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A theory of nuclear reactions and structures is proposed which unifies and generalizes
several different approaches, such as the method of coupled reaction channels and the dis-
torted wave Born approximation for rearrangement processes, the method of coupled chan-
nels array, the resonating group method, the Feshbach theory for the optical potential, and
the multiple scattering formalism for high energy proc=sses. The present theory employs an
optical potential which can be systematically improved in a controlled way.

NUCLEAR REACTIONS The resonating group method; the method
of coupled reaction channels; antisymmetrized optical potential.

The method of coupled reaction channels"?
(CRC) and a truncated version of the coupled chan-
nels array>* (CCA), known as the bound state ap-
proximation®® to the CCA (the BCCA), are sup-
posed to be two powerful methods for treating nu-
clear reactions. The CRC has enjoyed widespread
use’ because of its phenomenological success in
describing nuclear reactions, whereas the BCCA has
its limited success.® The usual derivation®® of the
CRC employs an expansion of the wave function in
an overcomplete and nonorthogonal set of basis
states and a subsequent projection of the
Schrédinger equation on these basis states. The use
of such overcomplete and nonorthogonal basis states
leads to serious numerical and mathematical prob-
lems and prohibits the introduction of correction
terms.>® The usual derivation of the BCCA, on the
other hand, does not use such overcomplete and
nonorthogonal basis states and indicates how one
can, at least in principle, introduce® correction terms
to the BCCA. It is because of this that various au-
thors conjectured® mathematical superiority of the
BCCA over the CRC. Yet the CRC and even a
drastic approximation to it, the distorted wave Born
approximation’ (DWBA), have become very popu-
lar in treating various aspects of nuclear reactions.
The success obviously is not purely accidental.

We also have the highly successful resonating
group method® (RGM) for incorporating the Pauli
principle for identical nucleons in the study of nu-
clear structure and reaction problems. The RGM
(Ref. 8) is based on the same ansatz as the CRC
(Refs. 1 and 2) and it also expands the antisym-
metrized wave function in a set of overcomplete and
nonorthogonal set of basis states, which again does
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not allow the introduction of correction terms. Yet
the RGM and an approximate version of it, the
orthogonality condition model’ (OCM), have been
very successful in explaining certain aspects of nu-
clear reactions. Again the success is not merely ac-
cidental.

The Feshbach unified theory of nuclear reaction'®
is the first work which puts the optical potential
phenomenology in a solid theoretical framework.
The Feshbach optical potential has some nice prop-
erties.'” Its discrete singularity corresponds to com-
pound resonance, and it is real below the inelastic
threshold. But unfortunately, from the point of
view of phenomenology, the Feshbach optical poten-
tial is not very useful, as it cannot treat the antisym-
metrization of identical nucleons in a simple way,
nor can it justify the success of methods such as the
CRC,"? the DWBA,' the RGM,? and the OCM.’ It
is desirable to have a generalization of the Feshbach
theory which will yield the CRC and the RGM in
the lowest order of an approximation scheme.

The multiple scattering (MS) theory'! is a success-
ful theory for treating high energy processes. It
reduces the original many-body scattering equation
to a two-body scattering equation with an optical
potential and a MS series for the optical potential.
Such a MS series converges at high energy and can
be used to introduce correction terms in a controlled
way.

In the present paper we propose a theory for nu-
clear reactions and bound states which enjoys the
advantages of all the above-mentioned methods, but
is not plagued by their disadvantages. We provide a
unified derivation of the BCCA and the CRC and
hence show that the CRC is in fact a special type of
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BCCA. With this derivation any conjecture of
theoretical superiority>® of the BCCA over the CRC
becomes baseless. Specifically, the present deriva-
tion uses orthogonal projection operators only in or-
der to deduce the CRC and this allows one to use
Feshbach’s projection operator technique'® for intro-
ducing correction terms to the CRC. At least this
will give a measure of the error introduced in a CRC
or a DWBA calculation’ as compared to a complete
solution of the Schrodinger equation.

As the CRC and the RGM are both based on the
same ansatz, similar considerations for the case of
identical particles lead to a new derivation of the
RGM which will allow one to introduce correction
terms to the RGM intercluster potential in a con-
trolled way through a MS series. This generalizes
the Feshbach theory to the case of identical parti-
cles.

In order to illustrate the present theory we consid-
er a three-particle system with the Hamiltonian

3
H=Ho+V=Ho+ 3 V;, (1)
i=1
where H, is the kinetic energy operator and the V;’s,
i =1,2,3, are the three pair potentials. We also in-
troduce the potential V;= Vi+Vi (t;& j£k D).
The simplest form of the CCA equatlons *__the Fad-
deev equatlon 3__breaks the full wave function ¥ into
components ¢, , I =1,2,3, which satisfy

(E—HW =V, 3 ¥, k=123, (2)
k£i
where H;=Hy+V;,
3
=39 .

i=1

Equation (2) is commonly known as the differential
form of the Faddeev equation. This is not the only
possible way to break up ¥ into three components.*
Here we introduce another special way to break up ¢
into three components ¥f, i=1,2,3, which satisfy

(E—HY{=—(E—H,) 25,k¢k

+I/I'E¢k7 k=172)3 ’ (3)
k

where 8 =(1—8;) and where

3
Y=l .
i=1
Equations (3) are a very special type of CCA equa-
tion. It is easy to verify that though Egs. (3) form a
coupled set, each equation in this set, and hence also
their sum, corresponds to the Schrédinger equation;
whereas in the case of the CCA equations (2) only

the sum corresponds to the Schrodinger equation.
We shall see that the approximation which reduces
Eq. (2) to the BCCA will reduce Eq. (3) to the CRC.
Now it is easy to realize that one can rewrite Egs. (2)
and (3) in the form of the following matrix equa-
tion®:

(E1-Hy))¥=V¥, @

where ¥ is a column vector with components ¢,~F ,
i=1,2,3, in the case of Eq. (2) and with components
11;,-C, i=1,2,3, in the case of Eq. (3). H, is a matrix
operator with components (H)y =H;8;. 1 is the
unit operator in the three-dimensional matrix space;
and the matrix operator V is defined by

Vi = Visik (5)
in the case of Eq. (2), and by
Vie=—(E—H)83 +V; 6)

in the case of Eq. (3). Now one introduces the pro-
jection operator P by Py =P;8;, where the P;’s,
i=1,2,3, denote the projectors onto the subspace of
bound states of two-body subsystems, such that
P;>=P; and P?=P. Now the Feshbach projection

operator technique when applied to Eq. (4) yields
(E1-PHP)PY=PHQVY , (M
(E1-QHQ)QVY=QHPVY, (8)

where H=H,+V and Q=1—P. The zeroth order
approximation neglects the oupling between P and
Q spaces and assumes ¥=P¥, Q¥ =0. In this case
Egs. (7) and (8) reduce to -

(E1-PHP)PY=0,
which in explicit notation becomes

(E —P,H;P,)Pyf = 38, PV, Pl )
k

in the case of Eq. (2), and
(E—P;H;P;)P;y¢
=3PV, —(E—H)8;1Py5  (10)
k

in the case of Eq. (3). Equation (9) is one type of
BCCA equation. Explicitly Eq. (10) expands ¥ in
terms of bound states of two-body subsystems,

3
b= 3 P;
i=1
and it is easy to realize that Eq. (10) is the CRC
equation for the expansion coefficients. In order to
perform a complete calculation for P¥ one can el-
iminate the Q space between Egs. (7) and (8) and ar-
rive at o
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(E1-PH,P—-PUP)PY=0, (11)
where

PUP=PVP+PVQ(E1—-QHQ +ie)~'QVP (12)

is the optical potential to be used in Eq. (11). The
lowest order approximation to the optical potential
given by P U P=P V P will correspond to Eq. (9) in
the case of Eq. (2) and to Eq. (10) in the case of Eq.
(3). It is easy to realize that U given by Eq. (12) sat-
isfies the dynamical equation

U=V+VQ(E1—QH,Q +ie)~'QU . (13)

One should remember that as Egs. (2) and (3) are
differential equations, their solutions need a specifi-
cation of the usual boundary condition, e.g., for a
two-cluster initial state in channel i, asymptotically
¢E and dzf have outgoing waves for all &, and, in ad-
dition, an incoming wave for k =i. This boundary
condition should be contained in Eqgs. (12) and (13).
In the case of a self-adjoint Hamiltonian such boun-
dary conditions are maintained by the + i€ prescrip-
tion. Equation (6) yields a self-adjoint Hamiltonian
H, and hence in this case boundary conditions are
maintained by the +ie prescription. In the case of
Eq. (5) the Hamiltonian H is not self-adjoint, but
Eq. (13) has a connected kernel, and the boundary
condition is automatically taken care of. Of course,
it does not mean that for any Q Eq. (13) is readily
solvable numerically, because then Eq. (13) may
have a disconnected kernel. However, in the case of
a realistic many-body problem with V defined by
Eq. (6), Eq. (13) may have a connected kernel for
various approximations to Q, but in the limit as
Q—1—P its kernel is disconnected. Our objective
is, however, not to find the complete solution ¥ of
the problem, but to use Eq. (11) to introduce break-
up corrections to the CRC amplitudes by using con-
nected approximations to PUP through Eq. (12),
such that Eq. (11) is a meaningful equation with
well-defined solutions.

We have presented a theory of nuclear reactions
which treats the CRC and the BCCA on the same
footing. When the lowest order approximation to U
given by PUP=PV P is a good approximation to
the full solution of Eq. (13) (or to the complete solu-
tion of the Schrodinger equation) it is expected that
the contribution of the last term on the right-hand
side of Eq. (12) will be small. In this case, one can
hopefully construct a convergent MS (or iterative)
series for Eq. (13) through which one can systemati-
cally improve on the BCCA or the CRC in a con-
trolled way. So we have been able to combine the
attractive features of the CRC, the BCCA, the Fesh-
bach theory, and the MS formalism in the present
theory.

As the CRC and the RGM are based on the same
ansatz, the above derivation of the CRC is easily ex-
tendable to the case of the RGM. In the case of
three identical particles one starts with the
Schrodinger equation (E — H )y =0, where ¢ is ful-
ly antisymmetrized (symmetrized) for three fer-
mions (bosons). Here ¢¥°=.«;1;, where .«/; is the
antisymmetrizer'? (symmetrizer) for fermions (bo-
sons), and where ¢; describes the physical scattering
process of three particles when particle i is incident
on the bound state of particles j and k (j£ks4i£]).
¥° is an appropriate linear combination of ¢;’s, e.g.,

V= =9 +Y;+ U
for bosons and
V= b=t —Yj—Yx

for fermions (is£js£k=£i). Then the Schrddinger
equation for ¢* can be rewritten as

(E_Hl)wl =Mi¢i y (14)
where

It is easy to realize that for three identical bosons
Eq. (14) is identical to Eq. (3) and for three fermions
Egs. (14) and (3) are very similar, though the mean-
ing of ¢ in Eq. (3) is different from that of ¥; in
Eq. (14). Now one can proceed as in the discussion
related to the derivation of CRC equations and in-
troduce the matrix notation as in Eq. (4). But that is
not necessary, as Eq. (14) is an uncoupled equation
for a single function ¥;. Now the matrix notation is
redundant and one can apply the Feshbach projec-
tion operator'® technique, with the operator P;,
directly to Eq. (14), and one arrives at

(E —P;H;P; —P;M;P;)P;{y; =P;M;Q;¢; , (16)
(E—QiH;Q; —O:M;Q))Qithi =Q:M; Py, (17)

where Q;=1—P;. The lowest order approximation
again neglects the coupling between P and Q spaces
and assumes ¥; = P;1; and Q;y; =0, and one has

(E —P;H;P; —P,M,P;)P;}; =0 . (18)

Equation (18) is the RGM equation® and the poten-
tial P,M;P; is the RGM intercluster interaction.'?
Again in order to perform a complete calculation
for P;y); one can eliminate the Q space between Egs.
(16) and (17) and one arrives at

(E'—P[Hipi—P‘-l]iPi)Pilﬁi:O, (19)

where
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P;U;P;=P;M;P; +P;M;Q;
X(E*Hi—QiMiQi+i6)—lQiMiP,' (20)

is the optical potential in this case. Equation (20)
suggests the following dynamical equation for U;:

Ui=M; +M;Q;(E—H;+ie)"'Q,U; , 1)

which has been derived in Ref. 12 using other
methods. Remembering that the antisymmetrizer
(symmetrizer) o ; is Hermitian and that [.«/;,H]=0
it follows that M; is Hermitian.!> Using this prop-
erty of M; in the Feshbach unified theory'® one can
easily show!? that the optical potential defined by
Egs. (20) and (21) is real below the first inelastic
threshold and that the discrete singularities of the
optical potential correspond to physical resonances.
Although the effective Hamiltonian H; +M; of Eq.
(14) is Hermitian, as [H,.«/;]=0 and as «/; is Her-
mitian, it is interesting to note that Eq. (19) does not
appear to be invariant under the action of the per-
mutation group but rather the label i in it may
change to j, j+i, under such an operation. But this
causes no problem as the operators H; and U; are la-
bel transforming operators in the language of
Bencze and Redish!® and hence P,H;P; and P;U;P,
are independent!>'* of the label i. This label
transforming property of U; is used in Ref. 12 to
show that the optical potential has no elastic unitari-
ty cuts (associated with partitions j=4i of the
equivalence class) and that the physical resonances
correspond to discrete singularities of the optical po-
tential.

The present antisymmetrized optical potential is
different from that obtained by Kowalski et al. in
some recent works on the subject.'*!> Although all
these antisymmetrized optical potentials are sup-
posed to yield the same exact on-shell elastic scatter-
ing amplitudes for two-fragment scattering, the off-

shell results in various approaches are expected to be
different. However, one is not usually interested in
an exact solution of the problem but only in approx-
imate solutions. Such approximate solutions using
these two approaches are supposed to be different.
There are two interesting differences between the
present approach and that of Kowalski et al. First,
the approach of Kowalski et al. deals with non-
self-adjoint operators, whereas the present approach
deals with self-adjoint operators only. Second, in
the approach of Kowalski et al.!> the analog of the
present M; contains exchange effects nonlinearly
and is thus not easily amenable to numerical calcula-
tions. In contrast, the present M; contains exchange
effects linearly, and hence appears to be more attrac-
tive for developing simple models for the optical po-
tential for two-fragment scattering.

When the lowest order approximation to U; given
by U;=M; is a good approximation to the full solu-
tion of Egs. (20) and (21), one may again employ a
convergent MS (or iterative) series solution of Eq.
(21) through which one can systematically improve
on the RGM optical potential. So we find that the
present theory can be easily extended to combine the
virtues of the RGM, the CCA, the Feshbach theory,
and the MS formalism.

In conclusion, we have achieved a generalization
of the Feshbach theory' to include the CRC (Refs.
1 and 2) and the DWBA (Refs. 1 and 7) for rear-
rangement collisions, and the RGM (Ref. 8) and the
OCM (Ref. 9) for identical nucleons at the lowest
level of an approximation scheme. As a result, we
eliminate the mathematical objections™® against the
previous derivations of the CRC and the RGM, and
show how to include correction terms to the RGM
and CRC in a controlled way through a presumably
convergent MS series.
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