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Parity nonconservation in nucleon (N )-deuteron(d) scattering is examined at low energies

( &40 MeV), particularly at 15 MeV. A Faddeev treatment is employed. For the strong N-

N force a separable interaction, which fits scattering cross sections up to 60—100 MeV, is

used; for the weak parity nonconserving NN force, an isoscalar short range term due to p
and co exchanges and an isovector pion exchange contribution are included. Comparisons
with parity nonconserving experimental asymmetries in NN scattering are made. For the

parity nonconserving asymmetry in N-d scattering the contributions of various terms are

separated, so that the model dependence of our results can be discussed. It is found that
multiple scattering effects are important. The energy dependence of the parity nonconserv-

ing asymmetry in N-d scattering is found to differ qualitatively from that in NN scattering.

NUCLEAR REACTIONS d (N, N)d, calculated total cross section pari-

ty nonconserving asymmetry, E = 14—40 MeV.

I. INTRODUCTION

The nature of the nonleptonic weak interaction
remains to be elucidated. In addition to the
strangeness-changing decays of strange baryons and
mesons, the interaction can be studied through the
observation of parity nonconserving (PNC) observ-
ables in hadronic reactions. ' These effects are as-
sumed to arise from the interference of a strong and
a nonleptonic weak amplitude. Indeed, the observa-
tions of circular polarizations of photons emitted in
nuclear transitions and of other parity nonconserv-
ing asymmetries are of the order of magnitude ex-
pected from such an interference. However, to date,
a quantitative understanding of the parity noncon-
serving observables has not been obtained, so that it
has not yet been possible to deduce the parity non-
conserving interaction between nucleons. Detailed
nuclear structure analyses are required to make cer-

tain that a consistent weak nucleon-nucleon poten-
tial is obtained. ' Although considerable progress
has occurred in the past several years, much work
remains to be done. Analyses presently underway
may clarify the interpretation of past measurements.

The PNC nucleon-nucleon force arises from the
product of vector and axial-vector nonleptonic weak
currents. ' ' However, the connection between the
measured (or deduced) force and the basic theory of
weak interactions depends upon a model for the
structure of the hadrons. Again, considerable pro-
gress has been made recently by using quark models
and SU(6) symmetry. The lack of knowledge of the
structure of the hadrons (e.g., confinement mechan-
isms) only allows one to place limits on the expected
weak PNC force between nucleons. Further pro-
gress may occur through the use of @CD (quantum
chromodynamics) and scaling (renormalization tech-
niques).
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Among the hadrons, the proton-proton system is
the simplest one which can be studied experimental-
ly in detail. Polarized proton beams permit one to
measure parity nonconserving asymmetries as a
function of energy and for various final states. Such
experiments have been or are being carried out
at 15, 45, 800, and 6000 MeV. On the other hand,
polarized neutron-proton scattering experiments are
more difficult and have not yet been undertaken.
The weak n pfor-ce has been investigated through
very low energy neutron capture on hydrogen. '

The experimental results found to date only provide
upper limits.

The next simplest system to study in order to ob-
tain information on the weak force between neutrons
and protons is the three nucleon system. Experi-
mental investigations of neutron capture by deuteri-
um and of proton scattering on deuterium have been
and are being undertaken. An early analysis of the
15 MeV scattering experiments used a DWBA ap-
proximation, ' with antisymmetry taken into ac-
count only in an approximate manner. Later analy-
ses used Faddeev-type treatments. ' ' One of the
advantages of the three-body system is that an exact
scattering analysis can be made in terms of the Fad-
deev treatment. If the p-p weak force is known and
three-body forces are negligible, then p-d scattering
should permit one to deduce the PNC p-n force.

In this paper, we present a detailed analysis of 15
MeV polarized proton-deuteron scattering utilizing
a Faddeev treatment. Preliminary results were
presented earlier but contained an error due to an in-
correct relative normalization factor. ' Meanwhile,
a second such study of this scattering process has
been carried out by Desplanques, Benayoun, and
Gignoux. ' In our analysis, we use a separable had-
ronic NN force which fits s-wave scattering up to
60—100 MeV; for simplicity we neglect the hadronic
tensor force. We examine the effect of these approx-
imations in the NN PNC problem by comparing re-
sults with those of similar model calculations using
more realistic local potentials. For the PNC force,
we also make simplifying assumptions: We consider
an isoscalar force of short range and an isovector
force due to pion exchange. The other components
of the weak force are neglected. In part this restric-
tion was imposed to permit us to compare the Fad-
deev treatment with the DWBA and similar
approximations made by Henley in his analysis
of pd scattering. In addition, based upon analyses
of NN PNC experiments as well as nuclear transi-
tions in the light nuclei, there is only ambiguous
support for other components of a more general
PNC potential. In Sec. II we describe the weak
PNC force used in our model calculations. In Sec.
III we discuss the results of our model for PNC

a.symmetry in NN scattering. Our three-body for-
malism for calculating Nd scattering is described in
detail in Sec. IV. In Sec. V we present results for nd
and pd scattering at 14.4 MeV and the predicted en-

ergy dependence of A~. Model dependence of the
calculation is discussed in Sec. VI. Section VII con-
tains our summary and conclusions.

II. THE %'EAK PNC FORCE

Effects of parity nonconservation have been ob-
served in several nonleptonic nuclear reactions. It is
generally believed that the observed asymmetries
arise from manifestations of the first order b,S =0
nonleptonic weak interactions, the dominant effect
in nuclear systems being a PNC contribution to the
NN interaction. ' However, there is no definitive
theory of the weak interactions of physical hadrons.
The desire to remedy this situation is the primary
motivation for this and related studies. It is expect-
ed that for low energy processes (F. (300 MeV) one
can use a weak (NN) potential form arising from the
exchange of mesons. Invariance arguments' sug-
gest that these exchanges are dominated by single
pseudoscalar and vector mesons (except for possibly
important contributions from two pion exchange).
Here we adopt the philosophy of utilizing a PNC
potential based upon meson exchanges to fix the
range and spin-isospin structure of the weak force.
A general diagram representing terms in such a po-
tential is shown in Fig. 1. As stated earlier, simpli-
city, general invariance arguments, and octet domi-
nance' lead us to include only isoscalar p and m

7I& P& QJ& ~ ~ e~~
f %F g

FIG. 1. One boson exchange contributions to the weak
PNC potential; the weak vertex is indicated as a triangle,
the strong vertex as a circle.
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terms and an isovector m. term in the PNC potential.
It should be noted by the interested reader that argu-
ments have been presented which indicate that octet
dominance in strange particle decays may be
dynamical in origin and may not apply to the NN
problem. ' An isotensor term in the PNC NN po-
tential cannot contribute to N-d scattering because
the total isospin is —,. However, the omission of the

I

isotensor term in NN scattering would have implica-
tions for the N-d problem if the PNC potential were
adjusted to fit the NN experimental data.

Parity nonconserving potentials due to one boson
exchange have been reviewed numerous times, and
we will not dwell upon their derivation. ' The p
and co exchange isoscalar potentials resulting from
such considerations are of the form

&p~c(ri, )= — fpgpri ~, ((1+@,„)iir; X ~, [pipu(r;, )]+(a;—~, ).[p;,,u«;, )I),

Vpgc(r j )=— f g (( 1+p, )i o;X irj'' [pj,'u(r'j )]+( &; —&z ) [p J,u (r~ )]),lJ I 07 CO
(2)

—= 1.4X 10 (3)

where M is the nucleon mass (939 MeV}; fq and f„
are the weak vertex coupling constants; g& and g
are the strong vertex coupling constants; 0.; and z;
are the nucleon spin and isospin operators; and

rij = r; —rj and p;j = —,(p; —
p~ ) are the relative po-

sition and momentum of the two nucleons. The
[a,b] and [a,b] are the standard commutator and
anticommutator operations. We assume for the iso-
vector anomalous magnetic moment pr a value of
3.70 but neglect the small and perhaps controversial
isoscalar magnetic coupling of the ar to the nucleon
(i.e., we assume ps ——0). We also neglect the
momentum transfer dependence of the weak vertices
and utilize the factorization approximation' in es-
timating the magnitude of f& (Ref. 20):

Gm
Ifp I

=
2'

to the asymmetry are proportional to fg„, and they
can therefore readily be scaled for other values of
this product of coupling constants. The function

u (r)=exp( mr)/(4m—r)

defines the range of the PNC potential in terms of
the mass of the exchanged meson.

As mentioned above, we keep only the longest
range part of the isovector PNC potential, namely
that generated by the exchange of a single charged
pion. (CP conservation forbids n exchange. ) This
potential connects I=0 and 1 states of the NN sys-
tem. There is also a short-range isovector interac-
tion which connects I =1 states but which we
neglect herein. For the one pion exchange interac-
tion one obtains the PNC potential

l m 7r
I PNc( ij }= ( i X rj )z(+i + +j } [pij ~uz(rij}] ~

2V2M

This value is in agreement with that derived in Ref.
17, whose sign we shall adopt since it is in agree-
ment with that of App in Refs. 9 and 10 and with the
theoretical considerations based on quark models.
Hgre G is the weak coupling constant; m is the aver-
age mass of the p and co (755 MeV}; gp is given by

g& /4m =0.62; g„ is the axial vector renormalization
constant (1.24); and cos 8—=0.98. Although we use

fp =—1.4X10 in our numerical work, it is trivial
to scale our results for other values of fp. The con-
tribution of p exchange to the PNC asymmetry is
computed separately, and the isoscalar p-exchange
contribution to the asymmetry is linear in fp.

There exists a large range of possible values for
f~ (see, for example, McKellar and Pick '); for sim-
plicity we have assumed f„=fp in our numerical
calculations. The constant g„ is also not well deter-
mined, and we adopt the value of V 2gp. Again, our
numerical results for the contribution of c0 exchange

where f is the weak coupling constant and g is the
strong o'ne given by g~ /4n = 14.4 The function

u~(r) =exp( mr )/(4m r ), —

where m is the mass of the charged pion (139
MeV). In the absence of neutral currents, early esti-
mates based upon SU(3) considerations and current
algebra gave, for the Cabibbo value of f,

I f I
=4.3X10;we assume f ' to be positive.

Although the early work on f~' has been supersed-
ed, we use it in part of our study for reference pur-
poses. If neutral currents are postulated, then f"' is
expected to be positive and some 4—10 times larger
than the Cabibbo value. We will assume a factor of
10 and positive sign in our numerical results to fol-
low. Once again, the contribution of m exchange to
the asymmetry scales linearly for other values off .

Such a model of the PNC force is certainly in-
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complete. Although it contains the important
features of the isoscalar and long-range
(I =0~I =1) isovector interaction, it lacks the
short-range isovector (I = I+ I= 1) and the isoten-
sor parts. However, analyses of PNC experiments in
nuclei which require isoscalar, ~ exchange, and iso-
tensor components are ambiguous in the need for
any (sizable) short range isovector (I =1~I= 1) po-
tential. The isotensor potential plays no role in elas-
tic and total cross sections for Nd scattering. We
believe that our model should permit us to estimate
the order of magnitude of the asymmetry in nd and
pd scattering due to PNC effects as well as to study
significant aspects of the PNC experiment in the
trinucleon system, such as the energy dependence of
the asymmetry.

III. PNC ASYMMETRY IN NN SCATTERING

+M ip, +,m)], (6)

where m is the spin projection of the target. The
M and M are the strong and weak scattering am-
plitudes, respectively. We utilize standard two po-
tential theory in terms of t matrices in order to cal-
culate M~ within a specific model for the parity
conserving strong interaction.

Because of the complexity of the Nd problem, we
limit our consideration of NN parity conserving po-
tential models to those without tensor terms. We
examine the Malfliet Tjon I-III (MT I-III) poten-
tial results for the NN problem in order to com-
pare with the previous results of Brown et al. for
the Hamada-Johnston (HJ) (Ref. 23) and Bryan-
Gersten (BG) (Ref. 24) potentials, both of which do

The most basic, but already very difficult, scatter-
ing experiment to look for PNC effects is the mea-
surement of an asymmetry in the total cross section
of longitudinally polarized nucleons scattered from
a hydrogen target. The asymmetry is given by

A =(cr+ —o )/(o++o ),
where o+ (o ) is the total cross section for a +
( —) helicity of the incident nucleon. Assuming a
VpNc, one can calculate such an asymmetry for pp
and np scattering. However, measurements of the
asymmetry A for np scattering are much more diffi-
cult than for pp scattering. The calculation in terms
of total cross sections is expedited by use of the opti-
cal theorem to relate the total cross section to the
imaginary part of the forward elastic scattering am-
plitude. In particular,

8
o+ ——— Imp [ (p, +,m ~M

m

have tensor force combinations in the triplet chan-
nel. We then carry out the same calculation using a
rank-one, separable potential representation of the
NN strong interaction in order to study the effect of
not including short-range repulsion in the calcula-
tion of Arz and A„z. Our separable potentials are of
the form

V;(k, k') = — u;(k)u;(k'), (7a)

u;(k)=(k +P; ) (7b)

where A,,=0.3819 fm, P, =1.406 fm and
A,, =0.1533 fm, P, =1.183 fm '. The choice of
such a simple interaction is open to criticism, espe-
cially the neglect of the NN p wave in-teraction, the
long range tensor force, and the short range repul-
sion. However, the complexity of the three-body
calculation is enormous. In addition, the simple se-
parable potential model reproduces the singlet
phases well up to 100 MeV, the triplet phases up to
55 lvfeV, and the deutron pole. We shall see that the
NN PNC asymmetry predictions do not differ by
large factors from those of the more realistic
models, so that such a potential model appears to be
adequate for our stated purposes.

In the study of the PNC asymmetry in the two-
body problem it is possible to mock up the effect of
hadronic repulsion at short distances by reducing
the strengths of the weak potential at short dis-
tances. We do so by means of a cut off or regulari-
zation of the weak VpNC.

V(r) =exp( mr)/(4m r)—
is replaced by

V" (r)=[exp( —mr) —exp( Ar)]/(4trr) . —

However, we remark that such a procedure is of lim-
ited validity in the three-body calculation because it
cannot properly account for the effects of repulsion
in all strongly interacting pairs. That is, it mocks
up the hadronic repulsion between the pair of nu-
cleons which interact via the weak PNC potential
but not between those pairs which interact only via
the strong potential. We will return to this point
later in the paper.

In Tables I and II we present results for NN
asymmetries calculated at 14.4 MeV. We include
the work of Brown et al. for the HJ and BG poten-
tials as well as our own results for the MT I-III po-
tential and the separable potential defined above.
We note that our NN elastic total cross sections are
cTpp 450 mb and 0 „p ——630 mb, in very reasonable
agreement with the experimental values of 460 and
640 mb, respectively. In addition to the above
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TABLE I. NN asymmetries ( X10') calculated at 14.4
MeV incident energy using the strong interaction models
of Hamada-Johnston, Bryan-Gersten, Reid, Malfliet-
Tjon, and the separable model of this paper (with and
without regularization of the weak PNC interaction).

Model

HJ
BG
RSC

MT I-III
Sep

Sep (Reg)

—1.0
—1.1
—1.29
—1.49
—3.30
—1.00

—0.22
—0.40
—0.46
—0.78
—1.47
—0.41

(g ~ )Cab

0.05
0.05
0.08
0.10
0.12
0.10

(g ~ )nc

1.0
1.15
1.0

TABLE II. NN asymmetries (p 10 ) at 14.4 MeV bro-
ken into electric and magnetic contributions of the p, con-
tributions of the co, and contributions of the m.

model results, we also quote a value for Azz using
the singlet potential of the Reid soft core model. Fi-
nally, we include results for a separable potential
calculation in which Vg~c, Vf~c, and Vp~c are reg-
ularized by means of an exp( Ar)i(4mr—) subtrac-.
tion with a mass A of 950 MeV. This value was
chosen to yield agreement with more complete cal-
culations of the asymmetries.

We wish to call the following points to the atten-
tion of the reader. For Az&, where only the singlet
NN force acts, all models give essentially the same
result, except for the separable model. It makes lit-
tle difference whether the short-range repulsion
comes from a true hard core as in the case of the HJ
potential or from a relatively soft core as in the case
of the MT I potential. On the other hand, the non-
regularized separable potential result is clearly a fac-
tor of 2—2.5 too large. For A„z the p-co contribution
depends crucially upon the nature of the hadronic
NN model, whether a tensor component is included
as well as the type of short-range repulsion used.
The HJ result is a factor of 2 smaller than the BG
result, which indicates the sensitivity of the asym-
metry to the exact form of the short-range repulsion.
The MT III result with soft repulsion but no tensor

force is almost two times larger than the BG result,
where there is short-range repulsion and a tensor
force. Again, the separable potential model (without
short-range repulsion) gives an asymmetry about a
factor of 2 larger than the more realistic MT III po-
tential model. If one regularizes the PNC potentials
as described above and recalculates the asymmetries
using the separable potential model for the strong
interaction, the A&&+ and A„&+ are reduced to ap-
proximately the correct size. Apparently, the tensor
force plays an important role in the np triplet state,
as one can see by comparing results for A„z in the
MT and BG models. One can reduce the value of

in the separable potential model to a very
reasonable one by means of the same regularization
procedure using the same cutoff mass of 950 MeV.
Such a prescription may be considered doubtful if
one believes that the smaller values obtained for the
BG and HJ strong interaction models arise from the
tensor nature of the triplet force in those models.
Based upon the considerations of the NN asym-
metries discussed here, one might expect estimates
of the asymmetry in Nd scattering in a simple separ-
able potential (without regularization) to be roughly
a factor of 2 larger than those resulting from a cal-
culation employing a more realistic potential.

We close this section by noting that the experi-
mental value for the asymmetry Arz at 15 MeV is
—(1.7+0.8) X 10 . The theoretical asymmetries for
all of the models in Table I must be considered to be
in reasonable agreement with this value except for
the simple separable potential calculation, where the
weak potential is not regularized. We also include
in Fig. 2 a comparison of the predicted energy
dependence of Az~ for various models; the data are
those reported for 15 MeV (Ref. 9) and 45 MeV
(Ref. 10) pp scattering. The HJ results are from
Ref. 20 (after changing the sign of fz) and include
all partial waves in the parity conserving denomina-
tor (cr++cr ) of Eq. (5); note that the denominator
in Ref. 20 is —,(a++0 ). All other results are s
wave only, which accounts for the lack of curvature.
Examination of this figure shows that, except for
the simple separable potential model, there is essen-
tial agreement among the results of the various
strong NN models at 14.4 MeV which remains as
one goes to higher energies.

RSC MT I-III Sep Sep (Reg)

—0.91

—0.38

—0.34

—0.12
0.08

—1.03

—0.46

—0.71

—0.07
0.10

—0.80
—1.37
—1.13
—0.09
—1.15
—0.23

0.115

—0.24
—0.41
—0.35
—0.02
—0.32
—0.07

0.10

IV. THREE-BODY ASYMMETRY
FORMALISM

We next consider the asymmetry in the total cross
section for the scattering of longitudinally polarized
nucleons (omitting Coulomb forces) but from a deu-
terium target. As in the case of two-body scattering,
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Given a Hamiltonian H =Ho+ V&+ V2+ V3,
where V~ is the two-body potential between particles
2 and 3, etc. , the scattering matrix Up (z) is
described by the equations

Up (z)=(1—5p )V~+ Wp (z), (10a)

X

CL

—6
0 10 50

E)ab (MeV)

40 50

Wp (z)= g V& —g V&G(z)Vs, (10b)
yea y/a
y~~ y~e

where G(z) =(H —z) '. The scattering amplitude
relating the incoming state in which particle a is
free (and the remaining two are bound} to the outgo-
ing state in which particle P is free (and the remain-
ing two are bound) is given by

p&pf I
T(z)

I
p' & =p&py

I
U~(z)

I

p' &

Since the total cross section depends only upon the
imaginary part of the matrix element, we can re-
place the operator Up (z) by Wp (z) and obtain

8m
o(mi, m2)=-

a

FIG. 2. Energy dependence of App for various NN
strong potential models; data are from Refs. 9 and 10.

X imp( km im2
I Wpg(z) I

km i m2 )
(12)

we relate the total cross sections required in the ex-
pression for the asymmetry to the imaginary part of
the forward elastic scattering amplitude by means of
the optical theorem.

Let us define o(m i,m2) as the total cross section
for particle 1 (nucleon), with spin projection m i, to
be scattered from particle 2 (the deuteron), with spin
projection m 2. Both spin projections are with
respect to the incident beam direction. The experi-
mentally measured asymmetry A~ is given by

1 1g [cr(mi ——+ —,,m2}—o(mi ————,, m2)]
m2A=

1 1y [o(mi ——+ —,,m2)+cr(mi ————,,m2)]
m2

The spin-dependent, total cross section is given in
terms of the forward scattering amplitude by

8~
(ml m2) lm(k ml m21T

I

k mi m2~
k

The scattering amplitude is expressed in terms of the
familiar channel transition amplitudes. For the con-
venience of the reader we summarize the relevant
three-body formulae.

The operator Wp, (z) satisfies the Faddeev equations

Wp (z)= g T& QT&GO(—z)W&~(z), (13)
y~P y~P
yea

where Go(z)=(HO —z) '. The input for the Fad-
deev equations is the two-body t matrix Ty. This Ty
is the solution of the two-body Lippmann-
Schwinger equation driven by Vr

Ty Vy VyGp Ty

At this point we have all of the ingredients neces-
sary to calculate exactly the asymmetry A~ for any
given two-body interaction composed of a parity
conserving strong potential and a parity nonconserv-
ing weak potential

S WVr=Vr+Vr

Of course, the antisymmetrization procedure (be-
cause of the identical particle nature of the projectile
and target constituents) reduces the number of
relevant (distinct) amplitudes. Though an exact cal-
culation could be done given sufficient computer
size and time, the weak strength of the PNC V&
compared to the strong V makes it natural to treat

W y
Vy as a perturbation. In theory, three-nucleon cal-
culations with only a strong two-body interaction
have been carried out, and the resulting scattering
wave functions are available. These can serve as the
unperturbed input for a perturbation calculation.
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Recall that for the case of two-body scattering
where V=V +V and T =V —V GpT, the ex-
act solution of

nd T

1s

T= V—VGpT (16}
T

FXÃHXÃÃÃXYA) nd W GT nd

T=Ts+(1 TGo)—V (1 GoT—) . (17)

When expanded to first order in V, Eq. (17) be-
comes

nd W GT GW nd

T=- T + (1 TGo—) V (1 Go Ts—), (18)
(0)

which we will write as

T=TS+ Tw

For the three-body perturbation theory we follow
Sloan. Let Wp, be the solution of Eq. (13) for
Tz T&. Th——en for Tz Tz+ T——&, the exact solution
of Eq. (13) satisfies the following equation:

Wp ——W~+ g [1—5'+ WprGo]
y

X Tr [1—5r~+Go Wr~] . (20)

(XYY/i
WXÃHWÃA)

(b)

nd W nd

FIG 3 (a) Diagrammatic representation of three types
of scattering terms contributing to the Nd PNC com-
ponent of the total cross section. (b) Diagrammatic repre-
sentation of the "deuteron distortion" contribution to the
Nd PNC component of the total cross section.

X Tr [1—5r~+Go W&z], (21)

which we define to be

8'p =—8'p +8'p, . (22)

Explicitly, one has

Wp = g Tr + g Tr GoWra+ g WprGoTr
y+P y+P y+a
yea

+ g WprGoTr Go Wr~, (23)

To first order in the weak interaction, we can write
this equation as

Wp =Wp + g[1—5pr+WprGo]

free nucleon and a normal parity deuteron, we
neglect the contribution of the odd parity admix-
tures of the deuteron. One must therefore add these
components to the wave function illustrated in Fig.
3(b}. We refer to these contributions to the asym-
metry below as the "deuteron distortion effect."

The form of the matrix elements (M ) and
(M ) used to determine the total cross section

Sa
cr(m t, m2) =-

k

Xim( k, m~, m2 ~M +M
~
k, m~, m2)

(26)

but for future reference we introduce the shorthand
notation

prw Tw+ Twoprs+ prsGTw+ grsGTwa~s

(24)

then reads

(M ) = (Nd
i

W
i
Nd ),

(M )= (Nd
i

W iNd)+(Nd'i W iNd)

+ (Nd
i

W
i
Nd') .

(27)

(28)

and

(25)

Typical diagrams contributing to Eq. (24) are shown
in Fig. 3(a).

If we now take Wp of Eq. (22) and evaluate its
matrix element (nd

~ Wp, I
nd ) between states of a

Here d labels the normal even-parity deuteron and
d' the additional odd-parity part of the deuteron.
We obtain the wave function of the odd parity
deuteron in a standard way from Eq. (18) for the
two-body t matrix.

The major part of the calculational effort is the
generation of (Nd

~

W~
~

Nd ) from Eq. (23). Al-
though the initial and final states are two-body
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nucleon-deuteron states, it is practical to choose as
intermediate states explicit three-nucleon states in
the

~ j&jz3J& representation. The reason is that we
have to evaluate two-body matrix elements of the
weak interaction which depend upon

~
123s23j23 &.

We generate the necessary unperturbed ampli-
tudes with a code written by Larson. In that code
the three-nucleon scattering problem is solved for an
s-wave, spin-dependent separable potential, although
there exists the possibility of including p-wave in-
teractions. Because of time limitations we have re-
stricted our considerations to wave functions gen-
erated by the s-wave strong interaction. With these
wave functions describing the matrix elements of
W, we calculate the matrix elements of W using
Eq. (24), being careful to take into account the prop-
er antisymmetry and recoupling requirements. The
singularities encountered in the integrations are
treated with standard procedures of regularization
and subtraction; see Ref. 27. The same matrix ele-
ments of W are used to determine the effect of the
deuteron odd-parity admixture given by
&Nd'

I
W'I Nd &+ &Nd

I
W'I Nd'&

V. NUMERICAL RESULTS

A ' = —1.52X10 (29)

and in the neutral current model of

A« =—0.05 X 10-' . (30)

The asymmetry for polarized protons (in the ab-
sence of Coulomb effects) scattered from deuterons
follows immediately by inverting the sign of the m

exchange contribution and is

A "=—1.84X10-',

and in the neutral current model is

(31)

(28)]: D is the component due to the deuteron odd
parity admixture and the remaining &nd

~

W
~

nd &

is decomposed according to Eq. (24) into T,
TGW+ WGT, and WGTGW. It is clear that p and
co exchanges provide the dominant contribution to
the asymmetry in our version of the Cabibbo model.
However, if there is an order of magnitude enhance-
ment of VpNc due to neutral currents, then the m. ex-
change contribution becomes comparable to that of
VpNc. We find a total asymmetry of longitudinally
polarized neutrons from deuterons in our applica-
tion of the Cabibbo model of

A. nd and pd scattering at 14.4 MeV A& ———3.31X10-' . (32)

Using the separable potential representation of the
EX strong interaction and the PNC model discussed
in Sec. II, we have studied A« in detail at 14.4
MeV. In Table III we have broken A« into corn-
ponents: the electric contribution of p exchange, the
magnetic contribution of p exchange (that propor-
tional to pq), the contribution of co exchange (recall
that we assume the magnetic coupling to be zero),
and the contribution of ~ exchange both with and
without an assumed enhancement of the Cabibbo (or
charged current) coupling by a factor of 10. We
have made a further subdivision of &M & [see Eq.

Total —0.64 —0.22 —0.82
D 0.002 0.027 0.001
T 0.018 1.35 0.160

TGW+ WGT 0.158 0.115 0.205
WGTG W —0.822 —1.71 —1.19

0.16 1.63
0.034

—0.013
0.002
0.137

TABLE III. Neutron-deuteron asymmetries calculated
at 14.4 MeV incident nucleon energy in units of 10, in-

cluding the decomposition into contributions from p, co,

and m. exchange according to Eq. (24) and the contribution
(D) from the odd parity admixtures of the deuteron.

OIIlpOnent gospel
g~pmag g~u ~g~ ~Cab ~g~ )nc

These estimates are to be compared with the report-
ed experimental value for the scattering of protons
by deuterons" 4

A~ =(—0.3S+0.8S)X 10 (33)

We emphasize that the theoretical estimates above
must be considered to have at least a factor of 2 un-
certainty due to the absence of short-range repulsion
in our separable potential representation of the
strong NN force. However, the magnitude of A~
does not seem to be in serious disagreement with the
present experimental value for the pd asymmetry.

As mentioned above, the various asymmetry com-
ponents in Table III have been further broken down
into their Born (T), linear in GW (TGW+ WGT),
and quadratic in GW (WGTGW) contributions. Ex-
cept for Tz,s, the Born contribution is generally
small compared to the total asymmetry contribution
for a specific meson exchange. This feature is ex-
pected, since the off-shell scattering due to the pari-
ty conserving strong interaction is important. It is
perhaps surprising that the quadratic (WGTGW)
contributions, which dominate, have a sign opposite
that of the Born and linear terms. The size of the
quadratic contribution emphasizes the importance
of the off-she11 Jd scattering in A&d. The cancella-
tion that occurs for each of the meson exchanges in-
dicates that any theoretical estimate of Azd is sensi-
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TABLE IV. Numerical values of individual transitions contributing to A„q as a function of
the L of the strong amplitude W for the linear (TGW+ WGT ) terms.

g~p
p~
d+ f
f~g

—6.05 x 10-'
—9.73 x 10-"

6.00X 10-"
—1.11x1O-"

gpmag
Nd

—4.69x 10-'
—7.46x 10-"

1.21 X 10-"
—1,74X 10-"

—1.23 x 10-'
3.38x 10-"
4.52 X 10-"

—4.07x 10

(g ~ )cab

—1.23 x 10
—1.96X 10
—9.88xlo "
—1.66 X 10

g~p
p~
d~f
f~g
g~h

g~p
p~
d~f
f~g
g~h

2.24X 10-'
3.57 X 10
1.51X10-"

—8.38 X 10-"
—5.08 X 10

—7.57 X 10
5.95 x 10-"
1.20x 10-"
1.60X 10-'4

—1.10X 10

6.11x 10
—2.90X 10

5.41X10-"
1.08 x 10

—1.10X 10

—2.03x 10 '
2.16x 10

—1.19x 10
1.36X 10

—4.24 X 10-"

3.40X 10
—4.76 X 10-"

1.14X 10-"
—2.16X 10
—2.59X 10-"

—1.15x 10-'
2.67X 10-~~

1.74X 10-"
—3 74X10
—1.90X 10-"

1.78x 10-'
—2.02 x 10
—5 52X10

5.34X 10-"
—3.36X 10-"

—1.04X 10
3.14x 10

—6.97X 10
—1.30X 10
—5.16X 10

tive to details of the calculation. It is clear that the
small value of A„q in Eq. (3) must be assumed to
have a large uncertainty associated with it.

The effect of deuteron distortion through VpNc
upon Azz (i.e., the transition from an odd parity
component of the deuteron to one of normal parity
due to the interaction with the projectile) is ap-
parently small in our model. Although the pion ex-
change distortion contribution D to the Nd asym-
metry is similar in magnitude to the T,
TS'G+ 8"GT, and 8'GTGS' terms, that is not the
case for deuteron distortion effects stemming from
the exchange of the heavier vector mesons. The
reason is an almost complete cancellation between
the contributions of the I. =0 and 1 neutron-

deuteron scattering wave functions.
Let us now turn to the question of convergence of

the calculation with respect to partial waves. Be-
cause of the NN central potential assumption, the
various amplitudes composing the Nd asymmetry
separate into spin doublet and spin quartet contribu-
tions for each total orbital angular momentum L.
In the numbers quoted above, we have summed
L =0, 1,2, 3. Computations involving L =2,3 were
very time consuming; for the most part they showed
that results obtained by summing only L =0, 1 were
good to better than 10%, and that the asymmetry
calculations do converge rapidly with respect to the
total L at this energy. An exception is the result for
D~ and D„where L =0 and 1 practically cancel

TABLE V. Numerical values of individual transitions contributing to A~ at 14.4 MeV as a
function of the L —L' of the strong amplitudes W entering the quadratic WGTGR' terms.
The (L =1)—(L'=0) matrix elements are the same as the (L =0)—(L'=1) matrix elements,
etc.

L —L' gpmag
nd (g ~ )cab

0—1

1—2

g~p
p~
d~f
f~g

g~p
p~
d~f
f~g
g~h

—4.15x 10-'
6.76x 10-"
4.27 X 10
1.34X 10

2.14x 10-"
1.72 X 10
2.76x 10. "
6.54X 10
1.44x 10-"

—8.49x lo-'
—3.02 X 10

7.19X 10-"
—6.16X 1O-"

—1.14X 1O-"
—2.34x 10-"
—1.87 x 10-"
—4.22 X 10

1.67 X 10

—6.00X 10-'
2.70X 10
4.15X 10
3.54X10 "

2.20X 10
1.26X 10
8.32 X 10
6.43 x 10-"
2.40X 10

6.35x 10
3.30X 10

—2.25x 1O-"
1 18X 10

4.90x 10-"
1.07x 10-"

—2.20X 10
3.21 x 10

—8.57X 1O-"
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each other. We expect here that summing up to
L =3 is sufficient for Dz and D„. They remain
small and have very little effect on the total asym-
rnetry. The L =2 contribution is also important in
D . We see, therefore, an overall slower conver-
gence in the distortion terms. For the pion exchange
terms in general, the convergence is somewhat
slower. This is to be anticipated since the deuteron
has a large radius and the m-exchange potential has
a long range. In all cases, summing to L =3 ap-
pears adequate.

In Tables IV and V we present values for the larg-
est transitions in the TGS'+8'GT and 8'GTGR'
components of A„q for a given L or L L' lab—eling
the strong amplitude(s) W involved. It is clear fro'm

Table IV that the largest contributions to the part of
A~ linear in F are the two-body weak sp transi-
tions. (In the Born-type terms, there are only s~p
transition contributions. } However, there are sizable

pd and df transitions, especially in the L =1 and 2
amplitudes for n. exchange. The largest L =0 and 1

p and co transitions outside of the s~p family are re-
duced in strength by a factor of about 100. One can
see from Table V that the quadratic WGTGW nex-.
change term is not dominated by the s~p transi-
tions as is the case for the terms linear in W. How-
ever, the s~p transitions are the most important
ones for the heavier meson exchanges involving
L L' of 0——1; for 1—2 transitions the s~p transi-
tions are of comparable magnitude but are both con-

siderably smaller than the dominant 0—1 s~p tran-
sitions. Careful study of the numerical results
shown in these two tables leads one to conclude that
the convergence of Az& is rapid both with respect to
total L and with respect to the two-body, weak tran-
sitions.

We have remarked above that we believe our Az~
results may be large due to the lack of repulsion in
our separable hadronic NN potentials. This con-
clusion was inferred from the Azz and A„z results
quoted in Table I. However, because of the
numerous cancellations apparent in the decomposi-
tion of A~ in Tables III and IV, it is evident that
such intuitive statements may not be valid. For this
reason we have calculated A~ with the regularized

VpNC in an effort to simulate the effects of short
range repulsion in the PNC transitions. We em-

phasize that such a procedure is not likely to be
valid for terms quadratic in W. Because the
8'GTGS' terms dominate our theoretical estimates,
the following should not be taken as a complete elu-

cidation of the effect of short range repulsion.
However, it should be clear from this exercise that
the above results cannot be simply scaled, since the
simulated repulsive effects do differ from term to
term.

In Table VI we have collected the results using
simulated repulsion which should be compared with
those in Table IV for the TGW+ 8'GT contribution
to A~. The transitions involving p and co exchanges

TABLE VI. Numerical values of individual transitions contributing to A~ as a function of
the L value of the strong amplitude W for the linear terms (TGW+ WGT). These results
computed using the regularized PNC weak potentials are to be compared with the numbers of
Table IV.

AP mag
nd

g~p
p~
d~f
f~g

—1.72 X 10
—1.11X 10

5.78X10 "
—6.65 x 10-'4

—1.35 X10-'
—4.20x 10-"

8.22 X 10
—1.77x10 "

—3.97x 10-'
5.46 X 10
1.70X 10

—2.64 X 10-"

—1.05 x 10-'
—1.96x 10
—9.88 x 10-"
—1.66 X 10

g~p
p~
d~f
f~g
g~h

6.49x 10-'
1 92X10
1.07 X 10

—1.52 X 10
—2.65 X 10

1.70x 10-'
—1.55 X 10

6.54 X 10
—1.13x 10
—402X10

1.02 X 10
1.24X10 "
6.54X 10-"

—1.09x 10-"
—2.19x 10-"

1.54X 10
—1.98x10-"
—5.52 x 10-"
-5.30X 10-"
—3.36X 10

g~p
p~
d~f
f~g
g~h

—2.30X 10
3.24X 10
7.68 X 10
6.32 x 10

—1.35 x 10

—6.00X 10
1.20X 10

—1.14x 10-"
3,00X10 '3

—4.55 x 10

—3.58 X10-"
—1.44x 10-"

1.20X 10
—4.92 X 10
—2.21 x 10

—1.OOx10-"
3.11x10-"

—6.97X 10
—1.30X 10-"
—5.16X 10
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TABLE VII. Numerical values of individual transitions contributing to A~ as a function of
L —L' of the strong amplitudes W in the quadratic term WGTGW. These results computed
using the regularized PNC weak potentials are to be compared with the numbers of Table V.

L —L' gpmag A~ (g ~ )Cab

0—1 g~p
p~
d~f
f~g

—1.35 X 10-'
9.03 X 10
9.62X10 "
1.25 X ]0—'2

—2.54X10 '
6.11x10-"

—3.87 X 10
1.13X 10

—1.94X 10-'
4.08x 10-"
6.92 X 10
3.92X 10-"

5.83 X 10-'
3.75 X 10-"

—2.20X 10
1.18X 10-»

1—2 g~p
p~
d~f
f~g
g~Q

3.28 X10-"
5.95 X10-"
8.32 X 10-'4
2.95 X 10
9.95x 10-'4

—5.62 X 10"
—4.78 X 10-"
—3.79X 10-"
—5.95X10 '4

4.72 X 10-'4

2.41 X 10-"
3.0 X10-"
4.15X 10-"
2.85 X 10-"
1.49 X 10

4.86X 10-"
1.02X 10-"

—2.19X10 '1

3.21X10 "
—8.49 X 10

calculated with the regularized VpNc are for the
most part approximately a factor of 2 smaller, as
was true in the case of App and A„p, and as one

might expect. This is not always so, as one can see
by comparing df and fg transitions for p magnetic.
For long range ~ exchange only the sp transitions
are noticeably reduced in magnitude when the regu-
larized form of VpNc is used. This is also in accord
with our NN experience and intuition. In Table VII
we quote values for the transitions composing
8'GTGW, which are to be compared with those in
Table V for the angular momenta L L' equal to—
0—1 and 1—2. The dominant p and co s~p transi-
tions essentially scale; the smaller, higher order tran-
sitions do not. The m. exchange s~p and p~d tran-
sitions are slightly reduced in magnitude. A similar
comparison can be made for the decomposition of
A~ in Table III and is shown in Table VIII. It is
quite clear that the effect of simulated repulsion is

not primarily a factor of 2 scaling. In particular,
one should compare the p-electric terms in 8'GTGW
and TGR'+ 8'GT or the m terms in 8'GTGS'. The
total asymmetries for the case with simulated repul-
sion are also given in Table VIII. In spite of the
disparate modifications of the various transitions
contributing to the values of A~, the reductions in
the final results do not disagree with the intuitive re-

sult based upon the NN PNC calculations with and
without repulsion. The value of A~ ———0.44&& 10
is about a factor of 4 smaller than the results dis-

cussed above with no simulated short-range repul-
sion; the corresponding value of A '
= —0.74)&10 is about a factor of 2 smaller than—7 '

the nonregularized separable potential result and is
in agreement with the experimental asymmetry, Eq.
(33}. However, we caution, once more, against as-
suming that short-range repulsion merely scales

Apfgf e

B. Energy dependence of A„q and A~

Components

Total
D
T

TGW+ WGT
WGTGW

—0.224
—0.001
—0.004

0.046
—0.266

gpmag
Nd

—0.094
0.007
0.380
0.027

—0.508

—0.276
0.0003
0.053
0.058

—0.387

(g & )Cab

0.149
0.030

—0.011
0.003
0.127

TABLE VIII. Neutron-deuteron asymmetries calculat-
ed at 14.4 MeV incident nucleon energy in units of 10 7,

including the decomposition into contributions from p, ~,
and m. exchange according to Eq. (24) and the contribution

(D) from the odd parity admixtures of the deuteron.
These results are computed using the regularized PNC
weak potential and should be compared with those of
Table III.

The energy dependence of the theoretical estimate
of App is such that it appears that the optimal energy
for making such a measurement is around 50 MeV,
where A&z is a maximum. With this in mind we
have asked about the energy dependence of A~ and

A~. In Table IX we quote values for 14.4, 25, and
40 MEV incident neutrons. We point out that we
retain all of the three-body partial waves necessary
to reproduce the experimental total cross section.
The energy dependence of the asymmetry A~ as
well as A~ is strong, and very different from that
for App. This is again a result of the many cancella-
tions among the various components, since there is
markedly different energy dependence in the indivi-

dual terms comprising the asymmetry. The qua-
dratic terms and the Born term dominate the asym-
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TABLE IX. Energy dependence of the nd and pd
asymmetry in units of 10 . The various contributions
are decomposed according to heavy meson or pion ex-

change. The energies are the laboratory energies of the
incident neutron or proton.

E (MeV) 14.4 25 40

D
D~
T1P

Tpg)

(TGW+ WGT)
(TGW+ WGT)~

( WGTGW)
( WGTGW)~

g Cab

g Cab
pd

0.034
0.030

—0.013
1.53
0.002
0.478
0.137

—3.72
—1.52
—1.84

0.037
0.044

—0.021
2.64
0.007
0.592
0.163

—3.92
—0.47
—0.84

0.033
—0.074
—0.008

3.43
0.004
0.547
0.126

—2.37
1.68
1.39

VI. MODEL DEPENDECE

There is another Faddeev calculation of the parity
nonconservation in Nd scattering of which we are
aware, that of Desplanques, Benayoun, and Gig-
noux. ' In that paper the strong interaction poten-
tial was local; both the Malfliet-Tjon s-wave poten-
tial model and the Reid-soft-core potential model,
truncated to the 'So and S&- Di partial waves, were
used. In order to compare their results with ours,
we have used exactly the same weak interaction as
was employed in Ref. 17 to generate the results for
A~ quoted in their Table II. (Note that their weak

couplinq constant f is a factor of 10 larger than
our f ' and their fe is the negative of the one
which we use here but corresponds to that of previ-
ous work. '

) Such a comparison of the results ob-
tained in the two independent investigations is of in-
terest in understanding the model dependence of the
calculation of parity nonconservation in this simple
nuclear system, where exact calculations are possi-
ble.

metry; whereas the magnitude of the quadratic
terms decreases with energy, the Born term increases
in strength with energy.

This study of the energy dependence of A„d was
carried out with the separable s-wave potential
model, which has no strong short-range repulsion.
Because of this approximation, the magnitudes of
A~ are likely to be too large. However, we do be-
lieve that the qualitative features of the energy
dependence are realistic. The nd and pd asym-
metries change sign as the projectile energy ranges
from 14 to 40 MeV, while the absolute values at
both energies are roughly of equal magnitude.

TABLE X. Comparison of contributions to A~ (g 10 )

near 14 MeV arising from p, co, and m (our neutral current
assumption) exchange for the four models described in

Sec. VI of the text.

MT Brown OM Sep (Reg) Sep

0.85
0.13

—0.90

0.61
0.11

—1.13

0.32
0.28

—1.49

0.86
0.82

—1.63

Total 0.08 —0.41 —0.89 0.05

In Table X results for Apd are summarized for
four different model calculations at an energy of ap-
proximately 14 MeV. They are separated into p, co,

and m contributions. The column labeled MT con-
tains the results of Ref. 17 for the strong interaction
model of Malfliet and Tjon. The column labeled
Brown OM contains the results quoted in Ref. 17
for an optical model approximation to pd scattering
combined with the weak interaction defined by
Brown et al. The column labeled Sep (Reg) con-
tains the results from our separable potential calcu-
lation where we have utilized the regularized PNC
weak potential. The last column labeled Sep con-
tains the results of the separable potential calcula-
tion with no regularization of the weak interaction.

The MT results of Desplanques et al. differ in de-
tail with our Sep and Sep (Reg} results, although
they agree in sign and order of magnitude. For the

p and co contributions, there is no reason to expect
any close agreement because of the many cancella-
tions which occur among the various terms. The
equality of the p and co terms in the separable
models is the result of a coincidental cancellation
among the T, TGW, and WGTGW terms, terms
which differ substantially in their separate p and co

contributions. Furthermore, it is clear that the ef-
fect of repulsion on the short-range p and to com-
ponents is large, and one should anticipate that
repulsion in the MT and Sep (Reg) models would
lead to different effects. One could argue that the
model dependence for the longer range m contribu-
tion should be less; i.e., the pion contribution to par-
ity nonconservation in the scattering problem should
be less sensitive to the short range properties of the
strong interaction. However, one should also be
cautious in this case. In the Sep (Reg} and Sep
models, where we have a decomposition of the ~
contribution to A&d, the WGTGW term dominates.
Thus, the effect of off-shell (and on-shell) rescatter-
ing is large, and the dependence of the m contribu-
tion upon the short range behavior of the strong in-
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teraction is significant. We view the results in Table
X as an indication that extracting useful informa-
tion concerning parity nonconservation in the
nucleon-nucleon interaction from experiments on
even simple nuclear systems (A &2) will require a
sophisticated treatment of all aspects of the
nucleon-nucleon force and the non-negligible multi-
ple scattering effects.

VII. SUMMARY AND CONCLUSIONS

The study of parity nonconservation in Nd
scattering offers a real possibility of obtaining infor-
mation about the weak np amplitude. It is unfor-
tunately the case that multiple scattering effects,
such as those embodied in the quadratic ( WGTGW)
terms, tend to dominate the process, making simple
approximate analysis schemes invalid. The cancella-
tions that occur among the separate terms corn-
prising the quadratic ( WGTGW) and linear
(WGT+ TGW) contributions to Atvq are quite com-
plex. Controlled approximations to an exact formal-
ism appear to be required. At 14 MeV incident en-

ergy, the lowest partial wave contributions dom-
inate, as one would expect. However, the many can-
cellations between various terms in the calculation
imply that higher partial waves should be retained
in order to make definitive statements. The energy
dependence of Att~ differs significantly from that
measured for Az„. For Atv~ we obtain a sign change

as the incident energy is increased from 14 to 40
MeV. Although our model is not suffficiently so-
phisticated to permit one to make quantitative state-
ments concerning PNC effects in the Nd system,
comparison of our results at 14 MeV with those for
local potential models of the strong interaction in
that energy range indicates that the qualitative
features of our calculation are reasonable. Thus, the
strong energy dependence which we find for Atv& is
an interesting prediction. However, in conclusion it
seems clear from this work that the extraction of
useful information concerning the properties of the
weak interaction from the study of PNC effects in

the scattering of protons from few-nucleon ( H, He,
and "He) systems will require a sophisiticated treat-

ment of all aspects of the scattering problem in or-

der to obtain quantitative results; simple approxima-
tions are not warranted.
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