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The generalized separable expansion method is used to calculate the fully off-energy-shell

t matrices from the 'So and 'Sl-'Dl Reid soft-core potentials. It is proved that the bound

state is reproduced rigorously by the rank-one approximation. For positive energies, on-

shell and half on- (off-) shell scattering amplitudes are reproduced exactly by the generalized

separable expansion rank-one and/or, at least, rank-two approximations. The off-shell parts
of the t matrices are determined by N fitting parameters which are chosen to minimize the
Hilbert-Schmidt norm of the nonseparable term in the rank-N approximation. We obtained

a very good off-shell fit for rank-two and rank-three approximations.

'NUCLEAR REACTIONS Nucleon-nucleon interactions, new separable

expansion method for the 'So, 'Sl-'Dl states via the Reid soft-core
potentials.

I. INTRODUCTIOW

The Yamaguchi type of separable potential' has
been used widely in three-body problems as a model
of the two-body short range interaction. Since the
potential has a very simple form, one can analytical-
ly obtain the fully off-(energy-)shell two-body t ma-
trix. Improvements in experimental techniques and
in numerical analysis for the three-body problem led
to the creation of phenomenological separable poten-
tials which were able to reproduce experimental data
such as phase shifts over a wide energy region.
On the other hand, the history of investigations of
the nuclear force by meson theoretical treatments is
very long and thorough. ' The potentials obtained
by this method, although with some adjustable
parameters, are often termed "realistic poten-
tials. "" ' The use of pure meson theoretical and
realistic potentials via a separable expansion is an in-
teresting problem, particularly as input for the
three-body scattering problem.

The unitary pole expansion (UPE) and the unitary
pole approximation (UPA) were proposed by Harms
et al. to approximate the local potential by a separ-
able one. These methods are quite simple, but
the convergency of the fit of the on-shell t matrix is
very slow, and that of the half-off-shell one is worse
than other new separable expansion methods.

Ernst, Shakin, and Thaler presented a method
which permits the construction of a rank-X separ-

able potential. The resulting t matrix is exact on
and half off (the energy) shell at N selected bound-
state and/or continuum energies. By this method,
Pieper calculated separable potentials of rank one to
five for the nucleon-nucleon S&- D& channel. The
phase shifts of his rank-four and rank-five potentials
are quite close to the experimental phase shifts.
Adhikari and Sloan proposed a more general ap-
proach than the Ernst, Shakin, and Thaler (EST)
method, which contains the EST method as a spe-
cial case, but the Adhikari and Solan (AS) method
allows a much wider choice of basis functions.
The EST method reproduces the phase shifts at cer-
tain selected energies exactly and provides a con-
venient interpolation for other energies. However,
they found that oscillations tend to build in the
neighborhood of the interpolation points as the or-
der of the interpolating function is increased. The
AS method leads to a similar rank as Pieper's poten-
tial for the phase shifts and the mixing parameter of
the S&- D& state.

Recently, McLeod and Ernst examined a tech-
nique of approximating local interactions by separ-
able potentials of simple analytic form. Almost all
the effort in developing the separable potential ap-
proximations mentioned above is concerned with fit-
ting (or getting good convergency for) the exact on-
shell variables such as experimental phase shifts,
mixing parameters, bound state energies, scattering
lengths, effective ranges, (differential) cross sections,
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and so on.
On the other hand, Kowalski and Noyes proposed

an approach which is exact for on- and half-off-
(energy-)shell t matrices for positive energies
for a one term separable approximation, in contrast
to the point-wise EST method or Bateman's
meth od 2s2. 6 33 34 The Kowalski and Noyes (KN)
method is also useful for practical calculations in

the three-body scattering problem. Kloet and Tjon
calculated the elastic neutron-deuteron scattering
with local potentials' by using the KN method for
positive two-body energies. It was pointed out by
Osborn that in the n-p 'So state the KN method
includes an unphysical singularity at the energy
where the phase shift has a zero. In a previous pa-
per, it was found that in the KN method a pinch-

ing singularity appears in the negative energy region.
A new rank-X separable approximation method,

the so-called "generalized separable expansion"
(GSE) method, has been proposed. ' It includes
the KN method as its first approximation. Here, a
t-matrix formalism is constructed which uses all the
properties of the given potential, i.e., not only those
of the rank-X separable potential but also those of
the nonseparable term of the potential. As a result,
our method satisfies explicitly off-(energy-)shell uni-

tarity, either as a rank-N separable approximation of
the t matrix, or when the nonseparable residual term
is included. Therefore, our separable t matrix is
mathematically exact on and half off (or on) the en-

ergy shell for all energies. Our method allows the
analytic continuation to negative energies needed in
the Faddeev equations, ' in contrast to the KN se-

parable approximation, which has a pinching singu-

larity in this region. Furthermore, the unphysical
singularity of the KN method for positive energies

disappears by using a rank-two approximation gen-
erated by our method. Moreover, it is proved that

I

the rank-one approximation exactly reproduces the
bound-state pole. Also the unitarity and analyticity
of the fully off-shell t matrix are investigated in the
complex energy and momentum planes. The prop-
erties of the GSE method are investigated in Sec. II.
In Sec. III, the GSE method is applied to the Reid
soft-core potential. ' Because our method is exact
on shell, our aim is to find a good off-shell fit. Our
results are compared with some off-shell values of
the AS t matrix for the 'Sp state. The fitting
parameters for the 'Sp state and the 'S)- Dl state
are given. In Sec. IV, the properties of the GSE
method are summarized and discussed.

II. THE GENERALIZED
SEPARABLE EXPANSION FORMALISM

+t(N+1)(p pi;z) (la)

with

rt(z) =det[t (k;,kj;z)]

and

rt j(z) = [i —j cofactor of rt (z) ] . (2a)

The partial wave index l is omitted for simplicity.
The nonseparable remainder t' +" satisfies a
Lippmann-Schwinger (LS) type of equation:

A. Theory

The GSE (Refs. 36—41 and 44) of the off-energy-
shell t matrix for the single channel case may be
written as

N g. .(z)
t(p,p';z)= g t(p, kj,z)t(k;,p', z)

. rt(z)

with

(N+ 1)(ppl z)u(N+1)(pp/)+Ju(N+ 1)(ppi~)G(p/~z)t(N+ 1)(plump~ z)dp

(3a)

u "(p,k; )u "(k;,p')u'"+ "(p,p') =u(p, p') — '(, )'

u"'(k;, k;)

and u'"(p, p') = u (p,p').
We want to show another useful feature of the

GSE formalism which has numerical advantages.
Instead of Eq. (la), we write

N g, (z)
t(p,p';z) = g t(u(p, k;z)X(k;,p';z)

8(z)

where the form factors lp(p, kj,z) and g(k;,p', z)
satisfy the nonsingular integral equations

lp(p, kj,z) =u(p, kz)

+ J d ii (N+1)(p p»)

X Gp(p", z)y(p", kj,'z)

+t(N+ )(p p z) (lb) and
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X(k;,p';z) =v(ki, p')

+ f dp "X(k;,p";z)

X Gp(p";z}v' +"(p",p') . (3c)

The denominator function 8(z) is a determinant of a
matrix which consists of N XN propagators
A (k;,kj;z), i.e.,

8(z) =det[A (k;,kj;z)], (1 &ij &N}

with

A(k;, kj,'z) =v(k;, kj ) —f dp "v(k;,p")

(2b)

B. Unitarity

Unitarity for this expansion can be demonstrated
as follows. When we discuss the unitarity relation

I

X Gp(p";z)y(p", k, ;z)
(4a)

=v(k;, kj ) —f dp "X(k;,p";z)

X Gp(p;z)v (p",k,. ) .
(4b)

The function 8;J(z) is the i —j cofactor of 8(z).
These detailed derivations are given in Refs. 37 and
40. The multichannel t matrices such as the S)- D)
states are easily treated by including some additional
suffixes (see the Appendix). In the following sec-
tions, the parameters k; and kj will be chosen to
satisfy off-energy-shell unitarity and to obtain the
off-shell fits of the separable t matrix.

of the two-body separable expansion of the t matrix,
we have two kinds of criteria, one for a t matrix ob-
tained from a given separable potential, and the oth-
er one for a t matrix obtained from a given separable
plus nonseparable potential. In the former case, the
t matrix is automatically separable and satisfies the
LS equation, so it satisfies the unitarity relation.
The latter case has a different form as the total t
matrix consists of a separable t matrix and a nonse-
parable term. Our interest is in the latter case, since
we prefer the most general form of the potential.
That is, the potential is

v =v (separable) +v (nonseparable)

or

U =Usep +~non

and the t matrix is

t = t (separable)+ t(nonseparable)

t = tsep + tnon

Since the total t matrix t satisfies the LS equation, t
has to satisfy the unitarity condition

t t t= 2~—it t5(z —Hp)t . — (&)

If one substitutes

t = tsep + tnon

into this equation, one gets

2irit „„5(z—Hp )t„~ 2i—rit „~5(z —Hp )t„,„—
2irit „,„5(z—Hp )t„„2—nit „,„5(z —Hp )t„,„. — (6)

Therefore, one can easily see that the separable t ma-
trix tsnv cannot satisfy the unitarity relation without
the nonseparable term. However, we find that the
following two cases allow us to obtain a unitarity re-
lation for the separable t matrix without the non-
separable term.

(a) t„,„ is a real function and the half on (off)
shell t„~ is analytically exact.

(b) t„,„and v„,„satisfy the LS type of equation:

tnon =vnon+ f vnonGptnon ~ (7)

and the half on (off) shell t„~ is analytically exact.
In case (a) one can see that

tnon tnon

I

and

In case (b), because of Eq. (7), t„,„satisfies

tnon non ~i non5( Hp} non ~

and for exact half off shell t„~, we obtain

5(z —Hp)t„,„=t„,„5(z—Hp)=0 .

(10)

By inserting Eqs. (10}and (11) into Eq. (6), it is also

5(z Hp)t„,„=t„,„5(z——Hp) =0,
because the half off shell t„,„becomes zero for exact
half off shell t„o. Therefore Eq. (6}becomes

t„t„p 2irit„v5(z ———Hp——)t„p . (9)
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found that

tsep
—t sep = —27Tl't

gep 5(z —Ho )tgep (12)

This is the unitarity relation for the separable t ma-
trix tse~. It should be stressed that t„v satisfies the
relation without the nonseparable term. In any se-
parable expansion method, there are only two cases

I

(a) and (b) which will satisfy the off-shell unitarity
relation for t„. Furthermore, we prefer case (b)
rather than case (a), because in case (a) t„,„ is not al-
ways a real function, e.g. , the three-body calculation
by the contour deformation method demands the
complex value of t„,„which is no longer a real func-
tion. In our theory t„,„satisfies a LS type of equa-
tion

t()v+1)( i.
) v(N+1)(p pi)+ dpttv )v+1

( it)G (
tt.z)t iv+)

(
0

(13)

and t„„(p,k;z) is exact for the half-off-shell case,
where k is the on-shell momentum. Therefore, our
separable part of the t matrix satisfies the off-
energy-shell unitarity relation under condition (b}, if
we choose one of the parameters k; (i =1,2, . . . , N)
equal to the on-shell momentum k.

C. Analyticity

While the Kowalski-Noyes separable approxima-
tion also satisfies fully off-energy-shell unitarity, it
is useless in the Faddeev equations for most situa-
tions. This is because the on-energy-shell t matrix,
and hence the half-on-energy-shell t matrix which

I

{ }
c

~ p +p +~
pp' ' 2pp'

(14)

On the other hand, using the rank-one GSE formal-
ism the separable form factor has to fall into step
with the KN theory, and is given by

I

carries this as a factor, usually have a singularity
("left-hand cut" in the language of dispersion
theory). We show, for the case of a Yukawa poten-
tial, that the GSE does not suffer from this difficul-
ty if we choose all. the k; to be positive. The Yu-
kawa potential is given for the partial wave I in
momentum representation by

v (p, k i )u (k i,p")
v' '(p,p")=u(p, p")—

v ki, ki
In other words, all the analytic structure of p(p, k),z} is given by u(ki, ki ), v(p, ki ), v(ki, p"), and u(p p").
Furthermore, in the three-body problem, these two-body structures will be mapped onto the complex three-
body momentum plane. For example, in the case of three identical particles, an important part of the Faddeev
equations is the one particle exchange diagram as in Fig. 1, which is given by the following equation:

(16)

p(p, ki,z}=u(p,k) )+ f dp "v' )(p p")Go(p";z)y(p", k),z) . (15)

The analyticity of the form factor y(p, k i,'z} must be investigated not only in the two-body complex energy and
momentum planes, but also in the three-body complex energy and momentum planes.

The analyticity of y(p, k i,z) is evident from the inhomogeneous term v (p, k i ) and the kernel of Eq. (15). The
kernel has a pole from the Green's function at p"=k =v'2vz (v is the reduced mass) but it must be canceled
with a zero of v' '(p,p") because ki ——k for positive energies. Therefore, the remaining analytic structure of the
form factor comes from v (p, ki ) and u' '(p,p") itself, i.e.,

8(q, q ';E)=X(k i,p;z)Go(q, q ',E)tp(p', k i ',z)

="(ki p)Go(q q ';z)u(p', ki)+u(ki p)Go(q q ~E) f dp v (p p }Go(p 'z' )u(p ki)

+ f dp"u(ki, p")Go(p";z)u' '(p",p)Go(q, q ';E)u(p', k i )

+ f dp" f dp "v(ki,p")Go(p";z)v"'(p",p)Go(q, q ',z) u("(p',p ")Go(p ",z')u(p ",k', )+

(17)

where

p = q '+ q /2, p
' = q + q '/2,

and E is the three-body center of mass energy which

is related to the two-body energy z by

E=z+3q /4m =z'+3q' /4m.

Here, we must investigate the analytic structures of
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g(K, , P; Z) sumes p is a parameter, then the cuts are given in
the complex p' plane by

p'+p +p =2pp't (
I
t

I
&1}. (19}

This equation includes two branch cuts with the
branch points

p'=ip+p and p'= —ip+p . (20)

P(P, K, ;Z )

These cuts are between ip+p and ip —p and be-
tween —ip+p and —ip —p in the p' plane. This is
obtained from Eq. (19):

FIG. 1. The Born term in the three-nucleon scattering
problem. pr+) [p2+ ( 1 r2)p2]1/2 (21)

v (k ~, kt ), v (p, kt ), u (k~,p'), and u (p,p') in Eq. (14).
In general the Legendre function Q~(t) of the second
kind has a branch cut for —1&t &1. For the on-
shell case p =p'=k, it has a branch cut along the
real axis from —p'/4 to —ao in the two-body com-
plex energy plane. Or, there are two cuts, one is
from i@/2 to i ao, and the other is from i)Lt/2—to
—i' in the complex k plane. The general case
p&p'&k&p is rather complicated, but if one as-

Rep'=pt,

Imp'=+[)I +(1 t )p ]'~—

and a set of circles in the (complex) p' plane

(Rep') +(Imp') =p +p,

With a couple of restrictions, we get

(22}

(23)

Therefore, if we give p a real positive value, we have

P Plane

+""B
3

~ der C3

r Bp
I rI rr

I r
\ r

'~ r r
I r r

~ rl rr
~ r

rr P~,+
~ I

r
r rr r I

r s
I \r I 1

Ir r r \
rI '~

'~
1r sI

r p sC' C~ ~C 'C C r ~ ~ ~ ~ ~ ~ ~ ~

3
-(P+P)- .

ReP'

(b)
FIG. 2. (a) Off energy-shell potential cuts of the Yukawa potential U (p,p') are illustrated in the p' plane for the parame-

ter 0(p ~ 00. Solid semicircles B~B~, B2B2, and B3B3 are cuts which correspond to the parameters, e.g., p =p/2, p =p,
and @=3'/2, respectively. C&C&, C2C2, and C3C3 are conjugate cuts to B&B&, B2B2, and B3B3, respectively. Dotted
lined L+L'+ and L L' are the loci of these branch points. The integral for p' is carried out along the real axis from 0 to
ao, as usually done in the two-body integral equation. (b) In the direct extension of the KN theory to the negative energy
region, usual off-shell cuts 8~BI, C~ CI,

BLAB&,

and so on [shown in (a)], are concentrated onto the imaginary axis and these
cuts pinch the integral contour at p'=0, corresponding to the energy where p =k =iP (P & 0).
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Imp'
tan(argp )

l at branch points
=

Rep'

(24)

These are shown in Fig. 2(a). These cuts, which
come from the QI(t) function, are all for the param-
eter 0&p & oo. Another zero such as p=0 does not
produce any singularity in Eq. (14), because

v (p,p') ~ finite .
p or p'~0

Since

p =(q' +q /4+qq'cos8)'~ &0

and

p'=(q +q' /4+qq'cose)' &0,

v (p,p') has no problem on the real axis of the three-
body momentum plane for the variables q and q'.
Similar results hold for the cases v(p, ki), v(kt, p'),
and v (kt, ki ) for the parameter kt ( &0). However,
if one takes

k, =k =(mE —3q' /4)'~

nel of the Faddeev equations except for the poles of
the two-body propagator. Here, the three-body in-
tegral contours are illustrated by s~O~a and
s —+O~b, corresponding to the integral contours of
the real axis and of the contour deformation
methods, respectively. The latter contour crosses a
cut and creeps into the other Riemann sheet, and so
it can never be used in three-body calculations.
Furthermore, one also has cuts for the on-shell po-
tential v(k, k) from ip/2 to t'oo and ip/—2 to

i oo. —Therefore, at a point P which is defined by
p'=0 and k =ip, a very narrow loophole is bunged
with the on-shell potential cut for the other contour
s —+0—+a. In other words, one can never draw the
three-body integral contour without pain; hence, the
direct extension of the KN theory to k &0 is not
valid. The GSE theory, however, chooses k& &0 for
k &0; then the potentials v(p, kt) and v(kt, p') have
no pinching singularity in the three-body momen-
tum space. Also the cuts of v(ki, ki) are safe and
similar to the Fig. 2(a) case if the parameter kt is
chosen greater than zero instead of having P greater
than zero. Therefore, the analytic structure of the
GSE form factors tp(p, kt,'z) and X(k„p';z) is a

p'=ip+k =i(p+P)

and

(25)

by the direct extension of the KN theory, then k be-
comes a pure imaginary value for q'& (4mE/3)'
(or k &0). Thus, putting in Eq. (20) p=k=iP
(P&0), one gets

Lt B,
' B' B,

'

Imk
I

2P fg
I
I
I
I
s

l I
l ~

i ~

XlL

)b

B B„L+

p'= ip+k = —i(p+P) —. (26)

Then one has two cuts on the imaginary axis, one is
from i(p P) to i—(p+P) and the other is from

i (p P) to —i (p+—P—) Theref. ore, when P=p,
cuts from 0 to 2pi and from 0 to 2pi pi—nch the in-

tegral contour p', at p'=0, as illustrated in Fig. 2(b).
This seems to be painless, because p'=0 and k =ip
do not cause any singularities in the potential
v(p, k, ) or v(k„p'). However, these cuts also pinch
the real axis of the three-body momentum plane at

q'= [ , (IE+p )]'—~2

and

q +q' /4+qq'cos8=0

or

q=+q'/2.

This is also made clearer by the structure of v (p', k)
in the k plane (Fig. 3) by choosing p'&0. Figure 3
is very similar to the three-body structure of the ker-

a ~$» o ~ ~ ~,~'~ +0'
Rek

L' c,' C ,,
"Q C, c, c,

FIG. 3. k-plane cuts of u(p', k) and u(k, k) are illus-
trated for the parameter 0&p' & co. The cuts PQ on both
sides (Rek & 0 and Rek & 0) pinch the imaginary axis at P
and g. These cuts are given by the parameter value p'=0
corresponding to Fig. 2(b). In the same way, solid lines
B~ C~ and B ~ C

&
are cuts which are given by p'= p/2; cuts

B2C2 and B2C2 are for p'=p; cuts B3C3 and B3C3 are
for p'=3@/2; and so on. Dashed lines L+L'+ and L L'
are the loci of these branch points. Shadowy lines from
ip/2 to i 00 and from —ip/2 to —i 00 are well-known

branch cuts given by v(k, k). Dotted lines s~O~a and
s~0 —+b correspond to different three-body integral con-
tours.
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favorable one in all energy regions for two- and
three-body problems. Furthermore, in the rank-S
case, the cuts of (p(p, kj;z) and X(k;,p';z) for
kz, k3, . . . , kz are trivial and safe in two- and
three-body calculations.

D. Bound states

We already mentioned that the GSE formalism is
exact for the on- and half-off-(the-energy-)shell r

matrices. ' In this subsection, we want to prove
that the GSE equation is mathematically exact in
the rank-one approximation for the bound-state case
and any positive value of the fitting parameter. It is
well known that the bound states are represented by

I

A (ki, ki,' Es)=—0 . (27)

Substituting this into Eq. (4a), we obtain

the poles of the D function, which is the denomina-
tor of the N/D separation of the t matrix in the ter-
minology of dispersion theory. Therefore, one can
easily imagine that the separation is contained in
8;J(z)/8(z) in the first term of the right-hand side of
Eq. (lb), although 8(z) is in general not identical to
the D function.

In order to simplify our discussion, let us take the
rank-one approximation; then 8(z) is given by
A (k&, k~,'z). In Eq. (4a), the condition that there be
a bound state at z = Es—should be written as

u(k i,p")y(p", k i,'z)
A(kt, kt, z)=u(kt, kt) —

2
dp" p"

2n' o z —p"/m

1 ~
2 u(kt p )t(p",k&, Es) —

1 ~
2

u(k»p")y(p", kt, Ea)—dp".p" „, +, , dp" p"
o E, p 2m Es —p"—/m

q(p", k, ;z) y(p", k (, Es)—
2n.z o z —P "2/m Es+P" /m

(Es+z) —
I~

2
u (k&,p") y(p", k ~',z) tp(p", k &', Es ) p(p—",k&,z—)

2vr2 o (Es+p" /m) z —p" /m Eg+z

(Es+z)F(—k ),k „z,E~ ), (28)

where F(k&,k&,z, E&) is a regular function at z = Es. Thus t—he rank-one approximation for the t matrix is
represented by

q(p, k &,z)X(k ~,p';z)

( E)F(k k E) (29)

where the t matrix diverges at the bound-state energy z = Es for any va—lue of the fitting parameter kt. The
general form A (k;,kz,'z) also fulfills the conditions

A (k;,kj,' Es)=0, —

in analogy to Eq. (27). Finally, we obtain for the general case of Eq. (28)

(Es+z) ~
2 u(k;,p") y(p", kj,z) y(p", kj; Es) y(p", kj;z—)—

2g2 o (Ez+p" /m) z —p" /m Eg+z

(30)

(31)

(E~+z)F(k;,k/;z—,Es ), (32)

where the function F(k;,kj,z,Es) is also regular at
z = Es. Therefore, it —is easily seen that in Eq. (lb)
the separable term diverges as 1/(z+Es), although
every matrix element of 8(z) and 8;~(z) is zero in the
vicinity of the bound state. Furthermore, the pole is
independent of the rank and the number of fitting
parameters. This result will be confirmed numeri-

cally in Sec. III by calculating the deuteron binding
energy for the S~- D~ state.

III. NUMERICAL RESULTS

In this section, we would like to obtain the separ-
able form of the Reid soft-core (RSC) nucleon-
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nucleon t matrix. '2 First of all, we take for the
rank-one parameter ki the on-shell momentum k to
normalize the exact on- and half-off-shell t matrices
as proposed by Kowalski and Noyes for positive en-
ergies. Their procedure, however, is not sufficient
in the whole energy region; the parameters cause un-

physical singularities of the term t' '(p,p';z). For
instance, the 'So state of the nucleon-nucleon in-

I

teraction at 125 MeV corresponds to a zero of the
phase shift. ' ' In order to avoid such a difficul-
ty and also to get a good fit of the off-shell ele-
ments, we propose to determine the second fitting
parameter kz by minimizing the norm X2(ki, kz', z)
over the entire energy region for fixed ki. This
norm is defined in the general rank case by

M

Xtt (ki, k2, . . . , ktt, z)= y f tip f tip'F~tt(p, p';ki, k2, . . . , kz, z)Ftt (p',p;ki, k2, . . . , k~;z)
a,P=1

M

i
[t' it+ '(p p'z)GO(p'z)

i
i'

a, P=1
(33)

[ ft "&~(rank-X)GO
[ f

R 8gp (N)

~ ~

t p(total)Gp
~ ~

a,P=1

100(%) .

(34)

Each element of the numerator and the denominator
functions represents the norm of the rank-N separ-
able t matrix and that of the total t matrix, respec-
tively.

A. 'S0 state fit

In this subsection, we would like to apply our
GSE method to the low energy nucleon-nucleon in-
teraction which is mainly given by the 'So and S~-

Here a and P denote the channels. Using the rank-
N nonseparable term of the t matrix given in Eqs.
(la), (lb), (3a), and also (A10), the integrand is given
by

F p(p p';ki, k2, . . . , ktv,'z) =t' tt+"(p,p';z)GO(p';z),

with

1
&2

Ge(p', z) =
2m z —p' /m +i@

In the same way, we can obtain a set of suitable
parameters k3, k4, . . . , and k~, step by step. For
negative energies, one has to take a positive parame-
ter ki, and also minimize the norm Xi(ki, z) of Eq.
(33), because of the pinching singularity just dis-
cussed above.

On the other hand, we can also define the
Hilbert-Schmidt norm for the total t matrix and the
separable term, similar to Eq. (33). Therefore, the
convergence of the separable approximation is treat-
ed by a ratio which is (by using both norms) defined
by

TABLE I. GSE parameters for the 'So state of the
RSC nucleon-nucleon interaction.

ki

k2

k3
k4

E, &0

k
4320.0a

(k/a)2+216. 0
45.0a
10.0a

30.Sa—

E, &0

0.0
46.25a

(k/10. 0a) +2.5
45.0a
10.0a

a =0.2316(fm '), k =QmZ, =Viz

Di states. Many historical separable fits were re-
viewed in Sec. I. We remind the reader that the on-
and half-off-shell t matrices for positive energies
and the bound-state poles are exact in our method,
which has been shown in Sec. II and Ref. 40.
Therefore, we are only interested in the off-shell fit
of the separable expansion. Consequently, we obtain
a set of fitting parameters which are shown in Table
I, and the results of the convergence are given in
Table II for the 'So state of the RSC potential. The
fits are dramatically improved by the rank-two and
rank-three approximations. Furthermore, the rank-
two approximation can exactly reproduce the phase
shift in the whole energy region defined by the RSC
potential. Here, we also show in Figs. 4(a) and (b)
the real parts of some individual off-shell t matrices
to compare them with the results of AS.

On the other hand, the imaginary part of the t
matrix is mathematically exact in our rank-one ap-
proximation, because the GSE satisfies the unitarity
relation. So we do not need a comparison with the
results of AS which is almost exact in their rank-
three approximation. In Figs. 5(a) and (b), the am-
plitude at zero energy which is given only by a real
function is compared with the corresponding one of
AS. The zero energy case is very important because
the absolute value of the t matrix is largely enhanced
by a virtual 'So bound state, and this enhancement
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TABLE II. The convergence of the Hilbert-Schmidt
norm of the fully off-shell separable t matrix in the RSC
'So state, corresponding to the rank-one approximation
using k~, the rank-two approximation using k~ and k2,
and the rank-three approximation using k&, k2, and k3,
respectively.

R„(3)
(%)

R„p(1)
(%)

R„(2)
(%%u. )

R„p(4)
(%)

g
(MeV)

88.1

82.0
81.2
83.0
85.1

88.3
97.6

102.0
104.5
99.8
87.4
84.0
82.9
82.0
82.3
83.1

86.1

90.1

99.9

500.0
250.0
200.0
150.0
125.0
100.0
50.0
30.0
10.0
0.0

—10.0
—30.0
—50.0

—100.0
—125.0
—150.0
—200.0
—250.0
—500.0

90.7
123.3
157.8
307.6

1648.6
282.8

64.1

64.2
79.4
99.6
72.5
54.0
46.3
38.6
36.9
35.9
35.1

34.9
37.8

107.0
101.4
99.9

100.1
101.0
102.6
107.5
109.5
108.6
100.0
97.5

100.3
101.5
102.5
102.9
103.4
105.2
107.1
108.9

104.9
102.5
100.0
100.0
99.8
99.6
99.2
99.1
99.0

100.0
100.5
102.5
103.0
102.5
102.0
101.5
100.5
100.0
101.5

causes a final state interaction in few-body scatter-
ing problems. In both cases, one can see that our re-
sults are better than each of the other individual t
matrices. Compare also the total averages given in
Table II. For the negative energy case, one has no

fm
04'

N

exa
N=

02. exa

2 3 4 5 6 7 3 4
I

P-0.2

Re t(P, 0.6;z)
z=20 MeV

-0.4 Re t(P, 0.6;z)-
z=20MeV-0.6

(a) Ours ) A-S
-0.8

-10.

FIG. 4. Comparison of the convergence between the
real parts of off-shell t matrices given by Adhikari and
Sloan (b) and ours (a). Dashed lines are rank-one approxi-
mations. Dotted-dashed lines are rank-two approxima-
tions. The solid lines show exact off-shell t matrices (in

fm), where the unit of p is fm ', and the two-body center
of mass energy is z=20 MeV with a fixed momentum
p'=0.6 fm '. The-imaginary part of the t matrices is ex-

actly reproduced by our method.

4-
fm

N -1,t
I

N=3, exact2-

2 3 42 3 4 5 6 7
P P

t(P, 1.4; z)
z=0 MeV

(b) A-S(a) Ours

-5.

FIG. 5. Comparison of the convergency between off-
shell t matrices given by Adhikari and Sloan (b) and our
results (a) for p'=1.4 fm ' and zero energy. Description
of the lines is the same as in Figs. 4(a) and 4(b).

such guide comparable to renormalization in the
rank-one positive energy case. However, we ob-
tained a very good fit to the exact off-shell t matrix
by the rank-two or rank-three approximation using
Eq. (33). We are also interested in some characteris-
tic GSE structures in higher energy regions. Figure
6 illustrates the off-shell t matrix at the critical ener-

[fmj
Re[t (P,P'; z )]4-

z =125 MeV

P =0.016 fm '
\

\
l

2-

///
/'

/
/

\ I
', N=1 /

/I
\ I

I
\ I

/
/

/
/

1 /
/

/~~r

N 3,...-2 -(exact)

-4-

-5-

-6-
P tfm')
I I

7 84 5 6

FIG. 6. Off-shell t matrix (real part) for p'=0.016
fm ' and z =125 MeV. The dashed line shows the rank-

one, the dotted-dashed line the rank-two, and the solid
line the rank-three and higher approximations. The solid
line overlaps with the exact value within drawing accura-
cy.
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gy of 125 MeV mentioned above. Figure 7 shows
the higher energy case. The rank-one curve in Fig. 6
is an example for an unphysical enhancement of the
separable amplitude by an 'So state, where

TABLE III. GSE parameters for the 'S&-'D& state of
the RSC nucleon-nucleon interaction.

E, &0

rt(z) =t (k,k;k'+is) =0

in the whole off-energy-shell momentum region.
But the rank-two and rank-three calculations com-
pletely erase such a singularity automatically. These
properties of the GSE method were already men-
tioned in Ref. 37. Thus we obtain a good conver-
gence.

ki
kp

Set I

k
0.85k+ 10,0a

45.0a

Set II 40.5a+6.0aexp( —k la )

a=0.2316 (fm '), k =QmE, =Vmz

0.55a
28.55a
2.5a

2.5a

Ifm]

02 N=1
2k

&mm m mmmm mmmm

~lgy

I

B. 'S~-'D~ state fit

The Si Di sta-te is one of the most interesting
objects in the nucleon-nucleon interaction, because it
is very rare to find a fit consistent with the experi-
mental results, among them the phase shifts 5( Si )

and 5( Di) and the mixing parameter ei, by using
any separable expansion method.

The GSE method is applied straightforwardly to
the problem and gets exact on- and half-off-shell
values. Thus, we do not repeat them as they are
given by Reid. ' The fitting parameters for the fully
off-shell separable amplitudes are shown in Table
III. The fitting ratios are given in Table IV. For
the individual results of the off-shell t matrices, AS

showed a good fit in their rank-nine approximation
for tss (0.06 fm ', p'; 48 MeV), and in rank-five ap-
proximation for tDD (1.46 fm ', p'; 100 MeV).
However, the GSE reproduces them exactly in its
rank-three approximation and well even in its rank-
two approximation. The unphysical enhancement of
the separable amplitude never appears, because the
elements of the denominator function q(z) in Eq.
(la) do not vanish simultaneously. That means
rt(z)&0 for

tss{k k'z) =0

tsD(k, k;z) = tDs(k, k;z)&0,

TABLE IV. The convergence of the Hilbert-Schmidt
norm of the fully off-shell separable t matrices for the
S~-'D& state, corresponding to the rank-one approxima-

tion using k ~, the rank-two approximation using k ~ and

k2, and the rank-three approximation using k&, k2, and

k3, respectively.

Ec.m.

(MeV)

R„(1)

(%)

R„p(2)

(%) Set I

R„p(3)
(%)

Set II

-1.0

Re [t{p,&' z)]

z = 373.5 MeV
P'=0.016 fm '

I I

6

P(fm )
I

7 8

FIG. 7. Off-shell t matrix (real part) for p'=0.016
fm ' and z=373.5 MeV. The description of the lines is
the same as in Fig. 6.

500.0
250.0
200.0
150.0
125.0
100.0
50.0
30.0
10.0
0.0

—10.0
—30.0
—50.0

—100.0
—125.0
—150.0
—200.0
—250.0
—500.0

87.6
143.2
331.7
110.0
29.8
7.0

11.8
65.1

86.3
99.0
82.0
59.6
48.6
36.3
33.3
31.3
28.6
27.4
25.9

90.9
88.3
86.9
85.0
88.2
83.5
83.6
90.8

105.5
100.0
85.6
79.7
81.1
84.9
86.1

87.1

88.4
89.2
91.0

99.5
101.0
100.1
98.2
97.8
96.0
94.7
97.3

109.1
100.0
102.4
102.1
101.1
100.0
100.1
99.5

101.7
101.2
102.2

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
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and

tDg)(k k'z)&0

for the typical energy z =150 MeV at which 5( S] )

changes sign. Therefore, the rank-one approxima-
tion is mathematically exact for the on- and half-
off-shell amplitudes in all positive energies for
which the RSC potential is used. Furthermore, by

I

increasing the rank such a situation as the unphysi-
cal enhancement becomes very rare, since we will
have a lot of nonvanishing elements in ri(z). Our
parameters are chosen to be free from such a diffi-
culty.

For the negative energy case the deuteron binding
energy is given by the rank-one approximation, in
which

ss(kl &kl i ~B ) rsgj(k] tk] & Fg ) rDs(k] tk] & ~g ) Dgl(k] sk] &

Consequently, it is seen that the rank-one or the
rank-two approximation is mathematically exact for
the on- and half-off-energy-shell t matrices in the
whole energy region for which the RSC potential is
used. Furthermore, the rank-two and the rank-three
approximation can dramatically improve the conver-
gence of the separable expansion in the fully off-
energy-shell region.

Finally, it should be mentioned that the GSE
parameters are chosen as energy-dependent func-
tions. Hence, if the parameters k;(z) coincide, e.g.,
k](z, ) =kz(z, ), a division like 0/0 occurs in the first
and second terms of the right-hand side of Eq. (la).
This is harmless, but k;(z, ) (i )2) should be shifted
by a small amount to k;(z, ) +b, as a numerical trick.

IV. CONCLUSION AND DISCUSSION

From the above discussion, one can say that the
GSE theory can reproduce the off-energy-shell t ma-
trix of a given potential by a very low rank separable
expansion formalism. Furthermore, since our for-
malism has no restriction on the potential, except
for the necessity of obtaining its momentum repre-
sentation, one can automatically use it for a short
ranged local as well as for a nonlocal potential.
Moreover, one should notice that one can also use
the GSE formalism for a separable t matrix which
has already been obtained by another method. In
that case, where the momentum representation of
the potential cannot be obtained, e.g., a potential
with a hard core, the GSE method can be applied in
the rank-one approximation, because the half off-
(on-)the energy shell wave function is given.

Here, we review the outstanding features of the
GSE theory.

(1) The off-shell two-body t matrix of a given po-
tential consists of two parts, a separable term and a
nonseparable residual term, which are related by a
simple algebraic equation.

(2) The form factor which appears in the separ-
able term is obtained by solving a nonsingular LS

I

type of integral equation. The nonseparable residual
term also satisfies a similar nonsingular LS type of
integral equation.

(3) The separable term is mathematically exact on
the energy shell and half off (on) the energy shell.

(4) The lowest rank approximation, except for the
energy where q(z) =0 in Eqs. (la) and (2a), gives the
exact separable on- and half-off- (on-)shell t ma-
trices.

(5) The separable term itself satisfies the off-
energy-shell unitarity relation. The residual term
does not violate the unitarity relation.

(6) The GSE parameters are chosen to be energy-
dependent functions. If the parameters k; coincide,
their values should be shifted by a small amount 5
to k;+b, (i & 2).

(7) If the off-shell momentum coincides with the
parameters, the separable amplitude is mathemati-
cally exact. In the other case, the nonseparable term
should be decreased by increasing the rank. One
finds that N =2 produces good accuracy and N =3
high accuracy for the 'SQ and S]- D] states.

(8) By substituting a given separable amplitude of
rank n into the GSE formalism of Eq. (la), the
rank-one GSE approximation is mathematically ex-
act on and half off the energy shell. The fully off-
shell amplitude can be exactly reproduced by the
same rank as that of the original amplitude. More-
over, the GSE reduces the required rank and conse-
quently rank N ( «n) is sufficient to reproduce the
given amplitude. One can obtain a rank economized
separable amplitude by substituting such a given
amplitude.

(9) The bound state is exactly reproduced by the
rank-one separable term. The binding energy is in-
dependent of the rank and the value of the fitting
parameters.

(10) Those parameters (Tables I and III) are not
available for the potentials and the off-shell t ma-
trices themselves, but they are available for the
kernels with the Green's function which were dis-
cussed in Ref. 37.

Finally, it should be stressed that the method of
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how to obtain parameters depends on the numerical
technique used to solve Eq. (33) for the 'So and S,-

D~ states. However, one can also choose the
parameters by seeking enhancements of the kernels

uG() and u' + "6() as proposed in Ref. 37. These
enhancements depend on the typical physical prop-
erties, such as the singularity of the Green's function
and the poles of the given potential or the residual
potential U' +". Consequently, the two-body GSE
amplitudes can be used analogously to reproduce the
three-body Faddeev equation for the numerical cal-
culation. Furthermore, the method may be applied
to obtain the separable amplitude of the three-body t
matrix in four-body problems, because the GSE is
not restricted to a particular potential, but is gen-
erally applicable to almost all potentials and t ma-
trices which can be represented in momentum space.
Although our form factor is calculated numerically,
the analytic properties are clear, as proved above.

Therefore, the method is useful for obtaining precise
numerical results in few-body calculations.
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APPENDIX: THE SEPARABLE EXPANSION FOR THE MULTICHANNEL CASE

The multichannel GSE formalism is given by

(pay(p, kt ,z)Xy'p(k;', p', z) ()v p ) )
t~tt(p, p';z) =

(,) +t~t) (p,p';z),
A~(k;, k;;z)

(A 1)

where a, P, and y denote the channels (a,g, @=1,2, . . . , M). The form factors satisfy the following integral
equations:

and

M

tp'y(p, k;;z)=v'y(p, k;)+ g f dp "v's+"(pp")Go(p";z)ys'(p", k;;z)
5=1

(A2)

M
X'y't't(k;, p', z) =uvyt't(k;, p')+ g f dp "X'y's(k;,p",z)G0(p";z)vs'tt+ (p",p') .

5=I
(A3)

The denominator function is given by

M
a(~)(k, ,k, ;z)=v~(k, ,k, ) —y. f dp "v ys(k;,p")Gp(p";z)ys'y(p", k;;z)

5=1
M

=u~(k;, k; ) —g f dp "Xys(k;,p";z)Go(p";z)usvy(p", k;) .
5=1

These functions satisfy the recurrence formulae:

(. () (.) ))t (p~s(p, k;;z)As'y(k;, kj;z)
p, kJ;z) =qr~y(p, k~;z) (.)—

A s's(k;, k;;z)

(,.+ ) ) (,.)
))t A 'y's (kj,k;;z)Xs'tI(k;,p';z)

Xyt)+ (kj ,p';z) =Xy'p(kj p', z). (,.)—A s's(k;, k;;z)

(i) . (i)(. , ) (.) A ys(k) i ),k;;z)A sy(kg, kj,z)
A~+ (kt+(, kj;z) =A~(k; ~),kj', z) g(,.)—

A ss(k;, k;;z)

(A4)

(A5)

(A6)

(A7)

(A8)
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(, , ) (,.)
M Ay's(kj, k;;z)As'y(k;, k;+),'z)

A ~+ (kj, k; ~),z) =A ~(kj, k;+),z) g— (,.)A s's(k;, k;;z)
(A9)

The remaining term of Eq. (Al} is the nonseparable amplitude which satisfies an integral equation of the LS
type,

M
()v+))( &.

)
()v+1)( &)+ y f d» ()(&+))(»)G (». )t()v+))(» &.

)
5=1

Here, the boundary conditions are given by

Using Eq. (A10), we obtain

t' tt+"(p, kj,.z) =t' p+"(k;,p';z) = t' p+"(k;,k;z) =0 .

On the other hand, recurrence formulae (A6)—(A9) lead to the following equations:

M

tp y(p, kj;z) =u,y(p, kj)+ g f dp "u,'q+"(p,p")G()(p";z)qsy(p", kj;z),
5=1

M

Xyt)(k;,p';z)=uytt(k;, p')+ g f dp"Xys(k;, p";z)G()(p";z)vsjt+"(p",p'),
5=1

(Alo)

(Al 1)

(A12)

(A13)

(A14)

M
A tt(k;, kj ,z) =v'~tt(k;, kl ) g —f dp "u~s(k;,p")G()(p";z)(pstt(p", kj,z),

5=1
(A15)

or
M

A~t)(k;, k, ;z)=u, jt(k;, k, ) —g f dp "X~s(k;,p";z)GO(p";z)vstt(p", k, ) .
5=1

(A16)

To simplify notation, tp~y(p, kj,z), Xy(ttkp', z, }v~ (tpt,p'}, and A~t)(k;, kj',z) are used instead of &p''tI(p, kj;z),
XI(y())k;,p', z), u"tI(p,p'}, and A "tI(k;,kj,'z), respectively. Therefore, an alternative expansion formula for

the t matrix is

I )v 8ys(z) {N+1)
tap(p&p iz)=Q g 8 pas((p kj i&ytt i&p iz)+tap (p&p iz) &

y» &j

where 8(z) is given by detIA~tt(k;, kj,z) J, and 8&j (z) is the i jand y —5—cofactor of 8(z). Therefore, Eq. (A17)
becomes

A A—11 12

A—22

A N2

0'p1 gp2

A—21

t tt(p,p';z)=-
A—N1

A—1N

A 2N

PpN

X1p

X2p

+Np

0

A A11 12

A A—21 —22

—N1 N1

—1N

A—2N
+~tp+"(

p, pz) .

A—NN

(A18)

Here, we used the following algebraical notations:

A ) ) (k;, kj', z} . A, M(k;, kj;z)

AM((k;, kj;z) AMM(k;, kj;z)
(A19)

(pt&J [(p~)(p&kj&z)&(p~z(p&k—j&z}&. . .
& &p~st(p&kj, z)] & (A20)
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and

X~ = [Xip(k;,p';z), X2p(k;, p';z), . . . , Xsrp(k;, p';z)] . (A21)
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