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Medium energy elastic proton scattering is analyzed with a microscopicaliy generated
nonlocal nucleon nucleus optical model. A thorough discussion is presented on the transi-
tion from a nonlocal potential to phase equivalent local potentials. These local potentials re-
veal a strong repulsive /-dependent core which is beyond phenomenological potential
models. This core leads to a damping of the diffraction pattern at medium angles and a
backward rise of the cross section. These features have been observed experimentally. The
formalism is applied to scattering from >C and *’Ca at low and medium energies and com-

pared to experimental data.

NUCLEAR REACTIONS Microscopic optical potential; C(p,p),
E =40, 180, 200 MeV; “Ca(p,p), E =160, 180 MeV; comparison with
experimental data.

I. INTRODUCTION

The theoretical study of elastic scattering process-
es in nuclear physics is a fundamental step in under-
standing the nuclear many body problem. Toward
its solution the last three decades have put forward
various  approaches, lying between purely
phenomenological and fully microscopic. Nucleon-
nucleus scattering represents, thereby, the forefront
of studies with more complex projectiles, and we
consider the derivation of a complex single particle
potential, the optical model potential (OMP), from
the elementary nucleon-nucleon interaction as the
ultimate goal.! The nuclear matter approach has
been established as a qualitative and quantitative
method of reconciling the success of the
phenomenological local optical model potentials
with a purely microscopic model.?

It is in the nature of the microscopic theory that
various approximations are used, some of which are
model truncations and some of which are solely
computational conveniences. With the latter kind of
approximations we refer to the solution techniques
of the Bethe-Goldstone equation,* computations of
the nonlocal folded OMP with nuclear matter ¢ ma-
trices, use of various forms for the diagonal and
mixed single particle ground state density® and,
what is our concern, the transition from nonlocal to
local equivalent potentials.

In this paper we study problems and effects aris-
ing from the microscopic nonlocal OMP in differen-
tial cross section and polarization data. Closely con-
nected with this aim is an investigation of local
equivalent potentials in order to find differences
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with phenomenological OMP’s. For a nonlocal
operator one cannot tell if the interaction is purely
attractive or purely repulsive simply by knowing the
overall sign. One must consider the detailed struc-
ture of the nonlocality and its behavior as a function
of energy and angular momentum. Some potentials
are attractive at low energy and repulsive at high en-
ergy. Similarly, the behavior may change for dif-
ferent angular momenta and thus result in an effec-
tive I-dependent potential.

The investigation of Perey and Buck® for neutron
scattering below 25 MeV with the Frahn and Lem-
mer® type of nonlocal potential is well known. The
important result of this analysis was the reproduc-
tion of the energy dependence of local potentials
with an energy-independent nonlocal potential and
the reproduction of local phenomenological OMP’s
as equivalent potentials. Furthermore, the transition
from nonlocal potentials to equivalent local poten-
tials was achieved with successful approximate ana-
lytic expressions which have been little altered
since.

It has been pointed out by Austern® and later by
Fiedeldey® and other authors'® that nonlocal poten-
tials are best elucidated by local equivalent poten-
tials (LEQ) which are uniquely determined by a pair
of linearly independent solutions of the nonlocal
problem. An essential ingredient in this formulation
is the damping of the nonlocal wave function as
compared to the wave functions of the equivalent lo-
cal potential. This effect, known as the Perey ef-
fect,*!! manifests an important difference between
Schrddinger equations with a local and a nonlocal
potential. A pair of linearly independent solutions
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to local problems yields a constant Wronskian, in-
dependent of the radius. This radial independence
of the Wronskian is generally not true for nonlocal
potentials. This rigorous mathematical property
makes it impossible to obtain identical solutions for
local and nonlocal potentials without introducing
singularities in the local potential.

In Sec. II we review the salient features of the mi-
croscopic nonlocal optical potential as it is generated
from nuclear matter ¢ matrices. This is understood
as an example of a microscopic theory and it may be
substituted by other approaches.!>!* The definition
of exact phase equivalent potentials in terms of non-
local Wronskians and their derivatives is given in
the following.

Section III contains the formulation of the LEQ
when replacing the nonlocal Wronskian and its
derivatives by pure properties of the nonlocal poten-
tial. The final result of this section is a series expan-
sion for the LEQ. Several numerical examples are
given to show qualitatively and quantitatively the
differences with other methods of defining
equivalent local potentials. An application with
quantitative results for elastic proton scattering on
12C and “°Ca at various energies is given in Sec. IV.
With these calculations we show the differences be-
tween phenomenological and microscopic optical
potentials as they manifest themselves at low and
high energies. The essential result shall be the oc-
currence of a repulsive core in the LEQ whose ra-
dius increases with angular momentum.

As compared to phenomenological potentials this
establishes the importance of nonlocal potential
analyses for scattering above 100 MeV. For lower
energies we confirm that energy dependent and [-
dependent potentials are sufficient to describe the
global OMP. This is a numerical result independent
of the existence of the repulsive core. For higher en-
ergies (around 200 MeV) consequences of the I-
dependent potentials show up in the angular distri-
bution which can be verified experimentally.

II. THEORETICAL BACKGROUND

The study of interacting nucleons in infinitely ex-
tended nuclear matter is well established, and ap-
proximate treatments for finite nuclei seem justified.
Methods developed by Brueckner and Bethe have
been widely applied and the theory is on firm
ground'~3 including calculational procedures for
nucleon-nucleus elastic scattering starting from a
realistic NN force.

The approach pursued in our studies is based on
the evaluation of the effective internucleon ¢ matrix
from the free NN interaction.’ The real and ima-
ginary optical potential for nucleons is calculated to
first order in the effective NN interaction with an
improved version of the local density approximation
(LDA) in a folding approach with single particle
target densities. The model relies on the quite gen-
eral approach to generating in first approximation
the OMP as a sum of a direct term and a nonlocal
exchange term:

u(F’,f";E):S(F—f”)zf¢:(?")tD(f’,f’”;E)¢,,(F’”)a’3r"+2¢:(?)tE(f',?’;E)¢,,(f"). (1)

The coordinates T and T’ are projectile coordinates and the summation of single particle wave functions is used
to represent the (Hartree-Fock) particle densities—diagonal and mixed—for protons and neutrons. The basic in-
gredient of the LDA enters here in the choice of 5, and ¢z which are mixtures of direct and exchange effective
NN interactions.® In principle it should be calculated in the finite system with its full structural details. We
make the assumption that this effective interaction can be approximated locally by the interaction in nuclear
matter for the same density and energy. This effective interaction is our version of LDA:

I

For brevity, the arguments of k5 and E will not be written in the following. The interaction contains automat-
ically real and imaginary parts and the correct features of the finite range of the interaction. This is important
since the ranges are different for real and imaginary parts and for the various spin and isospin channels. Any
other approximation inherent in the nuclear matter approach in computing the effective interactions is not
changed compared to previous calculations.

The stationary Schrodinger equation

r+r1’
2

r+71’
2

tD,E(?’?,;E)ztD,E [?—-?'I;kp ,E

AYE, )+ [k —op(O)UT, )= [ u(F, 7B, K)dT 3)

for the single particle OMP scattering solutions is most easily solved in the standard partial wave decomposi-
tion, where the numerical problem is reduced to an ordinary second order integrodifferential equation, viz.,
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The diagonal potential vy contains the standard homogeneously charged sphere Coulomb potential. The spin
orbit potential is obtained in a local form following Ref. 3 and is included in v, as well. The multipole decom-
position of the nonlocal OMP is formally obtained for a rotational invariant symmetric potential form,

(r,r")
u(B ) =up(N(F— ) +up(F, 7= 3 2L [V ()Y, ()]
L
-3 i%;tl—)—wL(r,r')PL(?-?')/rr'. 5)

L

The local direct potential is included in the exchange potential which represents the source of nonlocality. The
energy dependence in (1) results from the small energy dependence of the effective interaction. The multipole
decomposition, Eq. (5), is technically straightforward but is numerically quite involved due to required energy
and density interpolation of numerically stored effective interactions.

The folding integral for the direct potential is simple and is generated with a Gauss-Legendre integration
routine for the radial and angular integrations:

u (;-):2»;rfwdr"f1 dxY SHtP((r2 4-r"2—2rr"x) %k, E )y 2(r") (6)
D 0 _1 -~ lj syRFs lj, 7

with Sj; specifying the occupation number in the single particle orbit (}) for protons/neutrons (7). The radial
wave functions ¢;; (r) are solutions of a Frahn-Lemmer type nonlocal bound state potential'* with parameters
Vo=—72MeV, R =12 A'3fm, a =0.65 fm, and the range of nonlocality y=0.8 fm including Coulomb and
spin orbit potentials in the standard local form with V;; =7 MeV, R;;=1.1 4'*fm, a;,=0.65 fm.

The exchange potential is directly generated in its multipole decomposition

up(,7)=3, ¢*(T), (T )5 (| T—T" | ;kp, E)
ST,n

= %2 $1, (1)1 PR (| F—T" |5k p, )Y 1y (PYY 5y (PIS %)

In the limit of no-spin/isospin flip this expression assumes the form
- 1 ner :
ug(F,F) === 3 ¢y Dby Ar)S] (I3pv|jm)?
X(=)SHTHU S 30X | Smg ) (55 7e | Tmp 2 Y, (A Y (PO | F=T | kp, E) . @)
Together with a multipole expansion of the effective interaction

2 (| =7 |skp, E) =3 13 (r,r;kp, E)[ Y3(F)- Y (7], 9)
we obtain for the exchange contribution

of (1) =3 ¢y APy Lr'){1A00 | LO)ZS,;LA[%@RI =3t308,,+ 5310 413 — 1P —3e1)(1-5,,)] .

AMj,7 2L

(10)

The isospin (proton/neutron) of the projectile enters through the index p (for projectile) on the Kronecker sym-

bol 8, and accounts for like or unlike projectile and target nucleons. As already mentioned, the required mul-

tipoles ¢3 (r,r') are computed from tabulated values t57(s ;kz,E). To eliminate possible errors in interpolations
we apply a double Fourier-Bessel transformation and obtain

th(r,r';kF,E)=8fowkdij(kr)jk(kr’)fowsds sin(ks)ts (s ;kp,E) . (11)
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FIG. 1. Triaxial representation of the real nonlocal ex-
change kernel w&(r,r') for °Ca at 60 MeV.

An impression of the nonlocal exchange kernel is
obtained from Figs. 1 and 2 where the radial depen-
dence is shown for “°Ca at 60 MeV for L =0 with
cuts across the diagonal at » 4+r'=6 fm for several
angular momenta. The multipole expansion of the
local direct potential is straightforward and yields:

w2 (r ) =up(r)d(r —r') . (12)

With the generation of the nonlocal kernel for the
central potentials and of the spin orbit potentials ac-
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FIG. 2. Cuts of nonlocal exchange kernels w%(r,r')
(real: solid lines, imaginary: dashed lines) for various an-
gular momenta.

cording to Ref. 3 all ingredients of Eq. (4) are avail-
able. It remains to solve the radial integrodifferen-
tial equation and extract the S-matrix elements in
the usual matching procedure. Spurious states or
bound states in the continuum are known to exist
for some integrodifferential equations.!”> We defer
further discussions of this problem since we checked
our numerical results carefully and did not find any
such case. With this comment we consider the
problem solved, and the comparison of theoretical
predictions with experimental data can be done.
Since the standard phenomenological OMP
analysis uses local potentials it appears desirable to
construct a phase-equivalent local potential. We
consider therefore the transformation of a
Schrédinger equation with a nonlocal potential [Eq.
(4)] to a Schrédinger equation with a local potential,

d>  L(L+1)

0 > +k2—vp(r) |Prs(r)

=V (NYrs(r) . (13)

The local potential V() is said to be equivalent to
the nonlocal kernel w; (r,7’') if it can be completely
specified in terms of Eq. (4) and its solutions and if
it analytically reproduces all observable features for
a fixed energy.

The transformation for the nonlocal equation re-
quires two linearly independent solutions with
asymptotically unique boundary conditions for in-
coming and outgoing waves.”!? The behavior in the
interaction region may depend on assumptions about
the interaction which are not subject to direct obser-
vation. The asymptotic properties are maintained in
the transformation and are the same for both Egs.
(4) and (13). Let f,,(k,r) be two solutions to the
nonlocal radial equation and F ,(k,r) the equivalent
solutions to the local equation. Since f;, and F,
satisfy the same asymptotic boundary conditions,
they are asymptotically equal,

lim [f;(k,r)—

r—>ow

Fi(k,)]=0, i=1,2. (14)

For finite distances we relate the solutions by a
function 4 (k,r):

fitk,r)=A (k,r)F;(k,r), i=1,2 (15)
which behaves asymptotically,
lim A(k,r)=1. (16)
r—>oo

This ansatz was first suggested by Austern® and
yields a smooth regular equivalent local potential.
Any two linearly independent solutions define the
Wronskian
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W (f1,f2)=F1r)f3(r)—=f2(r)f1(r) . (17)

This Wronskian shows the essential difference be-
tween local and nonlocal Schrddinger equations.
Equation (17) is generally a function of the radius
and is therefore different from W (F,,F,), the local
Wronskian, which is independent of the radius for

regular potentials. Ansatz (15) together with (16) re-
J

lates the Wronskian to the damping functions:
W (f1,f2)=A*r)W(F,,F,)
=AXrW(F,Fy) |,
=AW (f1,/2) | 1= » (18)

so that the damping function is

Ak, )=[W(f1(k,r), f2lk,r) /W (f1(k, 0), [k, 0))]'72. (19)

The function 4 (k,r) is in the literature often identified as the Perey effec

usually smaller than 1.

t%!1 or damping function because it is

The equivalent local potential is constructed in the same manner.>!® Combining Egs. (4) and (13) we may el-
iminate any reference to a particular pair of solutions and find by pure algebraic manipulations that

2

_l W"(f1,f2) +l
2 W(fi,f2) 4

W'(f1,/2)

Veglr)= Wfifa)

1

+_____,f0°° C"L(r,r’)[fl(r')f'z(r)—f'l (r)fz(r')]dr’

W(f1.f2)
A’

A

Au
=— 2
1 +

The expressions for the damping function and
equivalent local potential provide mathematically
rigorous definitions of these /-dependent quantities
for the full radial range. So we have a method to
compare microscopic /-dependent potentials with the
usual phenomenological potentials.

The transition from the nonlocal potential to a
phase-equivalent local one is certainly not unique.
We have fixed the local potential by requiring the
same damping function A4 (k,r) for any solution of
the Schrodinger equation. It is possible to relax this
condition and allow for different damping functions
for different solutions.!® Furthermore, it is possible
to replace the local damping function 4 (k,r) by an
integral kernel relating local and nonlocal solutions
which is asymptotically equal to a § function. The
prescription we have adopted is the most simple one
and is the only one which has been used in actual

2
—-l ® ’ LAY Y ’
+=5 [y oL AT falrf (]dr (20)

|
ever, that all observables calculated from any local

phase-equivalent potential will be identical because
they reflect only the properties of the original nonlo-
cal kernel. So an enhancement of the cross section
at backward angles, e.g., will be found for any
phase-equivalent potential if it is found for one, ir-
respective of the form of the particular potential.

It is of some interest to discuss properties of the
above defined damping function and equivalent lo-
cal potential for »—0. In general, we have

wir= [ oL (rrLf1(0f2(r')

—f1(r")fo(r)]dr' . (21)
For symmetric kernels

o (r,r)=wp(r',r)

calculations before.!° It must be kept in mind, how- it follows
|
W)= W)= [ " W(rdr= [ " or(r,r)f1(Nf2(r")—f1(Pf2(r")]dr dr' =0 , 22)
I
so that for the damping function we have pLAL L+
lim w;(r,r')= (23)
r,r—0 const

limA(k,r)=1.
r—0

It does not seem to be possible to give a simple ex-
pression for ¥(0). Since our kernels result from a
multipole decomposition they behave close to the
origin like

For such a kernel,

lim W'(r)=0

r—0

as can be seen from Eq. (21) together with the well-



27 NONLOCAL AND LOCAL EQUIVALENT MICROSCOPIC OPTICAL . .. 2471

known behavior of regular and irregular solutions at
the origin. Furthermore, the third term in Eq. (20)
vanishes at » =0 for L =0 (but not for L=£0) since
in this case regular and irregular solutions have zero
slope at the origin. So we have a contribution for
r=0, L =0 only from the term involving W"'. If
we assume that the damping function 4 (k,7) < 1 for
r=-0 (this is found in all calculations up to now,¥—10
but we do not have a general proof for it), then
W"0)<0 and V(0)>0 for L=0 even if
wr (r,r') <0 for all #,#'. This peculiar behavior re-
flects the form of the integral kernel on the boun-
daries r,#'=0 [Eq. (23)]. For a nonvanishing nonlo-
cality range y the integral kernel w; (r,7’) vanishes
at r=r'=0, but becomes increasingly steep for
y—0. In the limit y=0 we have a local potential
with a finite (negative) value at » =0.

III. ANALYTIC REPRESENTATION
OF THE LOCAL I-DEPENDENT POTENTIALS

Although Eq. (20) gives an exact expression for
the local equivalent potential, it is quite cumbersome
to use in practice since two independent solutions
are needed for the calculation. Therefore, it seems
desirable to develop an approximation scheme for
the calculation of V(7). The quality of the approx-
imation can then be tested by comparison with the
exact formula (20). Such a comparison was not pos-
sible for other approximations’~® which do not
make use of an angular momentum decomposition.
The basic idea of the approximation scheme is to use
a perturbation expansion with respect to the nonlo-
cality range of the integral kernel. For any sym-
metric integral kernel w(r,r’) the following equality
can be proven:

& (—=1) ikg(r—r")

wlnr)= X e
X 8™ (r —r" o, ”;’ ;kO], (24)
where
+7r'
ko=ko |
0 0 2

is an arbitrary function to be chosen later and the
expansion coefficients v, are detclarmined by the fol-
lowing equation [s =7 —r', R=5(r +7')]:

2R
va(Rsko)= [

~HoSgm(R +535, R—5s)ds .

(25)
A formal proof for this equality is obtained by in-

serting the expansion (24) under the integral in (25):

2R () 1y
m(Riko)= [ dssm S L=Lgmisn,, (Riko) .

m =0 :
(26)

All terms of the sum drop out by m-fold partial in-
tegration except m =n; so the proof results.

v, is the nth moment of the integral kernel
o(r,r'). The approximation scheme to be described
may therefore be called a moment expansion. For
the special case kq(r)=0 this type of expansion has
been used in the framework of generator coordinate
theory.!” Since in our case the arguments of w(r,r’)
are restricted to positive values the integration with
respect to s =7 —r' is on a finite interval only. It is
now important to note that the moments v,(R ;kg)
will decrease rather rapidly with increasing n due to
the peculiar form of the integral kernel. Since
o(r,r') is strongly peaked at s =r —r'=0 (see Fig.
1), an appreciable contribution to the integral (25)
comes only from the region of small s. The factor
s", however, is small there for n >0, so the value of
the whole integral will decrease with increasing n.
From this consideration, it is suggestive to consider
(24) as a perturbation expansion of the integral ker-
nel. This can be seen explicitly if w(r,r') has a
Gaussian nonlocality with range y. Then v, will be
proportional to y”", so we have an expansion with
respect to the nonlocality. In the general case a
parameter A will be introduced to characterize the
magnitude of the various orders so that Eq. (24) can
be written

olrr)= 3 A, (r,r';ko) (27a)
n=0
with

(=1)" ikgr—r)
'——" e

Vulrr'sko)=

X 8™ (r —r', [Ij_z—r-;k(,] .

(27b)

If this expansion is introduced into the nonlocal
Schrédinger equation, a corresponding expansion for
the wave function is appropriate:

F=3 A fu(r) . (28)

Equating now equal powers of A on both sides, the
nonlocal Schrodinger equation is transformed into a
set of local equations. The lowest order equations
read, explicitly,
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2
fr—2~————L(I;j1) k2 vg(r) | folr)=

So the zeroth order equation is a standard local
Schrodinger equation whereas all higher equations
contain an inhomogeneous term, which is deter-
mined by the solutions of the lower equations. As
V,(r,r';ko) contains derivatives of the 8 function,
the inhomogeneities are in fact local expressions
containing derivatives of the wave functions.
Second and higher derivatives of them may be elim-
inated by using the lower order equations.

If two independent solutions f(r),g(r) are ex-
panded in the form (28), a corresponding expansion
will result also for the Wronskian W (r) which reads,
explicitly up to order A,

W(r)=Wuy(r)+AW (r)+ - - -
=[go(r)folr)—go(r)folr)]
+ALgo(r)f1(r)+g1(r)fo(r)
—go(r)fi(r)—g1(rfo(r]
+ (30)

From the set of equations (29) it is, however, seen
that W,(r) is a Wronskian corresponding to a usual
local Schrddinger equation. It is well known that in
this case the Wronskian does not depend on the ra-
dius, so we have the important result:

Wo(r)=Wy( )=const . (31)

After these preliminaries we return to the question
of approximating the phase equivalent potential
Veq(r), Eq. (20). From the expansion in powers of A
for the integral kernel and the Wronskian we will
get also an expansion for V(7). It will be shown
that the various contributions can be calculated
from the knowledge of the moments of the integral
kernel and that any wave function drops out of the
final formula. The full calculation is rather lengthy,
so we will consider only a single term to demon-
strate the method. As an example take the term

W'(r)
Wi(r)

From (30) we have

[ vitrrskolfotr

+k2—vo(r) | f1(7)= [ Vilrr'sko)folr)dr' (29)

Ndr'+ [ Vy(rrko)folrdr' .

W' (r=Wur)+AWi(r)+ - . (32)

The first term on the right-hand side vanishes due to
Eq. (31). Up to order A we have

w'r) Wir)
W) Wylew)
With the definition (30) we find, for the derivative,

Wi(r)= f5(rg(r)+f1{(r)go(r)

—folr)g{(r)—fi1(rigg(r (34)

The second derivatives of the wave functions may
now be eliminated with help of the Schrodinger
equations (29). Many terms cancel, and we have
remaining

W(r)=go(r) [ Vi(rr'sko)folr')dr’

(33)

—for) [ Vilrrikolgolrdr' . (35)

Finally, we use the definition (27b) for V(#,r";k,) to
obtain

Wir)=vi(r;ko)go(r)folr)—folr)go(r)] . (36)
The expression in square brackets is
Wo(r)= W()( w) .

Wyl o) cancels in Eq. (33) and we get as a contribu-
tion to the potential V(7) from the term

W'(r)
wi(r) |’

up to order A

(5] ~

W'(r)

— 22y, 2(y-
Wir) =A V1 (r,ko) . (37)

As claimed at the beginning, this expression does
not contain the wave function anymore, but only the
(first) moment of the integral kernel. Similarly, all
other contributions to the phase equivalent potential
can be calculated. The final result up to order A’
reads
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Veg(r)= vo(r;ko)+A[ —ikovy(r;ko)]+A2

+v,(r;kg) LL+D (L;H)

1 1
T012(rsko)— 05 (r;3ko)

—k2+u0(r;k0)—k02] ] . (38)

Of course, A=1 in the final expression. The inclusion of higher order terms does not present essential difficul-

ties but the calculations become rather lengthy.

This expression for V() may be transformed further by elimination of all odd moments. For a symmetric

integral kernel w(r,r’) we have, explicitly,

2R . 1 1
v1(R;kg)=i f—lR s sinkps @(R — s, R +5s)ds .

(39)

Since only the region around s =0 is important in the integral we can expand sinkys around s =0 in the form

. 1
sinkos =kgs —;k03s3+ <o

This expansion relates v; to v, and higher even moments:

v1(r;ko)=2ikgvy(r;ko)+8iky va(rosko)+ + - .

(40)

(41)

Similarly, v; and higher odd moments can be eliminated. If this expression is substituted into Eq. (38), we get

(A=1)

Veq(r)=vo(r;ko)— %vz"(r;ko)+v2(r;k0)

If the whole series is summed, the result does not
depend on the choice of kqy(r). It is, however, im-
portant to choose it in an appropriate way, if only a
few terms are taken into account. By comparing the
exact potential Eq. (20) with the partial sum of the
moment expansion it is possible to see whether the
particular choice of ky(r) is a good one or not. It
turns out that the agreement between the exact po-
tential and the zeroth order of the moment expan-
sion is closest when k() is chosen self-consistently’
as the local momentum of the projectile,

kod(r) =k EEED)

—vo(r;kg) . (43)
The reason for this agreement can be seen by in-
specting Eq. (42). For this choice of kg(r), the last
term drops out and the only correction to vy is vy
which is very small. Inside nuclear matter, the po-
tential does not depend on the position, so in this
case the second order correction vanishes completely
for the self-consistent choice of ky(r). So in lowest
order, the phase equivalent potential is given by

2 s
Veq(r)zuo(r;ko)_—_ f__;, e iky(r)s

Xao(r + %s, r— %s)ds (44)

with kqo(r) given by (43). For L0 and r sufficient-
ly small, k,? will become negative and hence k, im-

L(L+1)
)

—k24vg(r;ke)+ko? | . (42)

’ —
aginary. Since only even powers of k, occur in the
calculation of V., for a symmetric integral kernel
o(r,r'), Ve will stay real. Another possible choice
for ky would be ky=0 when the right-hand side of
Eq. (43) is negative. Explicit calculations have
shown that the approximate local potential with this
form of k, does not reproduce the exact local poten-
tial given by Eq. (20) as closely as for the self-
consistent value of k,. So we require self-
consistency also for negative ko2 All results
presented in the following are obtained with this
special kq(7).

From its definition it is seen that vy(0)=0 for a
nonsingular kernel whereas the exact V., does not
vanish at the origin. The error in calculating the
phase shifts caused by this discrepancy is negligible
for the microscopic optical potentials for two
reasons. First, due to the absorption the wave func-
tion is strongly damped in the nuclear interior so
that the value of the potential close to the origin has
little influence on the cross section. Second, the
strongly repulsive direct potential determines the
behavior at the origin so that only a small error in a
small contribution to the complete result arises.

The first term of the moment expansion is similar
to the first term of the expansion proposed by Perey
and Saxon’ if their expansion is applied to the kernel
decomposed into multipoles. It differs only in the
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integration range and is identical to the Perey-Saxon
approximation for radii larger than the nonlocality
range. In higher orders, the moment expansion is
conceptually different since it only introduces
corrections to the potential but does not lead to
second or higher order differential operators. For
all energies considered the zeroth order of the mo-
ment expansion has been found to be sufficiently ac-
curate. Therefore, we have kept only this term in
the calculations. We have not investigated whether
|

1

Yo —(T=T"2/p? 1
a

1+exp 5

Its various multipole components can be calculated
analytically.” The parameters have been chosen for
“Ca, ie, R=4.1 fm, a =0.65 fm. The depth is
taken as Vy=—72 MeV, and the nonlocality range
is y=0.8 fm. Various forms of the equivalent local
potential® are shown in Fig. 3 for the s wave at a
projectile energy of 30 MeV. First of all, the trivial-
ly equivalent potential has so many singularities that
a smooth interpolation seems rather arbitrary. The
phase-equivalent potential Eq. (20) has a convention-
al Woods-Saxon shape at larger radii, but deviates
from this form strongly at small distances. For
r—0 it is even repulsive. This has to be expected
from the general discussion in Sec. II. The potential

-20F

-30 +

Frahn - Lemmer Pot.

“0Cq,E=30 MeV |
L=0

50 : —— Wronski
=50 ~—— mom. expansion 7]
—-— Perey- Buck

. triv.equiv. pot.
n L

A 3

Potential Strength (MeV)

1 L L 1 i

FIG. 3. Comparison of equivalent local potentials, gen-
erated with different prescriptions. The Wronski method
(solid line) is the exact result for Eq. (20), and moment ex-
pansion refers to Eq. (37). The Perey-Buck potential and
trivial equivalent potentials coincide with its definition in
Ref. 5.

r+r _R

this is a valid approximation for larger nonlocalities.
From the nature of the expansion it is clear that the
truncation of the series after the first term is justi-
fied for all smaller nonlocalities.

In order to compare the various approaches for a
phase equivalent local potential we consider first a
model of simple analytic form, the so-called Frahn-
Lemmer® or Perey-Buck® potential, which is given
by

L=2 | L=2

V (MeV)
<

L=5 L=5

T35 3 L 5 6 0 1 2 3 4 5 6 7
r(fm)

FIG. 4. Comparison of the phase-equivalent local po-
tentials calculated with the Wronski method (solid line)
and with the moment expansion (dashed line) for two en-
ergies and various angular momenta.
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FIG. 5. Energy dependence of the local equivalent
Frahn-Lemmer type potential generated with moment ex-
pansion.

resulting from the moment expansion deviates only
slightly from this form: it does not show the dip
around 1 fm, and it vanishes at the origin. For com-
parison, also the usual Perey-Buck approximation is
shown which does not depend on the angular
momentum. It coincides with the moment expan-
sion everywhere except close to the origin where it
has a finite negative value.

The accuracy of the exactly phase equivalent po-
tentials can be checked rather easily. If two linearly
independent solutions are obtained for the intergro-
differential equation, the local potential and the
Perey effect can be computed. Then two solutions
to the local problem are calculated and compared to
the nonlocal wave functions which were multiplied
by the Perey effect. Any difference between these
results is due to numerical inaccuracies. The poten-
tials calculated with the moment expansion are com-
pared with the exact ones in Fig. 4 for two energies

Radius (ftm)

-20

-30

-0 “Ca, E = 30 MeV

Frahn-Lemmer Pot.
-50 f _

Potential Strength (MeV)

I L s " L !

FIG. 6. Study of the / dependence of the equivalent
Frahn-Lemmer potential for 30 MeV nucleons.
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FIG. 7. Comparison of various equivalent local poten-
tials when applied to the full microscopic optical model
kernel. Wronski refers to the exact solution of Eq. (20)
and moment expansion to Eq. (37). The local momentum
approximation has been used in Ref. 3. Trivial equivalent
is identical with Ref. 5.
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FIG. 8. Study of the energy dependence of the real
part of LEQ within the moment expansion.
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FIG. 9. (a) I dependence of the real part of LEQ within
the moment expansion. (b) / dependence of the imaginary
part of LEQ within the moment expansion.

and angular momenta up to L =5. For still higher
angular momenta the exact formula Eq. (20) leads to
numerical difficulties. The agreement between exact
and approximate potentials is very good. A notable
difference is found only for very small distances
where the approximate potential approaches zero in
contrast to the exact one. This discrepancy affects
only the large angle cross section which will be
overestimated by the moment expansion.

In Fig. 5, we consider the energy dependence of

v(MeV)

_w, 4
-0
100k
o E =30 MeV E =180 MeV
12 R N N
1 2 3 4L 5 6 0 1 2 3 4 5 867
R (fm)

FIG. 10. Comparison of the potentials calculated with
the Wronski method (solid line) and with the moment ex-
pansion (dashed line) for the real part of the microscopic
optical potential.

the local potential resulting from the moment ex-
pansion. The behavior at short distances is found to
be independent of the energy whereas for larger dis-
tances the potential decreases almost linearly with
the energy. The behavior for different angular mo-
menta at the same energy, shown in Fig. 6, is com-
plementary to this. For large distances, the poten-
tial does not depend on L, whereas the short-
distance behavior is completely different for dif-
ferent angular momenta. The potential can be
shown to start like »2- +3,

The corresponding results for the real part of the
microscopic optical potential are shown in Figs. 7 to
10. In this case one has to add a local (repulsive) po-
tential to the nonlocal attractive one. Therefore, the
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FIG. 11. (a) Energy dependence of full imaginary cen-
tral potential. (b) Local spin orbit potentials generated ac-
cording to Ref. 3. Note the different scale for real and
imaginary parts. (c) Energy dependence of the real part
of the damping function (Perey effect) for L =0 based on
the full nonlocal kernel.

behavior close to the origin is dominated by the
direct term which leads to the existence of a repul-
sive core. The various equivalent local potentials are
compared in Fig. 6. The trivially equivalent poten-
tial does not have singularities because the wave
function is now complex. Instead it shows finite
jumps at the zeros of the real part of the wave func-
tion. The exact potential has various oscillations for

T

T

E =180 MeV

10F v / R N
e Ry
Y SN 3
—— LEQMOP A \ ]
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6 ---- LEQMOP Ugo=0 iy \ A
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o | ]
f I/ ]
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1 L 1 1 1 1 1 1 1 i i 1 1 A

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0Cm.

FIG. 12. Effects of the repulsive /-dependent core on

differential cross sections at low and medium energy. The
geometry is for 1*C.

small distances which are interpolated by the mo-
ment expansion. Such a smoothing behavior had to
be expected since the zeroth order moment is essen-
tially given by the Wigner transform of the nonlocal
potential which cannot reproduce all quantum fluc-
tuations. The local momentum approximation used
by Brieva and Rook? is seen to differ strongly for all
radii, so this approximation seems to be question-
able.

The energy dependence of the local potential (Fig.
8) is similar to that obtained for the Frahn-Lemmer
potential. Much more interesting is the angular
momentum dependence shown in Fig. 9. One ob-
serves the existence of a pronounced oscillation be-
tween 1 and 2 fm which is amplified for larger an-
gular momenta.

For such an oscillatory potential one may ques-
tion the validity of the moment expansion. It is
therefore compared to the exact results of the Wron-
ski method in Fig. 10. The exact potentials show
even larger oscillations than the approximate ones.
So the appearance of the oscillations is not a conse-
quence of the moment expansion and, in particular,
not of the occurrence of negative values of ky? for
L=£0. If analyzed in more detail, the angular
momentum dependence is found to be roughly of the
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FIG. 13. (a) 40 MeV /-dependent real central potentials
underlying the calculations in Fig. 12. (b) 40 MeV [-
dependent imaginary central potentials underlying the cal-
culations in Fig. 12.

form L(L +1) for the real part. The imaginary
part depends much less on the angular momentum.
It has recently been shown'? that such an angular
momentum dependent potential can be phase
equivalent to a normal energy-dependent potential
of Woods-Saxon shape. This demonstrates the
nonuniqueness of phase-equivalent potentials as
stressed already in Sec. II. So the unusual shape of
the local optical potential does not indicate that the
phase shifts calculated from it are different from
those for a more conventional potential. The reason

T

(a)
2C, 180 MeV
MICR.OPT. POT. ]

POTENTIAL STRENGTH (MeV)

POTENTIAL STRENGTH (MeV )

"2C, 180 MeV
LEQMOP, Wir)
-5} 4
L0 132%

FIG. 14. (a) 180 MeV I-dependent real central poten-
tials underlying the calculations in Fig. 12. (b) 180 MeV
I-dependent imaginary central potentials underlying the
calculations in Fig. 12.

for these oscillations which were not found in the
Frahn-Lemmer case seems to be the strong repulsive
odd state force. It enters into direct and exchange
parts with opposite sign. If it were of zero range it
would cancel out completely. Because of its infinite
(though short) range some contribution from it
remains in the final potential leading to the oscilla-
tory behavior. So the oscillations do not seem to be
peculiar to a density-dependent ¢ matrix, but seem to
be related to the strength of the odd state force in
the underlying NN interaction.
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FIG. 15. "C proton scattering analyses for two ener-
gies. The data are from the literature (Refs. 19 and 20).
Phenomenological OMP are the best fit potentials of Ref.
20 with single and double Saxon-Woods form factors.

For completeness we add in Figs. 11(a)—11(c) the
numerical results for the imaginary and spin orbit
potentials together with the damping function for
L =0. In fact, all these quantities are / dependent.
We will not discuss these terms further due to their
minor importance or small physical significance in
interpreting results.

IV. APPLICATIONS

Microscopic optical potentials have been shown to
reproduce the global features of phenomenological
results. Among these are the energy dependence of
volume integrals of real and imaginary central po-
tentials, the rms radii and in some cases (with ad-
justments of the strength by 10—20 %) the repro-
duction of differential cross sections and polariza-
tions. With the analysis presented here we do not
expect to achieve better agreement but rather indi-
cate characteristics which are inherent in nonlocal
potentials.

The energy dependence of (equivalent) local po-
tentials is well known as is the damping of nonlocal
wave functions. The success of Saxon-Woods poten-
tials below 80 MeV on the other hand indicates that
the inner region of the target nucleus does not have
a significant influence on angular distributions. In-
clusion of the I-dependent core must therefore leave
calculated angular distributions unaltered for low
energies. In Figs. 12—14 proton scattering from '>C
is displayed for 40 and 180 MeV. The angular dis-
tributions are calculated with the full phase
equivalent microscopic OMP (LEQ MOP) with and
without spin orbit potentials (Ug,=0). The second
group of curves is obtained when the potential is re-
placed by the microscopic potential for L =0 and its
core eliminated (LEQ MOP without core). The re-
sults show that the core is important only for high
energies and large momentum transfers. In this
kinematic region its effects are comparable to those
of a spin-orbit potential. In Figs. 15 and 16 we
compare the results with experimental data. The an-
gular momentum dependent microscopic potential
has been calculated up to a maximum angular
momentum L., and the potential for L ,, was

08
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02

-02

- 04

_o6f LEQMOP
—___ PHENOM. OP /SIMPLE WS/
-08[ . PHENOM. OP/DOUBLE WS/

FIG. 16. Polarization for the 200 MeV analyses in Fig. 15.
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used for all higher partial waves. L, has been
determined so that increasing it further does not
change the angular distribution appreciably. Its
value depends on the target nucleus and the bom-
barding energy. For '?C and 180 MeV, a value of
L_..,=12 has been found if stability up to extreme
backwards angles is required. For forward angles
only (i.e., up to 90°), a smaller value around L ,, =5
is sufficient. This reflects the greater sensitivity of
large angle data to the form of the potential inside
the target nucleus. The value for L ,, gives an indi-
cation on the number of partial waves which feel the
influence of the core. Since LEQ MOP represents

—
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FIG. 17. (a) Comparison of 160 MeV proton scattering
data with theoretical prediction with the LEQ. Experi-
mental results are from Ref. 21. (b) Comparison of 180
MeV proton scattering data with theoretical prediction
with the LEQ. Experimental results are from Ref. 21.

an ab initio calculation its fit is excellent also com-
pared to phenomenological fits. The 200 MeV data
give reason to believe that large angle scattering is
most strongly influenced by the core. The minimum
in 0(0) around 95° is followed by a backward rise.
Similar results are obtained for 160 and 180 MeV
scattering from “°Ca, Figs. 17 and 18. Again we
emphasize the rise after the minimum around 98°.
The forward region is well reproduced with a
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FIG. 18. (a) 180 MeV I-dependent real central potential
underlying the calculations in Fig. 17(b). (b) 180 MeV [-
dependent imaginary central potential underlying the cal-
culations in Fig. 17(b).
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strongly damped diffraction pattern between 30° and
70°. In phenomenological analyses this damping
was explained as a pure spin orbit effect. A strong
imaginary spin orbit potential is needed to reproduce
this damping in a conventional Woods-Saxon
parametrization. Such a potential is not found in
theoretical approaches. We interpret the damping
rather as a result of the effective /-dependent core
together with the spin orbit potential. Every partial
wave scatters from a different potential leading to a
randomization effect which in turn results in a flat
angular distribution.

In view of the underlying “10% theory” it is not
our intention to overestimate the predictive power of
microscopic OMP and their fits. The exact form of
the backangle rise, e.g., depends on the detailed form
of the density distribution of the target for small
distances and also on the form of the optical poten-
tial close to the origin. These quantities may not be
represented well enough by our approximations. So
the actual form of the backangle cross section is not
well established. Experiments have shown in the
meantime that it is overestimated by the calcula-
tion.22

The damping of the diffraction pattern, on the

other hand, is well established experimentally. In
the energy region between 100 and 300 MeV, pro-
tons penetrate most deeply into the nucleus. So only
for these energies are they sensitive to the form of
the potential in the interior, i.e.,, to the angular
momentum dependent core. Correspondingly, a
large imaginary spin-orbit potential is needed only
in this energy range to fit the data in conventional
models. So we conclude that the large imaginary
spin-orbit potential is only a phenomenological
parametrization of the angular momentum depen-
dent core in the real central potential. For these
reasons, it is proposed that the analyses of future
medium energy data be performed with nonlocal po-
tentials which are either fully microscopic or at least
guided by the microscopic treatment, like the
phenomenological Frahn-Lemmer ansatz—which is
convenient to handle in its multipole decomposition
and contains fewer free parameters than superposi-
tions of several local Woods-Saxon potentials.
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