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For a given aa potential we show how to calculate in a convenient way the half-off-the-
energy-shell cross section o 1,¢ for aa scattering. We compute o 1, numerically for ener-
gies up to 125 MeV (lab), and make a comparison with the free-scattering cross section.
Coulomb effects are included rigorously. In particular, we recall that o 1, is a discontinu-
ous function of the off-shell-momentum variable at the on-shell value. We confirm that
off-shell effects are sizeable, and discuss the relevance for the plane-wave impulse approxi-
mation and distorted-wave impulse approximation descriptions of (a,2a) reactions.

NUCLEAR REACTIONS Half-shell scattering, Coulomb potential, im-
pulse approximations, @+« system.

I. INTRODUCTION

Knock-out reactions have been highly successful
in the study of particle distributions in nuclei. Re-
cently reactions such as (p,pa) and (a,2a) have been
used to extract information about a clustering in nu-
clei. The analysis of the experimental data for these
processes is commonly done with the plane-wave
impulse approximation (PWIA) or the distorted-
wave impulse approximation (DWIA). In these pro-
cedures the cross section has a factorized form.
Schematically, the following factors occur:

do

d
W=Neff(PSF)(MD)—g—(Em,9xa) .

dQyq
(1.1

The phase-space factor (PSF) contains known
kinematical forms, whereas (MD) is a (possibly dis-
torted) momentum distribution which harbors the a
clustering information. Furthermore, do/d(),, is
the two-body cross section for the x +a scattering
process, where x is the projectile. Finally, N4 is an
effective normalization constant which often has to
be invoked in order to reconcile experiment and
theory.

We refer to a recent review' for a full account of
recent experiments and their implications in connec-
tion with the structure of nuclei (clustering) and the
understanding of the reaction mechanisms. In
PWIA do/dQ,, is the half-off-the-energy-shell (or
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briefly the half-shell) cross section for the x +a
scattering process. It has been shown by Redish®
that, even with distorted waves, the structure of the
cross section given by Eq. (1.1) is correct, and that
the half-shell two-body cross section can be justifi-
ably used. A common additional approximation is
to replace do/dQ,, by the free (i.e., the on-shell)
cross section for x +a scattering.

In the case of a+a scattering the latter approxi-
mation was investigated recently by Sharma and
Jain® for incident energies from 60 to 140 MeV (lab).
These authors conclude that the half-shell effects for
this case are large. In their computations the effects
of the Coulomb potential acting between the a parti-
cles have been neglected, or incorporated only ap-
proximately.

It is the purpose of the present paper to show how
to calculate from a given realistic phenomenological
aa potential the on-shell cross section and the half-
shell cross section. For various values of the energy,
momentum, and angle variables we compute the
cross sections. We confirm the conclusions of Ref.
3 that half-shell effects are important. Moreover,
we find that the role of the Coulomb potential is im-
portant.

In Sec. II we give the formalism. Starting from a
given aa potential we give closed formulas for the
cross sections. In Sec. III we specify the aa-
potential parameters. Section IV gives the results of
numerical computations. Section V concludes this
paper with a discussion.

2548 ©1983 The American Physical Society



27 HALF-SHELL a+a SCATTERING 2549

II. FORMALISM

The long range of the Coulomb potential V, is a
source of special difficulties. The ! behavior of
the potential between charged particles (for 7— o)
causes the physical half-shell and the off-shell T
matrices to have (branch-point) singularities at the
on-shell value of the half-shell and off-shell momen-
tum variables, respectively. We adopt notations and
conventions developed and used previously.*® A
convenient framework is provided by the so-called
(Coulombian) asymptotic states | K o+ ). Often we
suppress the + symbol in this notation. In this pa-
per we consider scattering by the aa potential
V=V_,+V,. Here V; is a spherically symmetric po-
tential with a short-range character. The T operator
can be split into the pure Coulomb T operator T,
and a remainder T, T =T, + T,. The on-shell and
half-shell scattering amplitudes are connected to the
physical on-shell T matrix (k =k') and the physical
half-shell T matrix through*>

fonlkk)==20K'0— | T | Ko ),

A

k'#k, k'=k€R*, (2.1)

respectively. The argument E of the T operator
T(E), where E is the complex-valued variable, is
given by (k +i€)% €l0. In our notation it is often
suppressed. Note that we use units such that #i=1
and 2m=1, where m is the reduced mass. Usually
we suppress +i€, and write k for k +ie, €10. Am-
plitudes and cross sections are related through
o(x)= | f | %, where o(x) is a shorthand notation for
do/dQ, and x stands for the cosine of the scattering
angle 0 in the center-of-mass system.

For pure Coulomb scattering (i.e., V;=0) the
physical on-shell T matrix is given by

—2m) 1 =(K'o— | T, | Koo )

_ Z 2100 4k
2Q2 QZ

where k's£k, k'=k, k'-k=cosd, Q=K'—K is the
momentum transfer, 0<Q <2k, o;=argl’(/+1
+iy) is the Coulomb phase shift, and y is
Sommerfeld’s parameter. In Eq. (2.3) f§, is the
Coulomb scattering amplitude (also referred to as
the Rutherford amplitude). The physical half-shell

, (2.3)

frar=—27B| T | Koo ), p#k, 2.2) T matrix in this case is given by
|
k io
— ) =B | T, | Koo ) =L q2+2w — vy imlp®—(k +ie/']7, (2.4)
—

~

where p=k', p+k, p-k
momentum transfer,

=cosb, El'-—-f)'—l? is the

|p—k|<qg<p+k,
and
Co?=2my/(e?*™—1)

is the Coulomb penetrability factor.

As was stressed in Ref. 6, the on-shell limits for
plk and ptk of the (pure Coulomb) physical half-
shell Coulomb T matrix are not equal to the physi-
cal on-shell Coulomb T matrix. Both these limits
do not exist. However, the on-shell limits for plk
and p tk of the modulus of the half-shell Coulomb T’
matrix do exist. These two limits differ from the
modulus of the on-shell Coulomb T matrix, accord-
ing to

limoyr=e —ZﬂylimO'half= COZO'on . (2.5)
plk ptk

This relation holds not only for the pure Coulomb
potential. It also holds® for potentials of the type
V.+V,. If the Coulomb potential is switched off
(i.e., y—0), then e ~2—1 and Cy>— 1, and oy be-

comes a continuous function of the half-shell vari-
able p in the on-shell value k.

The T operator T,(k?) is of a short-range charac-
ter. The T.-matrix elements have a rapidly con-
verging partial-wave (p.w.) series expansion, with
p.w. coefficients given by the p.w. T operators
T.y(k?). In order to keep our computations simple
we shall use short-range potentials of the type

Va=— 2 | 81,8, )M {81, | - (2.6)
i=1
Moreover, we take form factors {pl | g, g) which are
simple rational functions of p,

172 I

Y A

(p2+p+
Here f3 plays the role of an inverse-range parameter.
The T operator T,y(k?) corresponding to the sepa-

rable potential V; is separable, too, and may be writ-
ten

(pl |g1p) = 2.7)

N
Tcs = — 2 |g,f3‘,)(7'f),~j<gfgjl . (2.8)
ij=1
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Here the N X N matrix 7{ is defined via its inverse,
(D ™Dy =(A "y + (81, | Galk?) |85, »
(2.9)

with G,; the p.w. Coulomb resolvent, and A; a diag-
onal matrix of strength parameters with elements
A;;8;;. The superscript ¢ labeling the form factors
indicates Coulomb-modified form factors

(pl | gipk®))={pl |[1+Ta(kHGo(k»]|g1p) ,

(2.10)

with G, the p.w. free resolvent.
]

In order to obtain the physical on-shell 7" matrix
we merely need to sandwich the operator
T =T.+T, between the bra (Ko — | and the ket
| Koo ) To obtain the physical half-shell T matrix
we need to sandwich T between (P | and | Koo ).
The results for the Coulomb part T, of T are al-
ready given in Egs. (2.3) and (2.4). The results for
the remainder part T, follow easily from Egs. (2.8)
and (2.9). Obviously we need to know the forms
(g[g|klw), (gfg|pl), and the inproducts occur-
ring on the right-hand side of Eq. (2.9). These
forms are known in the literature. First, we have*
[with B=(B+ik)/(B—ik)]

(gfp |kl ) ={g g| kI + ) =[i""TU +14iy)/I1|B~ (g g| kI) , 2.11)

<kloo—-|gf,g)=<glc,g|kloo—>*=(gf,ﬂIkloo) .

Second, the inproducts

<gl,a | Gcl(kz) Igl,ﬁ)

(2.12)

have been given in Ref. 4 (and sources quoted there) for /=0 and 1. For general /, expressions were given in

Ref. 7.

Third, closed expressions for (g/z|pl) have been given for /=0 and 1 in Ref. 4 and sources quoted there,

and for general / only recently by van Haenngen
given. We have found it convenient to use?

k
(pl |gip)=1{pl |g1p)— (Kl Igz,g>—Zz(a;B) ,

In fact, in Ref. 8 a number of equivalent forms have been

Z/(a;B)=X)(a; B)+IImP“7"—"”)(u)+F ABa)P{ = (y)—F, (B /a)P{'" ~"(u) ,

Fp(z)=,F(Liy;14+iy;2) ,
Fif(2)+F _pp(1/2)=1+e™CoX(—2)~"7,

a=(p—k—ie)/(p+k+ie); u=(p>+k?/(2pk),

1 _1)—m
X;(a;B)—i ImP(”'"7)(u)=(_.)l+1iy1"(1+1+,7, 2 _al_l))_
m v I—m—1 | p+l1
1 _ 3 (Ba') —Bay" S, w! . Ba
L(im +1+iy) &, v+iy gm0 Tlp+m+2+iy) | Ba—1

—(—1){Idem,a—a~'} ,

where the P{"" =" are Jacobi polynomials.

III. THE aa POTENTIAL

Various forms of the aa potential ¥ have been
suggested in the literature; see, for example, the
sources quoted in Ref. 3. Usually a form is chosen
with free parameters, which are determined from a
fit to phenomenological phase shifts or experimental
cross-section data. In this paper we shall use the aa

[

potential constructed by Rahman et al.® Because of
the identity of the a particles only even partial
waves need to be considered. The Coulomb part of
the potential is given by V, (r)=2ky/r, with
2ky=0.2758 fm~!. The remaining, short range,
part V; is separable and of the form given by Egs.
(2.6) and (2.7). It is of rank 2 for /=0, with an at-
tractive and a repulsive component. The strong
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repulsion due to the Pauli exclusion principle obeyed
by the nucleons is thus accounted for in a
phenomenological way by this potential. For /=2
and 4 V; is of rank 1, and attractive. The potential
strength parameters A; and the inverse-range
parameters f3; are given in Table I. The values
differ slightly from the values given in Ref. 9: We
found that the values for /=2 given in Ref. 9 gave
an inadequate fit to the experimentally determined
phase shift 83.

The Coulomb-modified phase shifts 8j(k) are
given by

exp(2io;)
(kloo— | Teg(k?) | kloo )
3.1)

2
ts"__‘_____
Coto; —1 = X

Note that & equals the total phase shift 8" minus
the pure-Coulomb phase shift ;. In Fig. 1 we show
the computed phase shifts for /=0, 2, and 4 as a
function of the energy variable k2. Note that 8§
changes sign near E,;, =20 MeV, in agreement with
the experimental data.

IV. RESULTS

In Sec. II we have given all formulas needed to
calculate o,,(x) and opdx) for the aa potential
specified in Sec. III, as a function of x =cos6, for
various energies. Because of the identity of the a
particles, the total scattering amplitudes are given by

faa=Ff(cos0)+f(cos(m—0)) .

The cross sections are given by 0= | faa | %

In Fig. 2 we give the results for E),;;, =20 MeV
(k=1 fm~'). We have plotted o,, for the pure
Coulomb potential ¥, (the curve labeled ¢), and for
V =V, +V, with only the /=0 projection of V; tak-
en into account (label 0), with /=0 and 2 taken into
account (label 2), and with /=0, 2, and 4 (label 4).
The contribution of the zeroth partial wave is seen
to be small. This can be attributed to the fact that
86 has a zero near Ej,, =20 MeV. Clearly the curves
are symmetric with respect to the line cos6=0. In
the cases of subsequent figures this symmetry holds

TABLE 1. Values of the parameters for the aa poten-
tial.

! Ay Bu

0 A.m=2.4 fm—3 Bo1=0.4 fm—!
A02=—20 fm" 30221.3 fﬂl—_l

2 A2=1300 fm~’ B,=1.5 fm™!

4 )\,4=2.6X108 fm'“ B4=30 fm"l

180 T T T T
aa
l=4
90 .
o_ - |
© (=2
0
L 1=0
-9 1 1 | |
OO 50 100

Elab(MeV)

FIG. 1. Phase shifts 8 for /=0, 2, and 4, for the
potential-parameter values given in Table I, as a function
of the energy in the laboratory system, Ej,p,.

too, and henceforth we shall consider only values of
cos@ between 1 and 0.

For the same energy E,;, =20 MeV we have plot-
ted oy, in Fig. 3. The labels 1, 2, 3, and 4 refer to
values of the off-shell-momentum variable p, which
are “increasingly off-shell”: p/k=1.001, 1.01, 1.1,
and 1.2, respectively. The four cases ¢; ¢ +/=0,
¢ +1=0,2, ¢ +1=0,2,4 (in an obvious shorthand no-
tation) are given in Figs. 3(a)—(d), respectively.

In the remaining figures we shall display only re-

1000 — T T -
c aa k=1

R RLL}

vl o vl

LB BLULALL

01 | 1 |
10 00 . 0s ©

&
o

FIG. 2. On-shell cross section o, for (free) aa scatter-
ing for k=1 fm~! (E;;,=20 MeV) in units fm? plotted
versus cosf. The curves labeled c, 0, 2, and 4 correspond
to the pure Coulomb case, and additional inclusion of one,
two, or three partial waves in V;, respectively.
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FIG. 3. Half-shell cross section oy, for aa scattering for k=1 fm~! (E},, =20 MeV) in units fm?, plotted versus cosf.
The labels 1, 2, 3, and 4 in each case indicate the value of the off-shell variable p /k=1.001, 1.01, 1.1, and 1.2, respectively.
(a), (b), (c), and (d) correspond to inclusion of zero, one, two, or three partial waves in V¥, respectively (cf. Fig. 2 and text).

Cy2=0.3721.

sults with all three partial waves included in Vj
(I=0, 2, and 4). In Figs. 4(a)—(c) we have plotted
O ons Ohatt, and their ratio oy, e/0,, respectively. The
top row corresponds to Ejp =5 MeV (k=0.5 fm~1),
the blottom row corresponds to E,;, =80 MeV (k=2
fm™").

The full lines in Fig. 5 give the ratio oy,,;/0,, as a
function of E;. Again the labels 1, 2, 3, and 4
designate the off-shell-variable values p /k=1.001,
1.01, 1.1, and 1.2, respectively. The four cases
cosf=0, 0.25, 0.5, and 0.75 are shown. The broken
lines in Fig. 5 show the corresponding results in the
case that the Coulomb potential between the a parti-
cles is switched off artificially.

V. DISCUSSION

In this paper we have chosen to represent the aa
interaction by the potential obtained in a
phenomenological way by Rahman et al.’ It con-
tains the (point-particle) Coulomb potential. In ad-
dition it contains a part which is separable of rank 2
for /=0, of rank 1 for /=2, and also of rank 1 for
I=4. In order not to obtain an unacceptable fit to
the experimental phase shifts we had to change the
value of one potential parameter, cf. Ref. 9 and

Table I. We have chosen this potential because with
this choice a large part of the computations can be
carried out analytically. Clearly the potential is not
realistic in the following respects:

(i) The high-energy tail of the phase shifts does
not follow the experimental data. For example, for
the D wave Red§ experimentally changes sign near
E,, =110 MeV, while our &} remains positive, cf.
Fig. 1.

(ii) Above the first inelastic threshold absorptive
effects play a role. These can be simulated by con-
sidering a complex energy-dependent potential V.
In this paper, however, we only consider a real V.

(iii) At higher energies more partial waves are
needed. This is illustrated in Fig. 2, which strongly
suggests that the partial-wave sum has not yet
reached full convergence. Yet, we feel that our
model potential is fully adequate to gain a qualita-
tive understanding of the half-shell scattering pro-
cess.

In the formalism in Sec. I Coulombian asymptot-
ic states |koo+) and |klow*) have been used.
The reader who is not familiar with the use of these
states is referred to Ref. 10. The use of these states
is particularly convenient when working in the
momentum representation with separable potentials
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FIG. 4. The upper row corresponds to k=0.5 fm~! (E},;,=5 MeV, Cy2=0.1118). The bottom row corresponds to k=2
fm~! (E;;, =80 MeV, Cy*=0.6286). (a) Plot of 0., in units fm? against cos. (b) Plot of o, against cos@, for p /k=1.001,
1.01, 1.1, and 1.2, respectively, labeled 1—4 in this order. (c) Plot of the ratio op,s/0,, The meaning of the labels is the

same as in (b).

V. Alternatively (at the cost of much numerical
work) one can use a procedure of screening the
Coulomb potential by an exponential factor
exp(—r/R), with R very large compared to the typi-
cal length parameters in V;. In Ref. 11 we have pro-
vided evidence in the pure Coulomb case that such
an (un)screening procedure (where for each finite
value of R one works with the familiar short-range
formalism) leads to a discontinuity® of oy, con-
sidered as a function of the half-shell variable p in

the on-shell point p =k. This discontinuity is clear-
ly expressed by Eq. (2.5). In fact, it is not difficult
to show from the explicit formulas at the end of Sec.

" II the presence of this discontinuity for the case of

our aa potential.

In a previous attempt'? to describe half-shell
scattering of charged particles (the pp system), this
discontinuity did not receive the attention that it
deserves. Some other observations in Ref. 12, dating
back to 1972, need careful reconsideration.
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FIG. 5. Full lines: plots of opays/0on v8 Epy for the full aa interaction V. The labels 1—4 have the same meaning as in

Figs. 3 and 4. The four different plots correspond to cos6=0, 71‘-, %, and %,

respectively. Broken lines: the same, but now

the Coulomb interaction in ¥V =V + ¥V, has been switched off (i.e., V =V).

We point out that f,, and fg, [cf. Egs, (2.1) and
(2.3)] are nonintegrable with respect to k-k’ in the
forward direction. The same holds for their
Born approximations, which are essentially given by
(k |V |K) and (K'|V,|K), respectively, with

=k. Connected with this is the divergence of the
(Coulomb) p-w. series. This problem was solved by
Taylor!® by the introduction of suitable test func-
tions. The problem of nonintegrability does not ex-
ist for the physical half-shell T matrices [cf. Egs.
(2.2) and (2.4)]. These objects, and their Born ap-
proximations (B | ¥ | k) and L (B V.| K), p#k, are
integrable with respect to p* k, and have convergent

p.w. series. Similar remarks apply to the fully off-
shell T-matrix elements

(B'ITKH|B),
(B'| T.(kD|B)

and their Born approximations (p'|V |B) and
(B'| V. |B), with p’s£k£p#p’.

Let us discuss the results for oy,y, displayed in
Figs. 3—5. In the DWIA the half-shell-momentum
variable p generally is larger than the on-shell value
k. We therefore have given only results for p > k.
In case p is very close to k (e.g., all curves labeled 1,
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indicating p/k=1.001) oy, is virtually equal to
Co?X 0o, This means that (i) considered as a func-
tion of cos@, the curves for op,¢ have virtually the
same behavior as o,,; an exception is the extreme
forward direction where o, diverges, whereas op,¢
does not; (ii) their normalization is different by an
energy-dependent factor Cy2; and hence (iii) for low
energies especially, the normalization is affected
very much.

It should be stressed that the free aa cross section
varies quite rapidly with energy and scattering an-
gle, often by orders of magnitude.!* For all other
values of p /k which we considered (curves 2, 3, and
4) we observe that the gross structure of the angular
dependence of oy,r remains the same and only mini-
ma are shifted or filled to some extent, compared to
those of o, This can lead to a rather wild angular
dependence of o0y,¢/0,,, however, as is clearly seen
in Fig. 4(c). In particular the curves labeled 4 (i.e.,
p/k=1.2) show marked variations in Figs. 4(c) and
5. It should be appreciated that for this case one is
already quite far off the energy shell (44%).

In Ref. 15 (cf. also Ref. 1) experimental data for
Opaif at Ep,, near 130 MeV are given in the angular
range 45° < 6 <90°, together with o, for two neigh-
boring energies. Shape and magnitude of these ex-
perimental half-shell and on-shell data agree rather
well with each other, if one allows for deviations of
the order of 50% in the data which cover more than
two decades in magnitude. This is the same order of

deviation which we find between the theoretical
curves op,¢ and o, at Ej,, =125 MeV, at most ap-
proximately 40% (cf. Fig. 5).

For four aa-potential models Sharma and Jain®
have computed oy,¢/0,, for various energies and
angles. They did not include Coulomb effects
rigorously. We support their conclusion that half-
shell effects are large (below 140 MeV). They also
found that the behavior of the half-shell factor is
similar for all the four potentials, one of which is
separable. We therefore feel justified in considering
only one potential model. We do stress that
Coulomb effects are important in the computation
of opnas/0s,. This importance has been underes-
timated in Ref. 3, in particular at low energies.
Probably this is due to the approximate character of
the calculations presented there.

Finally, we wish to point out that in this paper we
have merely shown how to compute oy, for aa
scattering. We have not discussed the validity of the
factorized form in Eq. (1.1), which occurs in the
DWIA treatment of (a,2a) reactions. An investiga-
tion of the factorization property in the presence of
clusters with relatively large charges (large Sommer-
feld parameters) is highly desirable.
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