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In view of relativistic three-body calculations we have investigated several quasipotential
approximations to the Bethe-Salpeter equation assuming separable kernels with

Yamaguchi-type form factors. In particular we have calculated ~-N and N-N phase shifts
with 1=0, 1. As a result it is shown that the choice of a symmetric or unsymmetric reduc-
tion of the Bethe-Salpeter equation for mN or NN scattering is less important in comparison
to the choice of the analytic form of the pole. The quasiparticle equation proposed by
Erkelenz and Holinde has turned out to be superior to other quasiparticle equations which

have also been considered. As a consequence we present parameters for a separable poten-
tial to determine m-N and N-N phase shifts.

NUCLEAR REACTIONS Separable Bethe-Salpeter kernels reduced to
six different quasipotential equations; application to pion-nucleon and

nucleon-nucleon phase shifts; E=O—300 MeV; I=0,1.

I. INTRODUCTION

The large amount of experimental values in three
body systems, cf. N dand m-d, c-alls for a correct
theoretical treatment of such systems. Much work
has been done in the nonrelativistic framework of
the Faddeev equations, ' where separable potentials
are used to parametrize the two-body subsystem in-
teractions. Simultaneously, it has been recognized
that in describing the interaction of two hadrons, re-
lativistic effects have to be taken into account even
at low energies. A natural consequence of these
facts would be relativistic three body calculations.
Freedman et al. have derived a formalism in analog
to the Faddeev one, with the difference that the two
body subsystems are described via separable Bethe-
Salpeter (BS) kernels. The reason why explicit cal-
culations have not yet been performed with these
equations is that until recently ' no parametriza-
tions of separable kernels for the BS equation have
been given.

A first step in the direction of relativistic three-
body calculations, cf. in the tr dsystem, is t-he use of
relativistic kinematics at least for the pion. Recent
work on relativistic three body scattering is based

on the Blankenbecler-Sugar (8BS) reduction
scheme, which reduces the dimension of the BS
equation from four to three. One main result of
those calculations is the correct incorporation of
the process nNN~NN into a three body formalism.
Since the reduction of the four dimensional (or par-
tial wave decomposed two dimensional) BS equation
into a three dimensional (one dimensional) integral
equation is not unique, ' it is not at all clear why the
BBS formalism should be used in future three body
calculations. In the present work we address our-
selves to six widely used reductions of the BS equa-
tion, where a simple separable kernel is considered.
Section II gives a short review of the results of Refs.
4 and 5, where N Nand tr Nphase -shifts ha-ve been
calculated within a separable approach to the BS
equation. The reduction procedure of the partial
wave decomposed BS equation to one dimensional
quasipotential (QP) equations for the nonequal mass
case and the application to separable BS kernels is
presented in Sec. III. In Sec. IV we show the effect
of several QP reductions of the BS equation in terms
of the m.N and NN phase shifts, and summarize our
investigations with some concluding remarks (Sec.
V).
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II. SEPARABLE BS-EQUATION KERNELS

The partial wave decomposed BS equation in momentum space is given by

g
00 00

Ti(qo, q, qo, q';s)= Vi(qo q, qo, q')+, dko k dk Vi(qo q ko k)G(ko, k;s)Ti(ko k qo q's)
4~3 —00 0

with

G(ko, k;s)=[(ko+avs ) E,—+i@] '[(ko bv—s ) E—2 +ie]

(2.l)

(2.2)

q=(qo, q)=aq, bq, ;— (2.3)

m ( and m 2 are the masses of the two particles with
momenta q~ and q2, respectively; and k and q

' are
the intermediate and final relative momenta defined
analogously. The total energy v s is given by

VI is the kernel of this two dimensional in-

tegral equation. Using the abbreviations
a =m ( l(m ( + m 2) and b =m 2/(m ( + m 2), the rela-

tive momenta are given by

/~V s isi(p) .
Ti(Po,P,Po,P;s)= Ti(P) = —— e ' »»i(P)

(2.5)

The BS kernel consists of an infinite sum of irredu-
cible Feynman graphs. Even in the ladder approxi-
mation of the BS equation, elaborate numerical cal-
culations are necessary to determine, for example,
N-N or n.-N scattering phase shifts. " In view of us-

ing these results in tractable three-body calculations,
we have introduced a separable approximation for
the BS kernel in Refs. 4 and 5:

(P2+m 2)1/2+ ( 2+ 2)1/2 E (2 4) (qo q ko k)=ui(qo q)oui(ko, k) (2.6)

and

E =(k +m )' E =(k +m )'
As a consequence it was possible to solve the BS
equation in closed form

The amplitude TI with all four legs on the mass
and energy shell is related to the phase shifts by

Ti(qo, q, qo, q') =ui(qo, q)»(qo q')/D, (s)

with

(2.7)

Di(s)=A, '
, J d—koI k'dku, '(ko, k)G(ko, k;s) . (2.8)

To keep three-body calculations as simple as possi-
ble, a relativistic generalization of the Yamaguchi
form factor"' for the covariant form factor

ui(ko, k) =
[(k 2 k2 P2)2+y4] l+1

2

(2.9)

was chosen. The integration in the kp plane was
performed analytically. The free parameters p and

y and the coupling parameter A, of the "separable
potential" were determined by fitting Di(s) to the
"experimental" N-N and mN phase shifts.

In the case of nucleon-nucleon scattering we have
considered partial waves with l=O and l=1. Par-
tial waves with no sign change in the phase shift and
no pole (corresponding to a bound state or a reso-
nance) were fitted with a constant coupling parame-
ter k. To fix the zero in the phase shifts, for exam-

ple, in the S-N 'Sp partial wave, an energy depen-
dent A, ~A, (so —s) was introduced.

The analytic form of A, in the case-of the n-p S&

partial wave was chosen to be

whereby so guaranteed the zero in the phase shift, as
in the 'So wave. mo was an additional free parame-
ter, which was determined by a subtraction pro-
cedure, introducing a pole in the amplitude at the
binding energy of the deuteron.

The vr Nphase shifts-, calculated within this for-
malism, were presented in Ref. 5. While the so-
called small phases S», S3~, P~3, and P3& were fitted
in analogy to the N-N case, the n.-S phases P~& and

P33 were treated separately and have to be discussed
here. It is well known that the resonant P33 partial.
wave can be parametrized by a Breit-Wigner, ' or at
least a modified Breit-Wigner form, ' with notice-
able success. Two conclusions can be drawn from
this fact: Firstly, the amplitude at the resonance en-

ergy can be taken to be separable, i.e., a separable
potential should determine this partial wave very
well. Secondly, the amplitude should have an ana-

lytic form which is at least similar to the Breit-
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Wigner parametrization. When using a separable
potential in nonrelativistic scattering theory, it is
therefore necessary to choose an energy dependent
coupling parameter A, . In the case of the BS equa-
tion, the energy dependence is explicitly inherent in
the zeroth dimension of the integral equation.
Therefore, it was not necessary to introduce an ener-

gy dependent A, (Ref. 5) to yield excellent agreement
with the experimental phase shift.

Mizutani et al. ' have shown explicitly that dif-
ferent contributions of the P» partial wave are in-
herent in different places of three body calculations;
therefore, a two potential formalism is necessary to
describe this partial wave. The importance of the
effect of the absorption, inherent in the mN P» par--

tial wave, on the low energy ~-d scattering was
pointed out extensively in Ref. 9.

This fact has been taken into account in Ref. 5 to
calculate the P~~ phase within the BS framework.
In addition we point out that the agreement between
the N Nand n.-Nphase -shifts presented in Refs. 4
and 5 and the experimental phase shifts is excellent.

III. REDUCTIONS OF THE BS EQUATION
TO ONE DIMENSIONAL INTEGRAL EQUATIONS

IN THE NONEQUAL MASS CASE
AND THEIR APPLICATION

TO SEPARABLE BS KERNELS

Three-body calculations with equations of the
Faddeev-type, using relativistic kinematics, have
been performed for the case of pion-deuteron

scattering. To keep these investigations as simple
as possible, separable potentials with Yamaguchi
form factors have been used. To take into account
"relativistic" effects, the Blankenbecler-Sugar (BBS)
equation was introduced to describe the two body
subsystems. Since the reduction of the BS equation
from a four (two) dimensional integral equation to a
three (one) dimensional one (cf. the BBS equation) is
not unique, it is not clear at all that the BBS equa-
tion is the best possible choice for use in connection
with a Yamaguchi form factor for the separable po-
tential.

The results of Refs. 4 and 5 now enable us to in-

vestigate several reductions of the BS equation, as-
suming in each case a Yamaguchi form factor for
the separable kernel. We have chosen six well-
known quasipotential (QP) equations denoted by
(A)—(F). (A) is the Gross equation, ' (B) has been

proposed by Erkelenz and Holinde, (C) has been de-
rived by Kadyshevsky, ' (D) is due to Thompson, '

(E) is the so-called BBS equation, and (F) has been

presented by Woloshyn and Jackson. '

Equations (A)—(F) have already been investigated
in view of the ladder approximated BS equation by
Woloshyn and Jackson. ' Another comparison be-
tween a BS approach and the QP approach [Eq. (A)]
has been performed for N Nscatterin-g by Zuilhof
and Tjon. ' Since these investigations' ' have been
restricted to the case of equal masses of both parti-
cles, we derive formulas for the nonequal mass case
and apply them to the separable BS kernel.

It is possible to write two coupled integral equa-
tions which are equivalent to the BS equation (2.1):

l 00

~l(qo q qo q "s)=WI(qo q, qo q'}+, dko k dk Wi(qo q, ko k)g(ko k;s)TI«o k qo, q';s)

(3.1)

W~(qp, q, kp, k)= ~V(q pq, k,pk}

, J dk,' J k'dk V, (q„q,k;k')[G(k;, k';s}—g(ko, k 's)]WI(ko, k', ko, k) .
4~'

(3.2)

g is chosen in such a way that unitarity (i.e., the
left-hand cut) is taken into account and that the two
dimensional integral equation (3.1) is reduced to a
one dimensional integral equation. The solution of
(3.1) and (3.2) is equivalent to the solution of Eq.
(2.1), although it is even more complicated to solve
Eqs. (3.1) and (3.2) than to solve Eq. (2.1} directly.
The approximation, which is inherent in all QP
equations, consists of a series expansion of 8' in
terms of V and a truncation of this series after the
first or second term. In addition to rapid conver-

I

gence of this series, g has to fulfill two additional re-
quirements: (i) unitarity of the total amplitude and
(ii) reduction of the dimensions of the BS equation
from four (two) to three (one).

Unitarity is guaranteed by approximating the
left-hand cut in the amplitude by a pole in g. This
can be done by several analytic expressions: (C) and
(F) have chosen the form

g [Vs —Vs +lE]
with
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The other four QP equations differ by kinematical
factors; i.e., in the case of (A) and (D) by the factor
Vs/Vs':

g [Vs —v s +EE]
Vs'

s

and in the case of (B) and (F) by [V s + v s' ie—]

g -[s s'+—ie]

We would like to point out at this stage the im-
portance of these different analytic expressions for
our later results. To take into account the second
requirement (ii), two types of 5 functions were intro-
duced for g. (A)—(C) made an unsymmetric reduc-
tion of the BS equation. For that purpose a product
of two 5 functions, which will put one particle on
the mass shell and keep one off the mass shell, were
considered. For the unequal mass case we set

5~+'[(aP+k) m( ]5—'+'[(P' aP k—) m—2 ] .—

P is the four dimensional center of mass (c.m. )

momentum P=(s, O) and P'=(v s'l~s)P; k denotes
the four dimensional relative momentum k=(ko, k).
A different reduction of the BS equation, i.e., a so-
called symmetric reduction of the BS equation, was
introduced in (D)—(F). In these QP equations both
particles are put on the mass shell by

5'+'[(aP+k) —m, ]5'+'[(bP —k) —m ~] .

The kinematical differences in the denominator of q
combined with symmetric or unsymmetric reduc-
tions of the BS equation lead to the six QP equa-
tions (A)—(F). For the case of different masses of
the two particles we present in Table I the appropri-
ate propagators g[~]—g~F] in an arbitrary frame and
in the c.m. frame. The corresponding propagators
for equal masses are easily derived from Table I and
agree with the propagators given in Table I of Ref.
18.

In the case of a separable kernel (2.6) of the BS
equation, the phase shifts (except for the vr pP»-
partial wave) are related to the amplitude (2.7) via
the denominator D~(s) (2.8) only:

ImD~(s)
5&(p) = —arctan

ReDI s
(3.3)

bQ
cO

0

To study the influence of the reductions of the BS
equations (A)—(F) in connection with a separable BS
kernel we use the parameters A, , P, y, and (so, mo ) of
Refs. 4 and 5 and replace 6 by g~A~ ~F~ in (2.8):
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TABLE II. Real parts of the denominator Dl(s) of separable amplitudes, derived for different quasipotential equations.

Propagator

g(g)(k, s)

g(B)(k,s)

g(c)(k»)

g(D)(k, s)

g(E)(k, s)

g(F)(kss)

ReDl(s) (l=0,1)

k 21+2(El+E2 )

VsE)E2[V s —(E (+E 2)][((E —
( aV s ) k—p—) +y ] '

feo k '+ (E1+E2)
4(r E,E2[s —(E)+E2)'][((E)—aVs ) —k' —p ) +y ] '

e) k21+2
dk

E(E2[V s —(E(+Ez)][((E(—aVs ) —k' —p') +y ] '

' Pdk
2l+2(E1+E2 )

V s E)E2[V s —(E(+E2)][((bE) aE2—)' k' —p')'—+y']"

y~
2l +2(E +E )

4m p E,E2[s —(E, +E2) ][((bE) aE2) —b —p) +—y ]
e) k 21+2

dk
E,E2[V s —(E(+E2)][{(bE( aEq) ——k —p ) +y ] '

Dt(s)=A, '
3 f—dkp f k dk ut (kp, k)g(A) (F)(kp, k)$) . (3.4)

Owing to the 5 functions of g(A) (F), the kp integration is trivial. The imaginary part of Dt(s) is the same for
all QP equations:

21+1
ImD,'"' '"'(s) =

8m& s [{(bE& aE2) —p ——P ) +y ]
(3.5)

(1=0,1), and agrees with the result of the BS calcula-
tion. ' This result refiects the fact that unitarity is
not violated in replacing G by g(A) (F). The real
parts of Dt' ' '"'(s) are given in Table II. To deter-
mine the m.-p partial wave P~~, we have used a two
potential formalism in Ref. 5; the derivation of the
corresponding formulas for the QP equations
(A)—(F) are given in the Appendix.

IV. THE INFLUENCE
OF SEVERAL REDUCTIONS

OF THE BS EQUATION
ON N-N AND m-N

PHASE SHIFTS

I

Figs. 1—9 show results calculated with the QP equa-
tions (A)—(F). In all these calculations the values of
the parameters A,, P, and y are fixed at the values of
the BS approach.

A. Partial waves with l=0

1. The sr-p Ssq phase shift. This is shown in Fig.
1. We have calculated this phase shift, which is due
to a repulsive force, in the energy range between
T„' =0 and 300 MeV. The QP equations produce
less repulsion than the BS equation. Considering the
real part of Eq. (2.8), which can be written as

We present calculated m-X and X-N phase shifts
with l=0 and l=1 in Figs. 1—10. The dashed lines
in Figs. 1—9 represent the BS calculations of Refs. 4
and 5; the agreement of these phase shifts with the
experimental phases ' ' is satisfactory. In addition,

I

ReD((s) =A, ' I(s), —

with

(4.1)

I(s)=Re f dkp f k dk ut (kpqk)G(kp, k;s) (4.2)

we have found that

Ias(s) & I(A) (F)(s) (4.3)

for all QP Eqs. (A)—(F). Inequality (4.3) can be in-

terpreted as an increasing potential strength of the
QP approach in comparison to the BS approach.
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FIG. 1. m.-N and N-N phase shifts for l=0, 1. The
dashed lines correspond to calculations using the Bethe-
Salpeter (BS) equation (Refs. 4 and 5). The solid lines
represent the results of several quasipotential equation
(A)—(F) reductions of the BS equation.

For the case of the m.-p S3~ wave this results in "less
repulsive forces" in the QP equations. It can be seen
from Fig. 1 that the QP equations (B}and (E) pro-
duce phase shifts which are nearer the BS result
than do the QP Eqs. (A), (C), (D), and (F). The
differences between (A)—(F) are mainly due to the
different choices of the denominators of the propa-
gators g[A~

—g[F~. We can see that the propagators
using a denominator

[s —(E, +E2) ~i@]

give results closer to the BS results than do propaga-
tors with

Vs'
[~s —( E&+E2 }+i@)~ —1

s

or
'

[Ws —( E& +E2)+is]
In addition, we can deduce from Fig. 1 that the
choice of the denominator is more important than

the choice of an unsymmetric or symmetric reduc-
tion of the zeroth component in the BS kernel.

The ~ pS» phas-e shift. Since this phase shift
arises from an attractive force, one might expect
from the S3~ discussion that the QP equations lead
to phase shifts showing more attraction than the BS
result. The conclusions drawn for the S3~ partial
wave can be directly used as explanations of the QP
equation results for the S» partial wave in Fig. 2.
While (B) and (E), and with some restrictions (C)
and (F), show a similar behavior to that of the BS
result over the energy range T ' =0—300 MeV (al-
though more attractive), the kinematical factors in
the QP Eqs. (A) and (D) lead to totally different
forms for the phase shifts. Especially for the QP
Eq. (D) the "attraction" due to A, is so large that the
phase shift starts at 180' instead of 0'.

3. The n p'S0 phase sh-ift. We have plotted 'So
phase shifts, calculated with the BS formalism and
with the QP Eqs. (A) (F), in F—ig. 3. While the re-
sults of the QP Eqs. (B) and (E) reflect the behavior
of the BS phase, all other phase shifts start at 180'.
This fact can be illuminated by a statement from
Ref. 22: "As the potential weakens the bound state
moves down the imaginary axes and produces an an-
tibound state or a resonance. " The opposite holds
for the 'So QP results. Owing to the choice of A, ~A,
(so —s), all 'So phase shifts change their sign at the
same energy.
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4. The n pS-t phase shift The B. S result was cal-
culated using an energy dependent coupling parame-
ter A, of the form
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FIG. 4. See the caption to Fig. 1.

and is presented together with the results of the QP
Eqs. (A)—(F) in Fig. 4. The form of A, was chosen
in such a way that a pole in the amplitude at the
bound state energy and a zero in the amplitude at
the zero of the phase shift are guaranteed. These
two constraints allow no large deviations between
the QP results and the BS calculation. As in all par-
tial waves mentioned above, (8) and (E) are nearest
to the BS result.

To summarize the conclusions to be drawn from
consideration of n. -N and N-N partial waves with
l=O: (a) QP equations using a propagator of the
orm

FIG. 5. See the caption to Fig. 1.

are superior over QP equations with different
denominators (provided the same kernel is used); (b)

the choice of the reduction (symmetric or unsym-

metric) of the dimension of the BS equation has less

influence on the results.
We want to point out that these statements are de-

finitely true only for the special separable kernel

(with Yamaguchi-type form factors).

$. Partial waves with I=1

The m-p+P3q, m-p Pq3, and n-p Pq phase
shifts. What we have said for partial waves with
l=O is also true for the small rt %phases P3I and-
P~3 [cf. the n p'PI ph-ase shift]. We have displayed
our results for those partial waves in Figs. 5—7. It
is worthwhile to point out that the "symmetric" QP
Eq. (E) is superior to the "unsymmetric" QP Eq. (8)
for equal masses and conversely, as might be expect-
ed. Nevertheless the difference between (8} and (E)
is as small as for the 1=0 case. For illustration only
we have plotted in Fig. 5, in addition to phase shifts
which are calculated from the BS and QP Eqs.
(A}—(E), a phase shift denoted by B. This is the re-
sult of the QP Eq. (8), where the lighter particle is

put on the mass shell instead of the more correct
treatment which puts the heavier particle on the
mass shell.

2. The m pPss phase -shift Concerning .the
resonant partial wave P33 two investigations have
been performed. In Ref. 5 we used a constant cou-

pling parameter X for the separable BS kernel. This
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result as well as the QP equation calculations are
shown in Fig. 8. We have mentioned the fact that in
each partial wave the reduction of the BS equation
to a QP equation leads to more attraction. The
same is true for the P33 wave; the resonance
switches over to a bound state with "increasing po-
tential strength. " Considering a type of a Breit-
Wigner parametrization for the P33 partial wave it is
well known' that an energy dependent coupling
parameter has to be used to incorporate the correct
threshold behavior and the different contributions of
cuts which are not far from the b resonance.

Accordingly, we have performed a second fit to

165
FIG. 8. See the caption to Fig. 1.

the experimental phase shift, where we have used an
energy dependent A, of the form A,(s —mo )

' for the
separable BS kernel. The parameters A,, P, and y are
given in Table III; the BS result and the QP approx-
imations (which start now correctly at 0') for the P33
phase shift are displayed in Fig. 9. As in all other
partial waves, the QP Eq. (B) produces a result
which is nearer to the BS calculations.

3. The n. pP&t phase shi-ft. We used a two poten-
tial formalism in Ref. 9 to determine the m. pP»-
partial wave within the BS approach. The explicit
equations as well as the transition to QP equations
are given in the Appendix. The scattering phase
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FIG. 7. See the caption to Fig. 1. FIG. 9. See the caption to Fig. 1.
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TABLE III. Parameters A, , P, and y(so) fitted to m.-g and N N-phase shifts calculated using
the BS equation and the quasipotential equation of Erkelenz and Holinde (Ref. 2).

Partial waves

m-p S3)

m-p Sii

np So1

Potential
parameters

1 350.259

0.610
2.298

—2441.251

2.151

2.916
—783.123

2.819
0.293

104.104

fm-'
fm-'
fm-'

fm-4

fm-'
fm-'

fm
fm-'
fm-'

fm

QP Eq. (B) BS Eq.

931.819
0.610
2.298

fm-4
fm-'
fm-'

—644.796

2.820

0.528

104.104

fm '
fm
fm-'

fm

—3 647.086 fm

2.151 fm

2,916 fm

np S~
3

~p P3)

r
So

1 512.416
1.055
0.560

105.598

3 466.034

0.547

2.006

fm-4

fm-'
fm-'

fm '

fm
fm-'
fm-'

1052.500

1.055
0.560

105.598

2468.943

0.547

2.006

fm-'
fm-'
fm

fm '

fm 6

fm

fm

m-p, P)3

np Pj1

~p P33

22052.010 fm

1.304 fm

2.872 fm

214701.500 fm

1.569 fm

2.485 fm

11914.030 fm

1.304 fm

2.872 fm

429284.031 fm

3.188 fm

0.424 fm

3864.839 fm

1.256 fm

1.670 fm

m-p P33

y
mo 2

8 105.780

0.840

1.320

39.056

fm —s

fm-'
fm-'

fm '

1456.500

0.360

1.050

35.106

fm —s

fm-'
fm-'

fm '

m-p P))

y
mp

2

Ap

13p

r

6 578.256

0.360

1.712

48.744

2087.918
0.760
1.230

fm —8

fm-'
fm-'

fm

fm '
fm-'
fm-'

148.020 fm-'
1.317 fm

0.697 fm

13682.701 fm

0.870 fm

1.370 fm

shifts 5p and 5Np (shown in Fig. 10) are results of
Ref. 5 and represent pion absorption and cr and p ex-
change, respectively. The phases 5p and 5NP are re-
sults of the reduction of the BS approach to QP Eq.
(B). It is important to notice that the so-called Rop-

er resonance around T""=400 MeV, created via
5Np with an energy independent coupling parameter

leads to QP results which are similar to the P33
case (Fig. 8). To be specific: 5gp starts at 180' in-
stead of 0' and produces a bound state instead of a
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resonance. Since the QP results of (B) are represen-
tative for all other reductions of the BS approach,
we have given for clarity 5p and 5NP only in Fig. 10.
The introduction of an energy dependent coupling
parameter A, in the BS approach results in attractive
phase shifts 5gp, although they differ very much
from 5NP in analogy to Fig. 9. A detailed study of
the P» partial wave, including refits of the QP ap-
proaches (A)—(F), is under investigation.

V. CONCLUDING REMARKS

It is obvious from Figs. 1—10 that the difference
between phases, calculated with the BS equation and
phases, derived by a QP approximation, is large.
We have therefore investigated the effect of the
second order of Vin Eq. (3.2):

WI(qp q, kp, k) =V](qp, q kp k)

+ f dkp f k' dk'Vt(qp, q, kp, k')[G(k~, k', s) —g(p, ) (p)(k~, k', s)]Vt(k~, k', kp, k)
4m-'

(5.1)

on phase shifts calculated by QP Eqs. (A)—(F). Equation (5.1) effects the real part of Dt(s) only and can be
written as a combination of ReDI calculated from the BS equation and ReDt ' '"'derived from the "first or-
der" QP approximation (W- V):

ReDI(s)=A, 'jl+A[ReDt ' ' '(s) —ReDt (s)]I ' —", '+ReDI ' '"'(s). (5.2)

10—
tt — p P„,

0
0

100 200

T„"(MeV j

300
[

-2.5

1000= 300

~ — —o~
B

-50

-5

10 5NP+180' ~

-7.5

Tt -p P3„

D

F

A, E

QB
BS

FIG. 1p. The solid lines 5 (5 ) represent ~-p P»
phase shi fts, calculated using a Bethe-Salpeter [qua»Po-
tential {B)] formalism, which can be decomposed into a
phase shift 5~ (5p) corresponding to the nucleon pole and
a phase shift 5Np(5~p) due to o and p meson exchanges.

FIG. 11. m.-N and N-N phase shifts. The dashed lines
correspond to calculations using the Bethe-Salpeter equa-
tion (Refs. 4 and 5). The solid lines (A)—(F) display re-
sults calculated using "second order" quasipotential equa-
tion on (A)—(F)~
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The results for the n p-'Sp and np. -P3i are shown in
Figs. 11 and 12. As expected, these QP results are
nearer but not equal to the BS results.

We may summarize our investigations as follows:
Using a separable potential with a Yamaguchi-type
form factor (which is the most widely used form
factor for n da-nd N-d three-body Faddeev calcula-
tions), it is very important to choose a QP equation
which replaced the two body Green's function by a
propagator of the form

[s —(Ei+E2) +i@]
cf. (B) or (E). It can be seen from Figs. 1—12 that
mN and NN phase shifts derived from QP Eqs. (B)
and (E) are closer to "exact" results than are phases
calculated from (A), (C), (D), or (F). As a conse-
quence, we might state that a symmetric or unsym-
metric reduction of the BS equation to a QP equa-
tion is less important in comparison to the proper
choice of the denominator of the propagator. For
the same denominators an unsymmetric reduction is
superior for the case of nNwhil. e-the converse is
true for N-N scattering. Considering the overall
agreement of mN and NN phase shifts with the BS
results (Figs. 1—10) we would tend to favor the QP
Eq. (B) for further three body calculations. For that
purpose we have refitted all mN and NN phase shifts
in the QP formalism of Ref. 2 [(B)]. The parame-
ters A, , P, y, and (sp) for the QP Eq. (B) and for the

$ BS
60

50

0
100 150 200 I tab

( P y 1
250

FIG. 12. See the caption to Fig. 11.

BS equation are given in Table III, the agreement of
the phase shifts [refitted with (B)] with the experi-
mental phases is satisfactory and of the quality of
the BS results.
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APPENDIX

It was pointed out in Ref. 14 that a two potential formalism is necessary to describe the ~ pPii partial-
wave. In terms of the Feynman diagrams one has the exchange of o. and p mesons in the t channel on one
hand, and pion absorption, i.e., the s-channel nucleon pole, on the other. Therefore, we decompose the total T
operator (the dependence on 1= 1 is suppressed)

T = TNp + Tp (Al)

where Tp contains the s-channel nucleon pole and correspondingly, TNP is s-channel one particle irreducible.
Using a separable ansatz for TNp [analogous to (2.7)], the one particle irreducible part has to be unitary,

which is ensured by

DNp(s)=A, ' ' f dkp f—k dk u' (kp, k)G(kp, k;s) . (A2)

The second term in T will generate the nucleon pole term Tp through

h (qo q;s)h (qo q';s)
T (q, q, q', q';s) =

Dp s

with

(A3)

Dp(s) =A '(s)+ f dkp f k dk u(kp, k)G(ko, k;~)h (ko k is)
4~'

and

(A4)
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00 00

h (qo, q;s) =U (qo,q)+, dko k'dk'TNP(qo, q, ko, k';s)G (ko, k';s)u (ko, k');
4~ 3 —00 0

27

(A5)

v' and U are defined as in (2.9). It is obvious that Eq. (3.3) has to be modified to

ImTp(p) ImDNp(s)
5(p ) =arctan +arctan

ReTp p ReD&p(s)
(A6)

The phase shifts 5Np and 5p corresponding to the potentials VNp and Vz, calculated in Ref. 5 are given in
Fig. 10. To study the effect of reductions of the BS approach to QP equations, we only have to replace G by

g~&) ~F) in Eqs. (A4) and (A5).
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