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Unification of the nuclear collective and single particie models
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The unification of the nuclear collective and single particle models with the help of a

transformation, first published by the author, is presented. The Schrodinger equation with

the new coordinates exhibits all relevant features of the so-called unified nuclear model, but

it is no longer an artificial combination of the continuum, used in the collective model, and

the conventional shell model. As a first application a sum rule for the quadrupole moments

of mirror nuclei is derived. Estimates are given for the deformations of the charge and

mass distributions of ' F and '~O. The approximation of strong coupling of the nucleon

motions to a symmetry axis gives good results, while the weak coupling approximation does

not work at ail.

NUCLEAR STRUCTURE Genuine definition of single particle and

collective states from A nucleon Schrodinger equation. Sum rule for q of
mirror nuclei.

I. INTRODUCTION

with

n Snl y 1+Sn2y2+Sn3y3 ~

y'yk =APk& k (2)

The unified nuclear model is a combination of the
original model for collective nuclear motions' and
the shell model, but is unsatisfactory, insofar as the
different features of this model are not really de-
rived from the Schrodinger equation of A nucleons.
This author was the first to publish a transforma-
tion which brings the Schrodinger equation to a
suitable form which, when including the spin orbit
coupling, brings about the genuine unification of the
collective and single particle models. Other authors
reviewed the same transformation, some with a dif-
ferent mathematical formalism. The idea which
led to the transformation was the following: Any
collective motion in the nucleus means at the same
time rotations and vibrations of the inertia ellipsoid.
Single particle motions refer to the body-fixed axes
defined by the principal axes and are left unchanged
in collective excitations. The single particle and col-
lective degrees of freedom defined in this way are
applicable for all A, though the clean separation of
collective and single particle excitations will hardly
be possible for small A.

In this author's notation the transformation from
the space vectors of the nucleons in the center of
mass system, rn, to the new coordinates is defined in
the following way:

n=1
A

Snj Snk 5j
n=1

(3)

(4)

It is easy to show that the principal moments of in-

ertia are

~i =~(y2'+y3'»

etc. The coordinates snj are the new single particle
coordinates, which are no longer independent, but
connected by (3) and (4). There are six collective
coordinates, namely, yl, y2, y3 and three Euler an-

gles defining the directions of y~, y2, y3. These six
collective coordinates are unaffected by the antisym-
metrization. The Schrodinger equation in the new

coordinates was given in Ref. 2. Here only the ap-
proximate form will be given, which follows for
small deviations from spherical symmetry (which
here always refers to the inertia ellipsoid) and by de-
fining p and y (Ref. 6} to get the connection to Ref.
1

y, =(—, )'~2y[cosP+&2sinP cosy],

y2=( —,)'~ y[cosP+W2sinP cos(y ——,n. )], (6)

y3 ——( —,}' y[cosP+W2sinP cos(y —
3

m )] .

P and y in Ref. l refer to a nucleus which has the
form of an ellipsoid. Here they refer to the inertia
ellipsoid. p=0 means spherical symmetry, that is,
the three moments of inertia defined by (5) are
equal. The magnitude of p is a measure for the de-
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viation from spherical symmetry. For y=nn/. 3,
with n an integer, one has rotational symmetry (two
moments of inertia are equal). The deviation from
these special values of y is a measure for the devia-

tion from rotational symmetry.
For close to spherical nuclei (small values of P}

one has for the kinetic energy of the A nucleons (ig-
noring all terms that are at least linear in sinP}:

r

3~ —4 B 1
L L 2

B' „cosP B 1 B' cos3y B

By y By y B13»nf3 Bp sin i33 By sin3y By
&& 2+ + 2 g e i + 2+ + 2 +3

1

4sin P
e i+Li & } (L~2+Li2} (L83+Li3}
sin y sin (y —2n. /3) sin (y —4n/3)

2' +. 2

' +. 2

+3 gg(5„„———s„s„)V„V„—(A —4)g s„V„
n n' n

+.(kinetic energy of the center of mass) . (7)

etc., with

rn=(xn& y»& zn} ~

With respect to the body-fixed axes the com-
ponents of L, are L, ~, L,2, and L,3. These are, in
terms of the Euler angles,

r

L, ~+ILe2 ——t tie*'

L,3
———i'

(9)

L; is defined in the following way (components for
the body-fixed system):

r

8
Li 1

—l A Q S&& 2 Sn 3—
Sn3 Sn2

(10)

etc., so in terms of s„, the new single particle vec-
tors, L; has the same form with respect to the
body-fixed axes as L, has in terms of r„with
respect to the center of mass axes. This is the
reason for choosing the following indices: e stands
for "external, "i for "internal. "

II. GENERAL PROPERTIES
OF THE KINETIC ENERGY OPERATOR

Equation (7) contains the well-known terms of
Ref. 1 describing rotations, vibrations, and their

Here L, is the operator for the total orbital angular
momentum. The components in the center of mass
system are Les~ Ley, and Lez:

r

L,„=—iA'g y„—z„
a a
~n 3'n

coupling, namely, the terms with L, &, etc., and with
derivatives with respect to P and y. In addition,
there are terms with derivatives with respect to y
describing density vibrations. They are coupled via
the factor 1/y before the braces to all the other
motions. Single particle motions are described by
L; &2, etc. , and all the terms in the last line of Eq. (7).
The Coriolis-type terms L, ~L; ~, etc., give a coupling
between the single particle motion and the total or-
bital angular momentum. There is further coupling
between the different kinds of motions via the coor-
dinate dependent factors before the various deriva-
tives. There will of course be further coupling by
the potential energy.

III. ANTISYMMETRIZATION

The six collective coordinates y, &p, 8, lt, p, and y
are symmetric with respect to exchange of the nu-
cleons. So the antisymmetrization of wave func-
tions affects the single particle vectors s „only, and
that antisymmetrization would indeed be an almost
hopeless task, just as in the ordinary shell model,
when using Jacobi coordinates instead of single par-
ticle vectors. On the basis of these difficulties al-
most all shell model calculations are done with sin-
gle particle vectors with the resulting risk of creat-
ing spurious states (that is, excitations of the center
of mass motions). The additional constraints (4)
further enhance the difficulties of antisymmetriza-
tion. So to make calculations manageable it is prob-
ably best to treat the s„vectors as approximately
independent, requiring the constraints (3) and (4) for
the expectation values only. In that case the sums
over n and n' in Eqs. (7) and (10) run from 1 to A.
[If one would take (3) and (4) into account rigorous-
ly, the sums would include independent terms of the
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s „vectors only. ] The terms ( s „s„)(V „V„) are
taken into account as a perturbation only.

It is obvious that this approximation will be poor
for small particle numbers. For four particles, for
example, one has nine degrees of freedom. Treating
the s„vectors as independent, one would have 18.
Furthermore, the single particle terms containing 5„
and b,„ in Eq. (7) disappear when taking (3) and (4)
into account for four particles. This and some gen-
eral properties of the single particle vectors s „,with
Eqs. (3) and (4) rigorously taken into account, are
discussed in the Appendix. These properties are im-
portant when dealing with a small number of parti-
cles, e.g., four or five.

V[(r„—r, ) ]= V[(s„,—s„)y,

+(SA2 $12) y2

+(SA3 $13) y3 ]

%hen

(13)

eral, but near spherical symmetry and with central
interactions (but without spin orbit coupling) it
would be a good approximation: Let

V[(rA —r1) ]
be the potential of such an interaction between nu-
cleons 1 andA. It is

IV. DEFINITION OF SINGLE PARTICLE
AND COLLECTIVE STATES

y1
——y2

——y3 (spherical symmetry),

V[( rA —r1) ]= V[( s A
—s1) y1 ] . (14)

The discussion in the following will be restricted
to a simple case to make it more transparent: a sin-
gle nucleon outside closed shells. The dependence of
the wave function on the sA vector of this last nu-
cleon is taken into consideration alone in addition to
the dependence on the collective coordinates. No
antisymmetrization is done.

The polar coordinates of sA in the body-fixed
system are defined in the usual way:

sA1 ——sA sini9A cospA,

sA 2
——sA sin& sinyA,

SA 3 SA COSSA

Pure collective excitations in the sense of Ref. 1 are
obtained when

L,.% =0. (12)

The wave function 1II here depends on the six collec-
tive coordinates and on sz.

Equation (12) would mean that the last nucleon is
in an s state or, in the more general case of several
nucleons outside closed shells, their orbital angular
momenta couple to zero. With Eq. (12) valid, the
Coriolis-type terms L, ]L;~, etc., in the kinetic ener-

gy operator (7) vanish. The only coupling between
collective and single particle degrees of freedom
then comes from the factor 1/y before the brace.
If one excludes density vibrations, 1/y is replaced
by its expectation value and there is no longer any
coupling between collective and single particle
motion. The collective part of the Hamiltonian is
the same as in Ref. 1 and is dealt with in numerous
papers. The more complicated case of nonvanishing
internal angular momentum requires a new defini-
tion of single particle states. For simplicity it is as-
sumed here that the potential does not depend on
the polar angles 8A and yA. That is wrong in gen-

This V depends on the angle between s z and s &, but
not on the orientation of s A. One would have

L, 20 =1112I;(I;+1)%1. (15)

Spin orbit coupling will cause a mixture of different
I; values, but for now this mixing will be ignored.
With potentials of the form (14) the solutions of the

I,
Schrodinger equation are called %1'1. in the follow-ei
ing, for which one has, in addition to (15),

~ I'1,rC, (&AtA ) . . . (17)

There are 2ls+1 different functions (17) and they
are the complete system in the five-dimensional
space of y, 5, f, 5A, and qA for fixed values of I„
l;, l„and M, . The solution of the Schrodinger

1,
equation %1',1 can be expanded in these functions

with the expansion coefficients depending on the
collective coordinates and on sq.

I, lx
%'1*1 = g f„(y,P, X,SA)%'j1, .

L, 4'('1=Pi l (l e+, e1)%'(*1,

S I,
I' ~e+I t

(L, +L;) 0'1'1 ——A' ls(le+1)q'1'1

I,
+I'I. was not indexed with M„as this quantumei
number is of less importance.

The wave function can now be expanded in terms
l, ~

of %1'1, which in addition to L, , L„, L;, and

(L, +L;), is an eigenfunction of Le3+Lf3

li le ls

K —
e K
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A word should be said here about Eq. (17): The
right-hand side looks like an addition of two orbital
angular momenta to give a total orbital angular
rnornentum quantum number I, . This interpretation
is of course incorrect. The total orbital angular
momentum is L, with quantum number l, . The to-
tal angular momentum will be obtained by adding
the spin angular momentum to L„which was left
out so far and will be discussed below. L; refers to
the motion in the body-fixed system and cannot be
added to L, to give another orbital angular momen-
tum. So the addition is a formal one and 1, is just a

quantum number which occurs because

L,'=(L, +L;)'

commutes with the total Hamiltonian. The magni-
tude of the quantum number l, contains a statement
about the magnitude of the nuclear deformation.
Looking at the kinetic energy operator, Eq. (7), one

. sees that the terms with (L„+LJ ) have singulari-
ties at p=O, that is, for spherical symmetry. So
when l, &0 and, as a consequence, the expectation
values of (L,J+L,J) do not vanish, the wave func-
tion must be zero at p=O. So all states with l, &0
are nonspherical. The deviation from spherical
symmetry will in general increase with increasing 1, .

I

States with l, =0 may be spherically symmetric.
To make these statements more transparent, here

is a simple example in which rotational symmetry
with y ~

——y2 is assumed, that is, y =~/3 or
y=4rr/3. Furthermore, the potential is assumed
not to depend on p. Then the ground state with
1,=0 does not depend on p. For the excited states
with /, &0 one has a positive potential proportional
to

1
1,(l, +1),

sin p
(19)

which has its origin in the term

l«.~+L i)'+ «.2+L.2)']
sin'p

Equation (19) is a positive potential that increases in
strength with increasing l, . So the expectation value
of P will increase with 1,. If one has a potential en-
ergy with a strong maximum at p=O and no y
dependence, the ground state of the nucleus will
have l, =—0 and I, =l;. These states are the closest
analog to the ordinary single particle states and will
be called single particle states henceforth. Their
definition is

I; I; 0
q sp

——fo(y, p, sg) g ~ I(. ()
I M, K, (f»@~4)~l,x, (@A%'A). (21)

The single particle coordinates of one nucleon and
the collective degrees appear in Eq. (21) as assumed
above. Then the last line of (7) reduces to

1
1 ———sg b,g —(A —4)sg

Bsq
(22)

&= &~(y)+, I &p(p)+&, (s~)J .
1

(23)

Equation (23) includes the ordinary shell model with
an oscillator potential, which has no sz dependence
at all and also no p dependence, because

A
2 2

rn =3' (24)

To further simplify the problem, a simple s„depen-
dence of the potential is assumed, such that the total
potential has the form

I

tial assumed here.
Placing (21) into the Schrodinger equation, multi-

plying with the complex conjugate (c.c.) of the sum
in Eq. (21), and integrating over y, 0, 11, 8z, and

yz, one obtains an equation for fo the solution of
which, with the lowest energy eigenvalue, is just fo.
Now there may be different kinds of excitations, as
will be discussed below.

A. Single particle excitations

(1). Excitations of the internal angular momen-
tum, that is, 1; in the excited state is different from
the ground state; but still 1, =0. So the form (21) of
the wave function is retained.

(2). Excitations in the sz space. With the simple
form (23) of the potential one has

n=1 fo Ro(y, p)ho(sw )——, (25)
as a consequence of the constraints (4). The very
important difference in comparison to the ordinary
shell model is the strong p dependence of the poten-

so there may be separate excitations of the sz depen-
dence.
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B. Collective excitations

(1). Vibrational states: pure excitatons in y, P, and

y space. In this case there is a function g in (25)
which is different from the ground state.

(2). Rotational states: l, &0; I; unchanged; they,
P, and y dependence also change in this case.

proportional to

0 n' 1 ni

where

cl= —l f1 Sn 2
BSn

Sn3 ~ s ~ ~ 0 p ~ ~ ~

Osn

(26)

There may of course be excitations which include all
the different kinds.

Strictly speaking there is never a pure single parti-
cle excitation, even with the potential of the form
(23), because the y dependence of the wave function
in an excited state will always be different from the
ground state. But V„(y) must have a very strong
maximum for a special value of y leading to a con-
stant nuclear density, almost equal in all states.
That means that the y dependence is almost the
same in all states, except of course for vibrations in

y space (density or monopole vibrations), which
seem to be rare in nuclei.

Support for the new definition of (21) as genuine
single particle states comes from looking at the ordi-

nary shell model states. Transforming them with (1}
to the new coordinates one will probably find in all
cases that the largest percentage of the wave func-
tion has the form (21). As an example, the transfor-
mation was performed for a single case only, name-

ly, a d nucleon in an oscillator potential, and all oth-
er nucleons in s states. In that case the fraction,
which the genuine single particle state (21) contri-
butes to the wave function, is

(3A —I)/(3A+3};
it is close to 1. The rest will be of a collective na-
ture. This result is quite satisfactory and shows that
the old problem of a genuine unification of the sin-

gle particle and collective models may really be
solved via the transformation (1): In the body-fixed
system one has a clear distinction between collective
and single particle states, while the ordinary shell
~odel states always contain a small fraction of col-
lective excitation when looked at from the new
standpoint. This fact explains that one needs quite a
number of ordinary shell model states to describe a
collective excitation.

V. SPIN ORBIT COUPLING

The spin orbit coupling is introduced as a
phenomenologic interaction to obtain the magic
numbers in the ordinary shell model. If one
transforms the inner product O.

n 1„,which occurs
in the spin orbit coupling, with (1) to the body-fixed
system, one obtains a sum of two terms; the first is
proportional to on. L„where L, is the total orbital
angular momentum, Eq. (9). The second term is

2j'= L;+ —,
' g

n

(28}

will play the role which the total angular momen-
tum plays in the ordinary shell model. The solution
of the Schrodinger equation will be an eigenfunction
of j . It must of course be an eigenfunction of the
total angular momentum square

2

J = L, + —, go„ (29)

It is not so obvious that it really is, because (26) con-
tains the Euler angles: If one refers the components
of the two vectors in (26) to the center of mass sys-
tem, then L„; depends on the Euler angles. One can
see this from the form (27) of the vector operator
L„;,which refers to the body-fixed axes and does not
depend on the Euler angles. This dependence is
brought in through the rotation to the center of
mass system. If, on the other hand, one chooses the
body-fixed system as the frame of reference, the
components of the vector operator O.

n depend on the
Euler angles.

As (29) depends on the Euler angles too, a check
on the commutation relations seemed necessary. It
revealed that J and the spin orbit coupling com-
mute. j,Eq. (28) also depends on the Euler angles
via the term L;.o„. One finds that j and J
also commute. L, does not commute with the
spin orbit coupling; hence different values of I, will
appear in the wave function.

(27)

is the orbital angular momentum operator for the
nth nucleon defined with the single particle coordi-
nates s„and occurring in Eq. (10) already. The in-
dex i stands for "internal" as before.

The factors multiplying these two terms are rath-
er complicated functions of all the coordinates. As
a consequence, this transformed spin orbit coupling
would complicate the mathematical treatment of all
the problems. For this reason the spin orbit cou-
pling is redefined. The first term is ignored com-
pletely; only the term (26) is taken into account. For
the factor multiplying (26) one will take simple
functions of s„, possibly of the same form as in the
ordinary shell model, with rn now replaced by s„.

With such a spin orbit interaction the quantity
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Operator
~2J
J,~2

J3
(L, +L;)'
Le3+L;3

2L.

Eigenvalue

A'J(J+1)
AM

W'j(j+1)
firn j
A'l, (l, +1)
fyc
A' le(le+ 1).

VI. THE CASES OF STRONG
AND %'EAK COUPLING

One can now construct eigenfunctions which cor-
respond to the cases of the so-called strong and
weak coupling in the Nilsson model. The operators
and their eigenvalues are as follows:

The case of the so-called strong coupling can only
occur when the nucleus is deformed; for example,
when yt ——y2~y3. One has a potential which de-
pends strongly on 5z and hence couples the particle
motion to the nuclear symmetry axis. In this case
one will use eigenfunctions of the fi'e commutable

2 ~ 2operators J, J„j,j3, and «,3+L;3, though the
solution will not be an eigenfunction of j;it will be
a mixture of functions with different j. But in many
cases it may be sufficient to take into account a sin-
gle j value; that will be done here. The eigenfunc--2'
tions of J, J„and 1.,3+1.; 3 can be written immedi-
ately and have the form

1

2 J
~ D '„. r, (q-»@. 4)I'Ix, (@~ q. ~)us-mc —me

me J

(30)

In addition, (30) is an eigenfunction of L, , L;, and L;3. In general the solution of the Schrodinger equation
will be a linear combination of eigenfunctions with different eigenvalues of these three latter operators. s~ —m

are the spinfunctions a and P of the nucleon.
In our case one has to construct from (30) eigenfunctions of j and j3. They will be linear combinations of

(30):

ql JM

le +i me

I
me~+ +i I+i M —me

O' F s (31)

Here only a single l value

ing way: Applying
1j3=«;3+—,~3

has been taken into account as mentioned above. aL z are determined in the follow-

(32)

[where o =(o &,cr2, o3) is the spin operator of the single nucleon referred to the body-fixed system] to (31) one
has to use

(33)

Li 0 «i 1O1+«i22+«i 3O3

Again one has to use the form of (31) in which the s~ ~ are transformed to the body-fixed system.—m

The final result one finds this way is
1

2le
@/M (g 2) —1/2g g y ( ) e(2I +1)l/2

JmJK
m K;

meM —m, M

«.3~X,.=~ ~uC,

3 cannot be applied to SM- directly, because this splnfunctlon refers to the center of mass system One has—me

to relate it with the functions D„'& (q&5f) to the s„' ~ in the body-fixed system. Having done that, o3 can be ap
Plied to s„' ~ and the requirement that (31) is an eigenfunction of j3 yields relations between the coefficients a~ z.

e i
Other relations are found when requiring that (31) is an eigenfunction of j . It is already an eigenfunction of
L; and of cr occurring in j, but not of L; o. Again the components of L; and of o are referred to the
body-fixed system:

1

2

X ~—m m —EJ J I

I —, j
m —Q m me" +i IEi M me

J l J
(35)
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In the strong coupling case one has a 5„-dependent
potential and the general solution of the Schrodinger
equation, assuming a nucleus of rotational symme-
try, will be a linear combination of functions (35) be-
longing to different eigenvalues j. Furthermore, n.

must be zero in the case of rotational symmetry with

y~ ——y2 owing to the term

L,1L;1+L,2L; 2 (37)

(38)

with a very small correction proportional to

The expectation value of (37) using (35) with i'd=0
as the wave function is found to be proportional to

( —) (J+ 2 )& l~. l, iy2 ~

1
(L,3+1;3)2

sin (y—4~/3)
(36) 1(~+ z +Im, l

&&» (39)

in the kinetic energy, which is singular when y& ——y2.
The spectra of nuclei with strong coupling consist of

~ mj ~

bands (usually called K bands; the symbol mi
is used here because the definition of j is different
from the ordinary unified model), see e.g., Ref. 9.
The Coriolis term is treated as a perturbation in that
case. The corresponding term here is the one which
is proportional to

that is, without the factor ( —) of Eq. (38). So the
characteristics of the

~ mj ~

= —, band are repro-
duced in the genuine unified nuclear model. In the
case of weak coupling one has no potential which
couples the single particle motion to the axes y~, y2,
and y3. So l and l, are good quantum numbers, but

mj is not. The solution of the Schrodinger equation
is again taken as a linear combination of (30):

1

2 J
ji»= gggbix m ~ I D~ » x Yw's~. ,

1 Kim
(40)

The expansion coefficients bi x, are determined in the same way as the ai x, of Eq. (31), the only difference be-
e i e i

ing that (40) must be an eigenfunction of (L, +L;) instead of j3. The result is the following:

l l, l,
%ji „(8n )

'~——g g g (2j+ I)'~ (21, +1) .

le me Ki

1

l l,

K; v —I(;
e

Dm, z —K. ~1K ~M —m (41)

For spherical symmetry (P =0) one has 1, =0, which follows from the singular behavior of the kinetic energy
operator. From the properties of the 6j symbol in (41) one obtains J=j. So the spins of nuclei near closed
shells, like those of ' 0 and ' F, are reproduced.

VII. FIRST APPLICATION:
QUADRUPOLE MOMENTS OF MIRROR NUCLEI

The relation between deformations and charge distributions on one hand and the quadrupole moments of
mirror nuclei on the other hand are examples of the usefulness of the genuine unified nuclear model. The
quadrupole moment operator of a single proton has approximately the following form [(43)],when transformed
to the new coordinates;

2 2
Qn =3zn rn

= [8m(10m )' /15]sn y [W2jt'20Pcos(y 4n /3)+gzz—],
where

(42)

(43)
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There are additional terms in Q which contain all
the functions (44) with l, =l; =2. They were
dropped in Eq. (43) because they are linear in P
(those with ls

——2) or quadratic (those with ls ——4;
odd values of lx do not occur) and their contribu-
tions are small compared to those of the two terms
in Eq. (43). For rotational symmetry with y~

——y2
one has either y=4m/3 (prolate nuclei) or y=m/3
(oblate nuclei).

There is a certain justification for calling the first
term in (43), which is proportional to X&0, the contri-
bution of the nth proton to the collective part of the
quadrupole moment. The second term, which is
proportional to 722, is the single particle quadrupole
moment. Justification for this terminology is as fol-
lows: The function gzo does not depend on the an-
gles 8z and q&z. So even with the proton A in the ls
state this term will give a contribution to the quad-
rupole moment. An example would be a wave func-
tion with l, =2, which in addition to the dependence
on y, 5, and g, depends only on y ~, y2, and y3 and
not on s„(for example, a rotational state of a sys-
tem of particles which are all in the ls state). The
quadrupole moment then comes from the deforma-
tion of the charge distribution (which for P=O is
spherically symmetric).

The second term in (43) also contributes when
there is no deformation (P =0). It does not contri-
bute for single particle states of spherical symmetry
(l =0). This dependence on the angular distribution
of the single particle justifies the designation of this
term as a single particle quadrupole moment.

In the following the author will attempt to ex-

plain the quadrupole moments of the two mirror nu-

f(y&,y2,y3, sg ) Y2m(~g ~pg ) ~ (46)

The magnitude of (46), required to explain the quad-
rupole moments, would be such that the energy
spectra of the two mirror nuclei would be complete-
ly different. The conclusion is that the effect of the
Coulomb interaction on the quadrupole moments is
negligible. In the following a completely antisym-
metrized wave function is assumed. For the orbital
angular momentum only the contribution of l, =2 is
carried along, although l, =3 will give some contri-

5
bution for a d —, state, as can be seen from Eq. (3S).

The case of weak coupling, corresponding to Eq.
(40), will be discussed first. For small deformations,
which one expects for ' 0 and ' F, one may drop
the contributions of l, &0. Then the wave function
has the following form:

clei ' 0 and ' F, which have approximately the fol-
lowing values':

'O: q= —26mb,
(45)

' F: q=100 mb.

One might think that the difference in the Coulomb
interactions between these two nuclei could be re-
sponsible for making ' F a prolate nucleus in con-
trast to the seemingly oblate ' O. For completeness
such a calculation was attempted. It turned out that
such an explanation is out of the question. It would
require a very large nonspherical part of the
Coulomb interaction of the d nucleon with the rest
of the nucleus, that is, of the form

2 2 Ol
+=( 8~ ) g g g 0 D2x (g ~ 4)f2, —x'

K

(which is for M =2, as needed to compute the quad-
rupole moment). The functions f2k contain the
spin functions, the single particle coordinates s„,
and the collective coordinates y~, y&, and y3. They
are eigenfunctions of L; and L;3 with eigenvalues 2
and k, respectively, just as for the ordinary antisym-
metrized shell model wave function with one nu-
cleon in the d —, shell. The expectation value of gzo,
the first term in (43) is found to be zero. This fol-
lows after integration over y, 4, and P using the fact
that the functions f2 x are normalized:

In (48) integrations are performed over all spatial
coordinates except p, 8, and P, and summations
over all spin coordinates. The matrix element of X2o

(47)

l

is then proportional to

222
& Z03;
K

(49)

which is zero.
The second term in Eq. (43) contains the matrix

element of 722 and gives a nonzero contribution to
the quadrupole moment. In the following, Q„[Eq.
(43)] will be written as

Q. =Q:+Q.',
where c and s stand for "collective" and "single"
particle, respectively. Statements about the quadru-
pole moments of mirror nuclei can now be derived
from the contraints (4), which are equivalent to the
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following six constraints, as can be shown easily:

g sn F~rn(S„,q „)=0,
n=1

A

Sn =3 .

(51a)

(51b)

The same spherical harmonics as in (51a) are presentI+22.
One has

A

g gqq(n)s„=o
n=1

(52)

g g„'=o.
n=1

(53)

q=(g)= g (g.').
protons

(55)

As the wave function is completely antisym-
metrized, the contributions of all the protons are
equal:

&Q.') =&g')„,..... (56)

Here the index n was simply dropped and (Q') „„„
is the contribution of a single proton to the quadru-
pole moment. Then (55) is

q =Z& Q )proton (57)

The constraints (53) can be written (taking the less
stringent form for the expectation values now)

z(g') „...„+x(g')„,„„.„=0 . (58)

In mirror nuclei the roles of protons and neutrons
are exchanged. This means for the example of ' F
and ' 0 (ignoring the effect of the Coulomb interac-
tion; see the above discussion):

The sum in (53) includes the neutrons, while in the
quadrupole moment only the protons enter:

Q= g (Q„'+Q.'). (54)
protons

For the expectation values it was already shown that
in the case of weak coupling there is no contribution
from Q„', so

as a consequence of (58) and (59).
So the quadrupole moments of the two mirror nu-

clei should be of opposite sign and equal in magni-
tude when using the weak coupling approximation,
that is there is no coupling of the nucleon motion to
one of the axes yi, yq, or y3. This statement is
correct for any deformation P, and apart from the
weak coupling approximation the derivation is
rigorous.

The experimental values for q are opposite in sign,
but very different in magnitude. Moreover, when

using a simple shell model version for f2+ one ob-
tains a quadrupole moment between 20 and 30 mb
for ' 0, and correspondingly, between —20 and
—30 mb for '7F (this latter value is about the same
as in the ordinary shell model). So the quadrupole
moments in the weak coupling approximation are
also wrong in sign.

The uncertainty in the values comes from dif-
ferent choices of y, which was defined in Eq. (6),
yi, y2, and y3 are related to the moments of iner-
tia by Eq. (5). Taking an almost spherical nucleus,
which is justified here (see below), one has approxi-
mately:

2 2 2 2
y& =y3 =y /3

J, =J2 —J3 -2my /3 .
(61)

0 =[(21e+I)/8m ]' QDI'x(q), 5,$)gir . (63)

Assuming constant density inside the nucleus and
zero density outside, one has

2my /3=( —, )mA'~ ro (62)

There is quite an uncertainty in y as the assump-
tion of constant density is not correct and as ro may
be somewhere between 1 and 1.4 fm.

The assumption of weak coupling has to be aban-
doned in the present case. Satisfactory results are
found in the strong coupling approximation. Before
deriving the quadrupole moments in this approxi-
mation a general formula will be given here, which
is valid in any approximation, including the weak
coupling. For simplicity only wave functions are
considered which are eigenfunctions of L, with
quantum numbers I-,:

17F . S 170
& Q &proton= & Q &neutron

and for the quadrupole moments:

q(' O)=8(Q')p„„„,

q("F)=9&g &,
","....
170=9 & Q & neutron i

s 17
8& Q )proton i

(59)

(60)

by

+& Q )neutron (64)

The restriction of the weak coupling approximation,
that the functions g~ are eigenfunctions of L; and

L;3, is dropped. Applying the relation (58) (which is
rigorous) to a certain nucleus ZN [this is added as
an upper index in Eq. (58) now] and replacing
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&& Q &proton ~

one obtains

(65) (69e)

(69f)

ZN+ NZ p (67)

No approximation has been made to obtain Eq. (67).
It also remains valid when more than one l, value is
included in Eq. (63).

To get some qualitative results a simple wave
function in the strong coupling approximation is ap-
plied now to ' F and ' 0 (with ls and Ip shells filled
and one nucleon in the 2d shell): For the spatial
part of the wave function of the nucleons in the s
and p shells,

fl (s )~/ (& (68a)

is used. The wave function of the nucleon in the t2t

shell together with the dependence on the Euler an-
gles is (with y, =y2@y3):

f22(Sn)( i6 /r ) [ ~22 (t},n/nO)D2, —2 (g

+ ~2, 2(&n —V n»22 (tI»4)]

(66)

As N is the proton number in the nucleus Nz, the
relation (66) means that the sum of the single parti-
cle contributions to the quadrupole moments of mir-
ror nuclei is zero. As a consequence, the sum of the
quadrupole moments of mirror nuclei is different
from zero only when P&0:

pixi+pqx3 ——100 mb,

pixp+ppx4 ———26 mb,

xi+xp ——3,
X3+X4=0 .

(70a)

(70b)

(70c)

(70d)

Adding (70a) and (70b) one finds, with (70c) and
(70d),

74
pi ——( —, ) mb . (71)

So there are three equations left for the five quanti-
ties xi, x2, x3, x4, and p2. From the size of the nu-
clear radius one knows [see Eq. (62)], that y is
probably within the following range:

1000 mb & (y ) & 1500 mb, (72a)

so

where all the quantities refer to ' F and
(sn )f'"i'"m o is the expectation value of s„ for a
proton in a 1p state with m =0, etc.

The two quadrupole moments, for which the ap-
proximate experimental values 100 mb and —26 mb
are taken, and the constraints (51a) and (5lb) which
connect the expectation values of the different s„
are now [using (68)]:

(68b)
381 mb &pp & 571 mb . (72b)

The functions f/m must be seen as the unknown
functions, which are to be determined eventually by
a variational calculation. Below it is found that the
f/m are different in the substates m =+1 and m =0.
The wave function will have a factor depending on y
and p which multiplies the Slater determinant. The
quadrupole moments of the two mirror nuclei will
be given below in terms of the expectation values of
s„,y, and p. Owing to the charge independence of
the nuclear forces (the roles of neutrons and protons
are exchanged in mirror nuclei) all the quantities of
' 0 can be expressed by those of ' F. The following
abbreviations will be used:

and hence

ppx3 ———ppx4-61 mb .

with (72b) one has

—0.16&x4 & —0. 1

and with (69d)

(74)

(75)

Assuming that the average value of (s„) for pro-
tons is equal to the average of (s„) for neutrons,
one has

27 24

protons

neutrons

s )I( n )/=1 m=o ( n )/=I

hami=/I

1 p proton
7 )&Sn &l=2, im i

=2

&4=( —, ) I &s. '&l='"i",'"=o—&s &/='"i", i"
i
=i J

(69a)

(69b)

(69c)

(69d)

(76)

In the ordinary shell model this quantity would be
zero. This quantity not being zero means a consid-
erable deformation of the lp shell. Owing to (76)
the neutron 1p shell is oblate: The average distance
from the center of mass of the neutrons with l =1,

i
m

i
=1 is considerably larger than that for I = 1,

m =0. The
i
m

i
= 1 neutrons have a density distri-



27 UNIFICATION OF THE NUCLEAR COLLECTIVE AND. . . 2373

bution which is proportional to sin 8„. It has its
maximum in the y] —y2 plane. Owing'to (76) its ra-
dius is increased, while the radius of the m =0 dis-
tribution, which has its maximum on the y3 axis, is
diminished.

Similarly, it follows that the proton lp shell is
prolate. Going from the lower limit of 0.25 to the
upper limit of 0.4 in (76) the deformation of the
neutron lp shell increases. For the lower limit of
0.25 the author checked that there exist reasonable
values for all (s„) which solve Eq. (70). For this
special example the deformation (p) is found from
Eq. (71) with (y ) =1500mb:

APPENDIX:
THE SINGLE COORDINATES

Instead of the s„vectors one may as well use
Jacobi vectors, which are defined in terms of the s „
(and by which the s „can be expressed):

a] ——( s 2
—s ])/]/2,

a2 ——[ s 3
—( s ]+ s 2)/2 I( —, )'

aA-]=[ sA —(s]+ ' ' ' + sA-])/(A —1)I

(p) =o.o6. (77) X [(A —1)/A ]' (80)

(Pz ) =0.16 (prolate),

(P„)=0.04 (oblate) .

(78)

(79)

For comparison the deformations for the neutrons
and protons will be calculated approximately.

Assuming that the proton and the neutron distri-
butions are rotationally symmetric around the y3
axis, as is the mass distribution, and applying the
transformation (1) to neutrons and protons separate-
ly, one obtains (again for ' F):

The constraints (4) also hold for these Jacobi vec-
tors:

A —1

Qnj nk ~nk .
n=1

(81)

The components of a]j,a2j, . . .,a„,j can be con-
sidered the components of a unit vector. The three
unit vectors with j =1, 2, and 3 are orthogonal. So
we can define them as the first three columns of an
orthogonal matrix:

For ' 0 the values of (78) and (79) have to be ex-
changed.

VIII. CONCLUSION

Q11)

Q21,

Q12)

Q2p)

Qa —1,2

Q13'''
Q23'''

(82)

The application of the genuine unified model to
the case of the two mirror nuclei ' F and ' 0 shows
that the quadrupole moments of these two nuclei
cannot be explained in the so-called weak coupling
approximation, that is, without coupling of the nu-

cleon motion to the symmetry axis. In that case, the
sum of the two quadrupole moments would be zero
and they both would be opposite in sign to the ex-
perimental values. The strong coupling approxima-
tion in which al/ the nucleons are coupled strongly
to the symmetry axis (assuming that there is one)
yields very good results. So it can be concluded that
the truth is very close to the strong coupling approx-
imation.

It has been demonstrated in this paper that the
new concept of collective and single particle coordi-
nates is useful for smaller nucleon numbers than the
conventional collective model is. In addition, it has
been shown already for a non-nuclear problem that
the coordinates can be useful for very small particle
numbers (in this case for four particles). "

This work is dedicated to the memory of Gregory
Breit, my former teacher.

One can define the a„j in terms of 3A-9 angles.
A special orthogonal matrix M would be, for ex-

ample,

M —(M]2 M]3 M]4 M] A ] )

(M23 M24 M2, A —] )

=(M34 (83)

where

cosy12, siny12, 0,
—siny12, cosp12, 0,

Q ~ ~ ~

Q ~ ~ ~

M12 —— 0,
0,

0, 1,

0, 0,
0 o ~ ~

~ ~ ~

(84)

and Mk is defined correspondingly. The first three
columns of M would be just a special representation
for the Q„j. The part of the volume element depend-
ing on the single particle coordinates, now the angles

y,z, was found to be
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(sing&~3sin p~qsin p~5 sin" yl ~ ~)(dy~2 dt's~ A ~)

(siny24sin y2s
' sin qr2 q ~)(dq 23

. dV'2 g ))

(sin%'35 ' sin" ~tl'3 „&)(dq34 d P3 g ]) . (85)

(86)
n n'

For four particles the three vectors a„are orthogonal unit vectors. So this whole term vanishes for A =4.

In the main part of this paper it was proposed to treat the s„vectors as independent. This can be done only
when A &&1, as was already mentioned. For small particle numbers one would have to use angles as the y;k.
The four particle problem has already been studied in detail. In that case the matrix (82) reduces to a three by
three matrix, whose elements can be defined in terms of only three angles.

With the use of the Jacobi coordinates the double sum in the last line of Eq. (7) is replaced by

yy(5„„—a„a„)V„.V'„—(A —4)ya„V„.
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