-
cently been extended' to a meson-nucleon shell

model (MNSM) in which the nucleon field operator
is expanded, as is usual in the nuclear shell model

(NSM), in terms of a set of orthonormal single-

particle wave functions and, in addition, the meson
field operator is expanded in terms of a set of ortho-
normal mode functions. The mean-field method
amounts to keeping just the single mode of the
meson field that corresponds to its ground-state ex-
pectation value and making some simplifying as-

sumptions about the nucleon part of the state vector.
In the case where there is a ground-state expectation
of the meson field, the MNSM provides an interest-

ing extension of the mean-field procedure; for the
case of vanishing ground-state expectation it is the
only nonperturbative treatment available at present.
As in all shell models, the state vectors are not
eigenstates of the total momentum operator.

In the MNSM the set of single-particle functions
and meson mode functions is restricted, as in the
NSM, to a finite single-particle shell-model subspace
(SPSMS). Then a field operator, for example, the
annihilation operator a(k) for a meson of momen-
tum k, is resolved in the form

a(k)= gA;P;(k)+ai(k)

=a~~(k)+ai(k),

a~~(k)= gA;P;(k),

where the sum over i runs over the finite set of
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orthonormal meson SPSMS functions P;( k), and the
"external" meson operator a, (k) is orthogonal to
the meson SPSMS functions:

f P";(k)ai(k)dk =0, (2)

a„(k)= gA;„P;(k)+a,i(k), (4)

where it is important that the functions P; do not
depend on the degeneracy index v.

The overall shell-model subspace (SMS) is gen-
erated by the SPSMS creation operators A; and BJ.
acting on the particle vacuum. In the usual NSM of
the nucleon-nucleon model, the SMS is finite; since
the operators 3; are Bose creation operators, the
SMS is infinite in the meson-nucleon model. The
shell-model idea is that strong-coupling effects can
be treated within the SMS by diagonalizing the ma-
trix of the Hamiltonian over all the states in the
SMS. It is assumed that the effects of the external
parts of the field operators can be treated by pertur-
bation theory.

The treatment of the internal or
~~

parts of the
field operators has been considered in Refs. 1 and 2.
The present paper aims to establish a framework for
treating the l or external parts of the operators; in
particular, scattering states start out as external field
creation operators acting on SMS states. If the
external parts of the fields can really be treated per-
turbatively, then it makes sense to expand state vec-
tors in the order of the total number of external had-
ron creation operators; that is, the zeroth term has
no external hadrons (OEH) and consists of com-
ponents within the SMS, each component of the
first term is a lEH state consisting of a single exter-
nal hadron creation operator acting on a SMS state,
and each component of the nth term is an nEH state
consisting of n external hadron creation operators
acting on a SMS state. The nEH sector is defined as

for all P; in the meson SPSMS. The SPSMS func-
tions P; and operators A; will be called internal
meson functions and internal meson annihilation
operators, respectively; a

~ ~

( k ) will be called the
internal meson field operator. Similarly, the nu-
cleon field operator is the sum of an internal and an
external part:

ql(p) =+~~(p)++ (p),
0 ~((p)= QBJf~(p), (3)

f fJ(p)%'i(p)d p =0,
where the functions f~ are in the nucleon SPSMS.
If the meson field a„(k) has a symmetry index v,
such as a component of isospin, then the resolution
of Eq. (1) takes the form

consisting of all state vectors with up to n external
hadrons.

The 1EH sector is particularly interesting since it
is the simplest subspace that provides a nontrivial
unified unitary picture of hadron scattering by the
nucleus. For the case of a single internal mode of a
meson field interacting with a static source, the 1EH
sector has already been studied. The effects that
arise from the requirement that the external field be
orthogonal to the internal field functions are espe-
cially interesting in that case, and it was suggested
in Ref. 3 that the smallness of the P» pion-nucleon
phase shift is such an orthogonality effect. Similar
orthogonality effects are of current interest in the
five- and six-nucleon systems. " In deuteron strip-
ping reactions, it has long been known that the sim-

ple direct reaction theory of stripping gives too
large a cross section by a considerable factor and
that distorted waves must be used to obtain agree-
ment with experimental results. It will be argued
below that the simple direct matrix element is in
fact zero in lowest order, so that the dominant influ-
ence of wave distortion has a rather simple explana-
tion.

The splitting of the meson field into internal and
external parts also provides an understanding of the
double-counting problem in meson interactions.
This problem arises because the same mesons that
are scattered and virtually scattered by nucleons are
also responsible for at least some of the nucleon-
nucleon interactions that are used to bind the nu-
cleons in the nucleus. In the present terms, the
binding is due largely to the internal meson field,
while it is the external meson field that is scattered
and virtually scattered in a reaction. The resolution
of the double-counting problem lies in treating these
two meson fields consistently while maintaining
their mutual orthogonality or commutativity.

All of the above statements about the internal and
external fields are only meaningful within a particu-
lar shell model that specifies a particular set of
internal and external fields; that is, there is no obvi-
ous way of defining internal and external fields in
terms of the actual wave functions of the nucleus.
The question of just where to establish the boundary
between the internal and external fields is open.

Section II of this paper describes the Hamiltonian
of the meson-nucleon model and how it looks when
the substitutions of Eqs. (1)—(4) are made. Section
III considers the particular terms that are important
for choosing the form of the internal mode func-
tions for the mesons and the single-particle func-
tions for the nucleons. A suitable choice of the
meson functions was given in Ref. 2; the analogous
choice of functions for the nucleons is discussed in
Sec. III. In Sec. IV the correspondence between
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terms in the Hamiltonian and diagrams is described,
and the Green's functions for the external hadron
fields are exhibited. The 1EH sector is worked out
in Sec. V in terms of the diagrams of Sec. IV. Sec-
tion VI has some further remarks about applications
of the technique of splitting the field operators into
internal and external parts. Section VII summarizes
the work.

II. PIECES OF H

)(dp dq dk,

where t(p) and to(k) are the energies of a free nu-

cleon of momentum p and a free meson of momen-
tum k, respectively, and F(k} and W„(k,K) are the
form factors that characterize the particular Yu-
kawa interaction; 8' represents the nucleon current
that interacts with the field 4„,while F is the factor
that comes from the relation between 4„(x) and

a„(k ); representative forms for W and F are given
in Ref. 6. It is assumed that

p+q ~ k p+q
V &

2 V

I

(6)

In the case of vector or pseudovector meson fields
there is an additional nucleon-nucleon interaction

As in Refs. 1 and 2, the Hamiltonian describes a
system of nucleons and mesons with Yukawa in-
teraction of the fields. The formulation is nonco-
variant. The meson field 4„(x),with associated an-
nihilation operator a„(k), is assumed to be invariant
under space rotations; in covariant terminology it
can be a scalar or pseudoscalar field or the zeroth
component of a vector or pseudovector field; the in-
dex v is the isospin or other nonrotational symmetry
index of the meson field and will be understood to
be subject to the usual summation convention in the
following. The Hamiltonian is

H =Tp+Tg+Hq,

~F= f q (p)t(p)q(p}dp

&ii ——f ai(k}a„(k)a„(k)dk, (

Kt =—f [a.(k)+a„(—k)]F(k)4'(p)

X W„k, 4(q)$(k+ p —q)

term in the Hamiltonian; this term has been dis-
cussed in Ref. 6 and will be omitted here.

Clearly, K is a functional of the field operators
4 (p), %(p), a„(k), and a„(k). Let K

~

denote the
same functional of the corresponding

~
operators;

K~~ is just the MNSM Hamiltonian of Refs. 1 and 2,
and the SMS is just the

~ ~

subspace generated by the

~ ~

operators acting on the vacuum. The Hamiltoni-
an H~~ has discrete eigenvalues e with correspond-
ing eigenstates

~
a),

When the resolution of the field operators into
~ ~

and J. parts of Eqs. (1) and (3) is substituted into the
Hamiltonian, it is clear that the Hamiltonian has
terms with varying numbers of J. annihilation and
creation operators; let H„have n l creation opera-
tors and m I annihilation operators. In general,
K„=K „,and with the Hamiltonian of Eqs. (5}it
follows that tn+n &3. Clearly, Koo is just K~~.
Similarly Tz„, Tq„, and Kt „can be defined
corresponding to the parts of the Hamiltonian de-
fined in Eq. (5).

The "unperturbed" Hamiltonian HU correspond-
ing to the division of the field operators into internal
and external parts is

HU ——H~~+ TI', i, i+ Ta

TF, i, i= f 0'i(p)t(p)%'i(p)dp,

Tti, i i
——f co(k)a,i(k)a„i(k)dk .

The OEH states are the eigenstates
~
a) of K~~, these

are also eigenstates of KU with the same eigenvalue
e . The 1EH states are the one-external-meson
states a„i(k)

~
a) with eigenvalues e~+co(k) and the

one-external-fermion states %i(p)
~

a) with eigen-
values e + t (p); the nEH states are constructed
analogously.

III. SOURCES AND INTERNAL MODE FUNCTIONS

Consider now H
~ o, which must be of the form

Hio —— agk J k k

+ f q'i(p)&(p)dp, (9)

~ ~

where J„and E are operators within the SMS; J„is
the source operator for the l mesons and K
is a similar source operator for I fermions. From
Eq. (5) it is clear that

J„(k)=co(k)a„~~(k)—Y(k) f 4 ~~(p) W, k, %~~(q)5(k+ p —q)dp d q =
5a„~~(k)

(10)
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Because of Eq. (2), J„ in Eq. (9} can be replaced by
J„q, where

J„q(k)=J,(k) —J„~~(k), (11)

J„~~(k)= Q P;(k) f P";(k')J,(k')dk'
iGII

= [a„(((k),H((],

With this same choice of the functions P;, the terms
in Hll with

f co(k)a„~~(k)a„~~(k)dk

and with

f a„'(((k)J„)((k)dk

and similarly for K and E&, so that

H& o ——f a„j(k)J„j(k}dk

+ 'Pi p Ez p dp . (12)

and its adjoint all involve the same integrals over
momenta, so that H

I I

takes the form

H~~
—Tpo 0+ +co; (A;, A „—A;„p „—p;„AJ,),

(15)
co;J= f co(k)p,'(k)pj(k)dk,

Similar treatments can be formulated for the {{sub-

space operators analogous to J, and E that appear
in each of the operators H„

The operators J
II

and Kll appear in Hll an are
expected to have large matrix elements between the
low-lying eigenstates of H~~, reflecting the strong-
coupling nature of the MNSM. On the other hand,
it is quite possible for the J. parts of the J and
K operators to have small matrix elements between
the low-lying eigenstates of H~~, and the internal
functions must be chosen so that the external modes
are weakly coupled to the internal states. In Ref. 2
it was shown that there is a particular choice of the
internal meson functions that makes all the diagonal
matrix elements of J„z vanish; it seems likely that
the off-diagonal matrix elements are also small for
this choice of the meson functions.

Briefly, the choice of meson mode functions goes
as follows. First, it is possible to write J of Eq. (10)
in the form

and therefore

[ ~v»~~l geo(J(~J. pv) .—
J

(16)

= & (p)+(~( p )

—QQ;„f V;„(p,q)%~~(q)dq,

where

Since ~;J is positive definite, it follows that all diag-
onal matrix elements of J„(k) vanish in the SMS.

Now what is the corresponding procedure for
treating the operator E and determining an ap-
propriate set of nucleon functions f;? The operator
K changes the number of nucleons in a {{state; it
has only nondiagonal elements. Explicitly,

5HI
IK(p)=

J„(k)=co(k)a„~~(k) —g {B~,B~}„J'~(k),
a,P

(13)
V,„(p,q)=~2 f r(k)y, (k)W„—k, P+q

where the c-number function J~'~(k) is an integral
over internal single-nucleon functions and the curly
braces indicate vector coupling of the isospins of the
B and B operators (see Ref. 2 for a few more details
of the coupling of symmetries). Thus, the operator
J„(k) involves the sets of functions co(k)P;(k) and
J~'~(k). These are the same sets of functions if the
functions P; are chosen to be an orthonormal set
that spans the finite set of functions J '~/~. With
this choice Jbecomes

J„(k)=g A;„—g {B~,Bp}„g~p; co(k)P;(k)
i aP

X5(p —q —k)d k, (18)

Q;„=(2;„+A;,)/V 2,
and it has been assumed that

P';(k)=P;( —k) . (19)

Let the number of fermion functions f; in the
SPSMS be nF. If a particular SMS matrix element
of E is required to satisfy the condition

( {&(p){P)=pp( {+(p){P)

= g (A;„—p;„)c0(k)P;( k ) . (14)
=p p( { +ii(p) I

P),
then clearly, for that same pair aP,

(20)
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( ~& (p) ~P&=0. (21)

In order to have nF equations that determine the nF
functions f;, it is necessary to select nF SMS matrix
elements of the form of Eq. (20); of course, care
must be taken that the set of n~ matrix elements
gives a linearly independent consistent set of equa-
tions. From the form of the matrix element in Eq.
(20), it is evident that the arbitrary parameters p p
turn out to be fermion single-particle energies, and

for this reason it seems indicated that the SMS ma-

trix elements to be used for determining the fermion
functions are the ones with large single-particle
strength. Hence, the transitions with large
single-particle strength have no Ej strength; there is

no zeroth-order direct matrix element for a single-

particle transition between the corresponding states.
The observed single-particle transition strength re-

sults from iterations of the interaction Hamiltonian,
that is, from distortion effects.

IV. DIAGRAMS AND GREEN'S FUNCTIONS

kV

y kV

(e)

kV

P'r

(b)

(d)

kv g
P'

(a
~

J„(k)
~
P&, (22)

Instead of writing equations for such iterations, it
is simpler to use the diagrams that correspond to the
equations in the standard way. Figures 1 and 2
show the elementary vertex diagrams that represent
the various parts of the interaction Hamiltonian.
The heavy line in these diagrams represents the
status of the SMS part of a state vector; it is labeled

by the current eigenvector specification of the SMS
vector. The dashed meson lines and wavy fermion
lines both represent external fields. The vertex

operators are all orthogonalized in all their external
field momenta by using procedures like that given in

Eq. (11). The vertex shown in Fig. 1(a) represents
the meson part of H

& o of Eq. (12); the factor associ-
ated with it is the function

(g)

X kv
/

kv y
/

FIG. 1. Vertices that can act in the 1EH sector. The
dashed lines represent the external meson field, and the

wavy ones the external nucleon field. The heavy lines

represent the status of the SMS or internal part of the

state vector.

where the I subscript really belongs outside the ma-

trix element, since it is the matrix element that must
be orthogonalized to the internal mode functions.
The factor associated with Fig. 1(b) is the complex
conjugate of the factor associated with Fig. 1(a).
Similarly, the factors associated with the figure
pairs 1(c) and 1(d), 1(e) and 1(f), 2(a) and 2(b), and

2(c) and 2(d) are complex conjugates, and only the
first of each will be given. Associated with Fig. 1(c)
is the factor

(a)

kv

(b)

~& (p) ~P& .

For Fig. 1(e) the associated factor is

(a
~

L„J(k,q)
~
P&,

where the SMS operator L z is defined by

(23)

(24)

(c)

FIG. 2. Vertices not shown in Fig. 1. The correspon-
dences between lines and fields are as in Fig. 1.
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L„,(k, q)= J Y(k)W„k, " 5(k+p —q)dpV (25)

and the l subscript indicates that the operator inside
the brackets is orthogonalized so that

I P';(k)L„i(k, q )d k =0,
(26)IL,i(k, q)f;(q)d q =0 .

The orthogonalization procedure is similar to that
given in Eq. (11). The derivation of the vertex func-
tions for the diagrams of Figs. 1(g) and 2(a)—2(d) is
analogous and will be left to the interested reader.

A general diagram is obtained in the usual way by
putting together various vertices. The connecting
external-field lines in a general diagram represent
external-field Green's functions, which propagate
the external fields while annihilating the internal

fields. If the vertex operators are all orthogonalized
as specified above, then the external-field Green's
functions can be replaced by ordinary free-particle
Green's functions, since the vertices can generate
only external fields. Or, alternatively, if the Green's
functions and external-line wave functions are all
suitably chosen, the vertex functions need not be
orthogonalized. However, in order to ensure that
internal modes do not vitiate the results of a particu-
lar approximation procedure, it is much safer to re-
move the internal modes from both vertices and
propagators. The external-field Green's function

gi(p, q;A, ) for the fermion field satisfies the equa-
tion

[A, —t(p)]gi(p, q;A)+ g f (p) I f;(s)t(s)g (is, q;A)dq=5(p —q) —g f;(p)f,.(q),
where A, is the (complex) energy parameter. The solution to Eq. (27) is

5(p —q)g fi p[g), ]
fj(q)

A, —t(p), , A. —t(p) "
A, —t(q)

'

(27)

(28)

where the matrix I(l) is given by

I (A, )
'

d
A, —t(p)

(29)

The Green's function of Eq. (28) annihilates internal
single-particle functions. The meson external-field
Green's function is similar to the fermion Green's
function of Eq. (28); note that it is not useful to uni-

fy the forward- and backward-going external-meson
Green's functions. In Ref. 3, it was shown that the
irreducible self-energy part has a factor I(A, ) '; this
can also be understood in terms of the Green's func-
tion of Eq. (28).

V. 1EH SECTOR

As is well known, the set of diagrams up to a par-
ticular order in the interaction Hamiltonian does not
give a unitary approximation to scattering ampli-
tudes. On the other hand, summing all diagrams
that remain entirely within a particular subspace of
the full vector space of the system does give a uni-
tary approximation for scattering amplitudes. The
nEH sector is a suitable subspace within which to

work out a unitary approximation to the scattering
matrix. The OEH sector consists of the eigenstates
of HU. The next simplest sector is the 1EH sector,
where only the vertex diagrams shown in Fig. 1 are
allowed. Note that the nEH sector differs from the
n-hadron sector in that it contains states with arbi-
trary numbers of hadrons, as long as all but n of the
hadrons are in internal modes.

Figure 3(a) shows a typical diagram in the 1EH
sector for the (X,n)process (n. ucleon in, pion out).
As far as diagram structure (representing equation
structure) is concerned, it is obviously useful to uni-

fy the hadron lines and use a solid line to represent
both hadrons; each internal solid line must be
summed over both of its possible hadron realiza-
tions. Then the diagram of Fig. 3(a) is one of the
terms represented by the diagram of Fig. 3(b).

It is easy to see that all the diagrams in the 1EH
sector can be expressed in terms of the SMS-
irreducible Green s function GI shown in Fig. 4; this
Green's function satisfies the linear integral equa-
tion symbolized in Fig. 4(b). Figure 5 shows how
the SMS-irreducible self-energy X is related to GI.
The bound-state eigenenergies in the 1EH sector are



27 UNIFIED THEORY OF MESON AND NUCLEON SCATTERING BY.. . 2731

e, e,

(o)

FIG. 3. A typical graph in the 1EH sector. (a) is one of the graphs represented by (b) in which the line represents bot
kinds of external hadron field.

the roots of the equation

det[(A, —e )5 &
—X ti(A, )]=0. (30)

VI. REMARKS

Figure 6 gives the relation between the full Green's
function in the 1EH sector and the SMS-irreducible
Green's function Gt.

The diagrammatic manipulations of this section
are all quite standard. The new features are the in-
terpretation in terms of external hadron fields and
the expansion in numbers of external hadron lines.
There is also nothing new in the idea that all scatter-
ing processes that are related are related. However,
the present work gives a concrete unitary realization
of this elementary idea, in that the vertices and
Green's functions symbolized in the diagrams are all
explicitly determined in terms of the underlying
Hamiltonian through the internal mode functions.

ample, there is the separation into "P" and "Q"
subspaces developed by Feshbach. As has been not-
ed above, the separation of the field operators into
internal and external parts leads to a decomposition
of the Hilbert space into subspaces, each of which
has a fixed number of external hadrons. By choos-
ing the internal modes optimally, the terms that
couple these subspaces are made small.

The idea of splitting the pion field into internal
and external parts resembles in some ways the treat-
ment of pion interactions in terms of delta reso-
nances in nuclei, where a combination of a delta res-
onance and a nucleon hole plays a role like that of
the internal pion field.

An obvious problem with the unified 1EH-sector
scattering matrix described in Sec. V is that an in-
cident or final nucleon is not accompanied by its
own internal pion field. Corrections for this effect
start to appear in the 2EH sector.

VII. SUMMARY

In the past it has proved useful to separate the
Hilbert space of the system in various ways. For ex-

In the meson-nucleon model of nuclei described
by a Hamiltonian like that of Eq. (5), the decompo-

+ ~ G,

FIG. 4. The SMS-irreducible one-external-hadron
Green's function in the 1EH sector 6& is shown (a) as an
infinite sum and {b) in terms of the integral equation it
satisfies.

FIG. 5. The SMS-irreducible self-energy part in the
1EH sector X and its relation to the internal-field Green's
function in the 1EH sector.
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FIG. 6. The one-external-hadron Green's function in

the 1EH sector.

sition of the meson and nucleon field operators into
internal and external parts as in Eqs. (I)—(4j pro-
vides a way of treating orthogonality effects in the
scattering of hadrons by a nucleus. Under this
decomposition, the Hamiltonian of the system splits
into an internal part and terms that couple external
modes. The internal part of the Hamiltonian is H~I,
the MNSM Hamiltonian whose eigenstates are ap-
proximations to the bound nuclear states. The rest
of the Hamiltonian describes the external quanta of
the fields and their interactions with the internal
states.

The internal mode functions must be chosen so as
to minimize the coupling of the external modes to
the low-lying internal states. For the meson mode
functions, the appropriate criterion has been given in
Ref. 2; in the present work, analogous criteria for
the nucleon single-particle functions have been given
in Sec. III, together with a review of the conditions
satisfied by the meson modes.

The Green's functions for the external fields and
the diagrammatic representation of the perturbation
series are given in Sec. IV; Sec. V uses these dia-
grams to describe the treatment of hadron scattering
in the one-external-hadron sector.

More important than the details is the general
idea of treating the external and internal fields as
separate entities. This idea appears to have many
possible applications.
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") is the lowest eigenstate of H~
~

connect-
ed to the ground state

~
g.s. ) of H~~ by the operator

A; —p;„. Unless the ground state has T=O or J=O,
this gives A, =O. Even if A, is not zero, it is a nuclear ex-
citation energy satisfying

~

A.
~

&&m, so that it is ade-

quate to set A, =O in all nuclear cases. In the Lee model
it is important that A, is not zero.

H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287
(1962}.


