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Variational estimates of exclusive cross sections
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A variational principle, based on microscopic trial wave functions to calculate correc-
tions to the Born amplitude, is described. The case of high multiplicity final channels is

considered. It is shown that the transition amplitude for exclusive processes can always be
estimated.

NUCLEAR REACTIONS Variational principle gives microscopic
transition amplitudes for heavy ion fragmentation.

I. INTRODUCTION

Heavy ion collisions at intermediate energies, 10
MeV &E/A ( 100 MeV, raise a serious challenge to
the theory of collisions. Indeed, at lower energies
comparable to the Coulomb barrier and not exceed-
ing the binding energy per nucleon, 3
MeV &E/A (10 MeV, it has been found that nu-

clear viscosity helps in restricting the basic reaction
mechanism to two-body situations, even though
preequilibrium, ' fast fission, and evaporation phe-
nomena, among others, may create final channels
with more than two bodies in the continuum. This
low energy domain has been described by quite a
few theories, ranging from DWBA (Ref. 4} to trans-

port equations, all involving the excitation or expli-
cit treatment of a limited number of degrees of free-
dom. The other extreme domain, corresponding to
high energies, E/A & 100 MeV, does involve the ex-

citation of all nuclear degrees of freedom, not to
mention mesonic degrees. The theories proposed
and used in this domain range from multiple
scattering for a single nucleon projectile to various
statistical and classical limits, such as fire-ball and
cascade models. The Pauli principle and the
many-body correlations are often considered of lim-
ited importance in this limit.

In the transition region, however, the complete
nucleon breakup threshold, E/A =10 MeV, and the
Fermi energy, &z-50 MeV, just create a situation
in which a theory of collisions should allow for a
microscopic, antisymmetrized description of all de-
grees of freedom. As long as the time-dependent
Hartree-Fock (TDHF} description of scattering has
not evolved into a reliable theory of collisions, the
analysis of exclusive or partly exclusive cross sec-

tions seems to be beyond reach except through rath-
er phenomenological models. It should be noted,
however, that some attempts in this direction are
now in progress. '

Some performed or planned experiments at heavy
ion facilities, however, involve a stimulating degree
of exclusive or partly exclusive measurements. The
purpose of this paper is to show how a microscopic
theory of collisions may give at least some estimates
of such exclusive processes. The theory which fol-
lows is based on a formally exact variational deriva-
tion of the many-body transition amplitude. " It is
already clear at this stage, however, that a varia-
tional principle is only as good as the class of trial
functions that are allowed in a practical calculation.
The theory will thus provide gross estimates rather
than accurate amplitudes for exclusive processes. It
is the ratios of these estimates for various final
states and various mechanisms which will have to
be considered when analyzing experimental evi-
dence.

This paper is organized as follows. Section II
contains a brief reminder of the variational princi-
ple" under study and a short description of the
schemes available for practical calculations. An il-
lustrative example is given in Sec. III with a numer-
ical application. It corresponds to the elastic
scattering of two heavy ions in the approximation
where their internal structure is ignored. This ex-

ample discusses at length the technicalities con-
sidered in making the variational principle a realis-
tic approximation. Section IV shows how the
theory can be extended to processes considering the
details of internal structure and more than two bo-
dies in a channel. The problem of antisymmetriza-
tion is treated in Sec. V. In Sec. VI we discuss the
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classes of trial functions which can be implemented
for the description of various mechanisms. Section
VII is the general discussion and conclusion.

The function P is defined by the channel momen-
tum k, the projectile and target internal wave func-
tions Pz(gz) and fg(g, ), with the corresponding
Jacobi coordinates gz and g„and a suitable wave
packet motion. As usual the prior interaction is

II. THE VARIATIONAL PRINCIPLE V=+~„ (2.3)

We consider a system of N nucleons, their coordi-
nates x—:(xi xz), momenta p—:(pi p~),
and their Hamiltonian H =W+P . Here P is a
sum of two-body potentials,

&i1
1(J

and the center of mass kinetic energy operator is re-
moved from the total energy; hence

The Hamiltonian acts only in the space of N —1

vector Jacobi coordinates g, but for obvious techni-
cal reasons it is better to perform integrations and
write wave functions and operators in the x or p
representation. The precaution to take is to use
only wave functions of the form

V'= g W;, + g m,,+ g y", ,
iaaf& i6f2 i&f3
j cf2 j Ef3 j &f)

and one is interested in the transition amplitude

(2.4)

T=Tg, +ET
—= &X'~ V~X&+&X'~ V'(E+ H) 'V iX—&.

imp
jEt

In the same way let I'(x) denote the final channel
wave function. While X is a two-body channel, X'

may have any fragmentation. If, for instance, three
fragments f ~ f2f3 are involved, one needs to specify
two relative momenta k&2 and k~3, three internal
wave functions $1(gf, ), $2(gf ), gq(gf ), and again

a center-of-mass motion. The post potential is then
trivially

4(x)=4, m (R)4;„,(g), (2.1)
(2.5)

where internal and center-of-mass motions are
decoupled. Such a factorization is trivial to imple-
ment with plane waves and harmonic oscillators. It
has also been extensively studied and reasonably sa-
tisfied in the framework of the shell model, the
Hartree-Fock, and the generator coordinate
theories.

This precaution for center-of-mass elimination
will be understood in the following. Hence any
physical (internal) operator A (x):—A (g) will appear
in matrix elements

(4'
/
(E H)

/

4&— (2.6)

which depends upon two arbitrary trial functions 4,
4 . It is trivial to check that the stationarity condi-
tions" of F with respect to 4 and 4' read, respec-
tively,

The Born term TB, is usually straightforward,
even though sometimes tedious to calculate. The
correction b, T is a different matter. In order to esti-
mate it we introduce the functional

(4'/A
/

4&-„
& e,'„, [A [ C;„,& (— (2.2)

where the numerator is obtained by an integration
over all the single nucleon coordinates (or momenta)
and the denominator is the overlap of the relevant
center-of-mass wave packets, just an integral over R
(or P). In the following, the left-hand side of Eq.
(2.2) will henceforth be denoted by (4'

~

A
~

4 &.

Let X(x ) denote the initial channel wave function
and V the corresponding channel (prior) interaction.

and

Hence the stationary value of F is

(2.7a)

(2.7b)

(X'i V'(E H) 'V iX&—
(X'i V'(E H) (E H)(E H—) 'V iX&— — (2.8)
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It will be noticed that F does not depend upon the
normalization of 4 and O'. The normalization
coefficients in Eqs. (2.7) actually turn out to be
equal to 1 in the exact case and pan be taken as 1 in
any restricted variational space. In order to avoid
difficulties in the validity of the relation

(E H)(—E H) —'= 1

used in Eq. (2.8) it is advisable to give to E a nonin-
finitesimal imaginary part. Hence the resolvent
(E H) —' becomes a bona fide bounded operator.

Alternatively one may consider the functional"

G=&+"
I
I'I&&+&&'I ~'I @&—&@'I« —»

I
~'&

(2.9)

which depends upon the normalizations of 4 and
4', but yields the same stationarity conditions and
stationary value as F.

As will be seen in more detail below, it is also
proper, for practical calculations, to take square in-

tegrable functions as simulations of channel wave
functions X and X'. This amounts to considering
the averages of transition amplitudes around the
central value k of initial momenta and k ' of final
momenta. The imaginary part of E can obviously
be made compatible with the width of such aver-

ages.
As a consequence of the choice of a complex E

and square integrable X and X' it is obvious from
Eqs. (2.7) that 4 and 4' can be restricted to a class
of square integrable trial functions. This is also of
some advantage for practical calculations.

tive motion of the centers of mass of the colliding
heavy ions (since the total center-of-mass kinetic en-

ergy has been subtracted out) and P is a separable
nonlocal potential of rank 1. In momentum space,
the representation of P is defined by

(q I

~
I q '&= —~l'(q))'(q '»

)'(q) =exp[ —~e'1

(3.2)

(3.3)

p2
)&exp — (q, +k)'

2
(3.4)

where the wave packets are centered around the real
momenta +k and —k, respectively. An identical
form is taken for X', with k replaced by another
real momentum k '.

The Gaussian form of the wave packets has the
property that the total center-of-mass motion is
decoupled from the relative motion, i.e.,

3/2

X(qi, q2', kl=q), (P)

Xexp[ —P (q —k) ], (3.5)

where A, is the strength of the potential in units of
MeVfm and q is the relative momentum of the
colliding nuclei.

The channel wave functions g and g' are chosen
as a product of two wave packets for the two ions,
i.e.,

2

P(qi, q2, k)= exp — (qi —k)
2

III. AN ILLUSTRATIVE EXAMPLE where the center-of-mass wave function is

A. General description q, (p)=
' 3/2

p2 2

exp — P
4

(3.6)

We consider the scattering of two heavy ions of
equal mass by an S-wave separable potential acting
between their centers of mass. The example studied
here is merely to study the feasibility of the varia-
tional method discussed in Sec. II to yield reason-
able estimates of the correction to the lowest order
Born amplitude. Thus, the internal structures of
the heavy ions are suppressed and the problem is
treated in the framework of the collision of two
wave packets.

The Hamiltonian of the system is

and is not normalized, whereas the wave function of
relative motion is a wave packet which tends to a
delta function 5(k —q ) in the limit of large p. [The
normalization of the wave packet is chosen such
that its integral over q is unity just as the integral
of the delta function 5(k —q) is unity. ] In view of
the fact that all the matrix elements are defined by
dividing the c.m. overlap, we shall not refer to the
total c.m. in the future.

For the trial wave functions, we choose wave
functions of the form

(3.1)

where W is the kinetic energy operator of the rela-

( q I
4) =exp[ —v (q —K) ],

(O'
I q ) =exp[ —v ( q —K') ],

(3.7)

(3.8)
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where K and K' are to be treated as variational
parameters and can, in general, be complex.

The variational functional, Eq. (2.5), is

F(4',4)=F(K',K)

and

Fp(k ', k)= &x'l ~lx&
3/2

1 2v 2@Ev 7
exp —1

4

(4'lE H
l

—4) (3 9) 7A

8pv
Explicitly,

F(K K) [(4'l(E —w) le)/(4'l P le)]—1

(3.10)

where the particular form of factorization is due to
the separable nature of the potential. With the
numerator

'3

(x'l ~lx) =—A, P'+~

T(k ', k;E)= (x'
l
T(E)

l x), (3.15)

where T is here the operator

(3.14b)
The quantity F;(k ', k) represents the correction

to the Born amplitude. The total "off-shell" T ma-
trix for the scattering between wave packets, as de-
fined by

)(exp
P'v'(k'+ k')

@2+P
(3.11)

T= u+W(—E H) 'F—,

is the sum of the Born amplitude and the correction
term. Our approximation yields two estimates

the variational parameters occur only in the denom-
inator and thus one can investigate the properties of
the function

K=K'=0, (3.13a)

(3.12)

The variation of J(K', K) with respect to changes
in K and K ' yields two stationary points

T(k, k;E)=(x'l ~lx)+F(k, k)

i =1,2 . (3.16)

Thus, in the two cases, we find

T(k, k;E)=&x l~lx) 1+
J;(k', k) —1

=&x'l ~lx&
J;(k', k)

J;(k', k) —1

and

K=K', IKI'= " E
7A'

8@v
(3.13b)

(x'l ~lx)
1

JE(k ', k)

(3.17)

Fi(k', k)= &x'l ~lx&

where p is the reduced mass of the two heavy ions.
The corresponding stationary values of F ( K ', K)
are

Thus,

Ti(k ', k;E)= &x'l ~lx&

1+A,
2v2

3@2

8pv
3A —1

8@v

for K'=K=0, (3.14a) and

for K=K'=0, (3.18a)

Tp(k ', k;E) =
lyi,

2

(x'l ~lx&
2pv

exp
2pEv 7

4

(3.18b)
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(3.19a)

The expressions Eqs. (3.18) have to be compared
with the exact expression

Texact(k i k.E)
1+ " A(E)21M

Ako
T(kp) =T kp, kp,'E =

2p

The two possible solutions K=K'=0 and

(3.21)

where

e
—2V q2

b,(E)= J dq
ko —q

and where

2pE
fi

(3.19b)

(3.19c)

e' ' 'sin5(E)= —
2

kpT(kp),421M

where

(3.20)

The on-shell T matrix is related to the phase shift
through the relation

& q I
~'& =~i& q I

@1&+~2& q I
@2&

&
@'

I q & =a'1 & @'1
I q & + tz2 & 'p2

I q &

(3.22a)

(3.22b)

where 1@1& &@i
I

and 1@2& &@21 are the two
solutiom just obtained. The variational parameters
ai, a2, a'1, az are then provided from the functional
6, Eq. (2.9), by the two independent linear systems

p
4v

yield the best possible solutions for the Gaussian
type of trial functions we have used. One can ob-
tain a better approximation by considering a linear
superposition of the two, i.e.,

& @'11«—I)
I @1&~i+ & @1

I
« —»

I
~'2&~2 & @I

I
~

I
& &

& ~ 2 I
(E —»

I @1&tr 1+ & @2
I
(E —»

I
~'2 &t22 & @2 I

~
I
& &

tzl &C'i
I
(E H)

I @1&+—&2&~ 21(E —I) I@'1&
= &&'

I

~'
I @1&

~l & @l
I
(E —»

I
+2&+~2& @21(E—H)

I
@2&= &&'

I

~
I

@2&

(3.23)

(3.24)

It turns out in this special case that the two sys-
tems are identical, as &41

I q ) = & q 141) and

&421 q ) =
& q 142). The generalization of this

linear procedure to a more general basis of func-
tions 14;), & 4J I

is trivial. The resulting expression
for the correction to the Born amplitude in this ap-
proximation yields

[~11~22 2t 12~12+ t 22~111
F,= &x'

I
~

I
x & «i i&22 —&i2')

T,(k ', k;E) = &X'
I
~

I
X&+F, . (3.27)

B. Numerical

To illustrate the method, we consider a specific
example of two nuclei of mass 16, i.e., p, =8. The
strength of the separable potential was chosen to be
A, =1000 MeVfm . The values of P and v were
chosen to be

where we have defined

(3.25) P=4 fm,

v=0. 1 fm .

and

&tq =&At' 1(E H)
I tpj)— (3.26a)

(3.26b)~„=&@,'
I
m

I e, ) .

Alternatively we find F3=S' 0 'S, where S is
the column vector whose components are
S;—= &tp,'

I MIX) and, in the same way, the com-
ponents of the column vector S' are
s,' = &e,

I

~'
I
x').

We can rewrite the total amplitude in this ap-
proximation as

The exact phase shift was calculated for a series of
energies in the range 250(E&1000 in units of
MeV. Since the width b,k induced by P is of order
b,k =0.25 fm ', the imaginary part of E is taken to
be ImE =2k 'b k ReE=0.5k 'ReE.

In Fig. 1, we compare the results of the variation-
al calculation with the exact one. The full line
curve shows the squared modulus of the exact tran-
sition amplitude, Eqs. (3.19). The dashed line
represents the approximate results (squared
modulus again) for K=K ' =0; the dashed-dotted
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1, = 1000 MeV fm
v* 0.1 fm

lm Q = 0.25 fm~
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FIG. 1. Comparison of the exact, squared, off-shell
transition amplitude, with the first two approximations
provided by the variational principle, as functions of the
energy.

B 9 10 11 12 13 14 15 16 17 1B 19 20
Re k„&fm-&~

FIG. 2. Same comparison for a situation closer to the
on-shell amplitude. The third approximation provided by
the variational principle is also shown.

line is for

K=K', EC = 2E—
fi 4v

and a long-dashed line would correspond to taking a
mixture of the above two solutions if it were distin-
guishable from the exact results. As a matter of
fact, the mixed solution, Eqs. (3.27), is indeed better
than the first two approximate solutions, as could
be expected. But we may stress that the first two
approximate solutions are already remarkably accu-
rate when compared to the bare Born approxima-
tion. Indeed it was found systematically in the
present case that the Born estimate is about 10 to
10 too large when compared with the exact ampli-
tude. It is remarkable that the variational principle
provides at once, whether one uses Eq. (3.18a) or
(3.18b), a significant reduction of this excess and
thus the correct order of magnitude.

In regard to the phases of the transition ampli-
tude, our numerical results are less satisfactory, for
only a qualitative agreement (within about 20' for a
phase of order 200') is reached. We can notice

nonetheless that the Born amplitude is real and pro-
vides no phase shift, just a cross section. The varia-
tional principle provides a phase shift of a reason-
able order of magnitude.

For the sake of curiosity the situation where
ImE=0.2k 'ReE was also investigated, although
the corresponding width 6k=0. 1 fm ' is narrower
than that induced by P=4 fm. The results are
displayed in Fig. 2 and are surprisingly satisfactory.
In the same way as for Fig. 1 one finds approxima-
tion 1 to be good at high energy, approximation 2 to
be preferable at low energy, and approximation 3 to
be the best compromise.

In Fig. 3 we return to 6k=0.25 fm ' and con-
sider A, =100 MeVfm, v=0.15 fm. Approxima-
tion 1 dominates, although approximation 2 has a
small domain validity at low energy.

A comparison of the moduli of the various wave
functions involved in the theory is provided in Fig.
4. The wave functions are artificially normalized to
unity at the origin q=0 for the comparison. The
parameters are those of Fig. 1 and the energy is de-
fined by Reko ——10 fm '. The exact solution 4(q),
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1O-'— 10-4—

10-8 I
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Re ko (fm "&

FIG. 3. Same comparison for a different set of in-

teraction parameters.

10 ~

1

I

30

I I

5 10 15 20
q (fm )

FIG. 4. The various trial functions are compared to
the exact solution of the variational principle.

Eq. (2.7), has a sharp peak at q=Reko, an indica-
tion of the complex pole (E —q ) '. Neither trial
functions 41, Eqs. (3.7) and (3.13a), and 4z, Eqs.
(3.7) and (3.13b), has a peak there. It will be no-

ticed, however, that the variational principle takes
advantage of a peak in 4z at higher momentum to
bring it at lower momentum in 43 in order to simu-

late the peak of 4. Finally, Fig. 5 shows how 4&1

and 42 are admixed in 43.

IV. GENERALIZATION

For the sake of clarity, the argument will first go
through an illustrative example again, say a frag-
mentation reaction Ca(' O,a' C)~Ca~. Since 56

nucleons are involved, the calculation of matrix ele-

ments in a 168-dimensional space demands wave
functions of a product type. Individual nuclei will

then be described by Slater determinants or simple
mixtures of Slater determinants. Channels will be
described by products of such determinants (an-
tisymmetrization will be disregarded in this section)
or simple sums of such products.

It is again convenient to use a momentum repre-
sentation. Let %~6 be the s- and p-closed shell

Slater determinant which is a reasonable approxi-
mation for the ground state of the projectile. If one
considers analogously the s-, p-, and d-closed shell
determinant 0'40 which is suitable for the target, the
initial channel can be represented as

&=q'16(P1 " ~ P16—")q'40(P17+" P56+ k) (4.1)

P'(P~+ k)'
80

exp—

In so far as the shell model functions 0'~6 and 040 contain no center-of-mass spuriousity, suitable Gaussian
wave packets for ' 0 and Ca factorize out and one obtains

'3/2 ' '3/2
p~ p~ P (P16—k)

&=416(k16W'4o(k~o) l616m. 4&v 32
exp— (4.2)

where $16 and $40 are the internal wave functions of the projectile and target, respectively, and f16 and $40
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denote the corresponding 15 and 39 Jacobi coordinates or momenta. The center-of-mass momenta Pi& and P40
of these nuclei are assumed to occur in wave packets with widths p/i/16 and p/@ 40 corresponding to the
equal shell model width parameter P for both nuclei. Such an approximation is known to be tolerable in the
shell model for nuclei whose masses do not differ too much.

From Eq. (4.2) one finds

' 3/2
/p2

f16440

' 3/2
7P2( k )2 P2 P2P2

160 28m 112
(4.3)

to be compared with Eq. (3.5). Once again the relative momentum q acquires a spreading around its center
value k. It is here of order i/2pP ', where p is the reduced mass —,.

In the same way one may use for the final channel a product of boosted Slater determinants for the three
nuclei. For instance, with a closed s shell for the a particle, closed s and p3/p shells for ' C, and closed p, s, d
shells for Ca, one finds

X'=%'4(pi —ki, . . . , p4 —ki)%'iz(p5 —kq, . . . , pi6 —k2)%'40(pi7+ki+k2, ~ ps6+k'i+k2) . (4.4)

Hence, if q i2 is the relative momentum between a and ' C, and q& is the relative momentum between the pair
a-'~C and the residual nucleus Ca, Eq. (4.4) becomes

3/2
p2&'= it 4(04)fi2(kiz)44c((4c)
6m

(q', —kiz) 7p 7P (qi —k')
16O

'"
16O

p2 p2p 2
' 3/2

14m 112
(4.5)

where

10—

A = 1000 MeV fm
v=0.1 fm

Im ko = 0.25 fm ~ and

k i2
——(12k i —4k2)/16

k3 ——k)+k2 .

0.5-

0.2

10-' I I I I I I

8 10 12 14 16 18
Re k(}tfm')

FIG. 5. Behavior of the admixture ratio of the first
two variational solutions inside the third solution.

Although Eqs. (4.3} and (4.5} are written in a
Jacobi representation for the sake of understanding
and identifying center-of-mass motions, all practical
calculations have to use the single momentum rep-
resentation, as provided by Eqs. (4.1) and (4.4).

Once P and X' have been defined, as in Eqs. (4.1)
and (4.4}, from products of boosted single particle
orbitals or products of boosted Slater determinants,
matrix elements (X'

[
V'

I
4), (O'

I
V

I X), and
(4'

~

(E H)
I
4') are straig—htforward, even though

sometiines tedious, to calculate if 4' and 4 are also
product-type. Let us assume, for instance, that 4 is
the product @i644c of two, determinants, like X, and
4' is the product of three determinants 444&2440
like X'. It must be pointed out that from their de-
finitions, Eqs. (2.2) and (2.3), the permutation sym-
metries of V and V' are those of X and X', respec-
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tively. Since H is a completely symmetric operator,
one finds from Eqs. (2.7) that 4 and 4&' also have
the same symmetries as 7 and X', respectively.

The situation where 4, 7, 4', and 7' are products
of single particle orbitals or of Slater determinants
then leads to standard techniques for the calculation
of all matrix elements involved by the variational
principle. All integrals in the many-dimensional

space essentially factorize into products of single-

particle overlaps, or related quantities, and at most
one two-body matrix element.

It is now trivial to generalize the theory to any
number of clusters in the continuum. Any isolated
nucleon, for instance, will be represented by a boost-
ed Gaussian wave packet, and so on.

V. TREATMENT OP
ANTISYMMETRIZATION EFFECTS

The discussion in the preceding section dealt with
the case wherein only the evaluation of the direct
term was considered. In the energy range of 10
MeV &E/A & 100 MeV, it is often prudent to con-

sider antisymmetry effects, which are necessarily

going to be relevant when there is an overlap of the
densities of the colliding nuclei.

For a rearrangement collision of the type
a+A~b+B, with a =(b+x) and B=(A+x), if
we label the nucleons in a, A, b, and 8, the direct
term is defined as one where the light final product
b has the nucleon labels already contained in a and
the target A has the nucleon labels contained in the
residual nucleus B. Since the physical wave func-
tions of the nuclei a, A, b, and B are antisymmetric
with respect to the exchange of their constituent nu-

cleons, there are

b 8
a A

equivalent terms contributing to the direct transi-
tion. Thus, the cross section evaluated for a given

labeling, as described in Sec. IV, has to be multi-
plied by this number in order to obtain the total
direct cross section. To be explicit, one defines the
direct Born transition amplitude by

Tp,' '(kp, k~)=

1/2
B a

A b

b
1-- b z b+1. - a+1. . . a+A gp Y.- 1.. 'b b+1. . a

iEaj GA

Xgq(a+( a+A(X,), (5()

where k and kp are the channel momenta for the initial and final relative waves X, Xp and can be used to
boost %„%z,4'b, 4'~ suitably. %'hen the variational principle is used to calculate the correction to the Born
amplitude, the same normalization factor is to be carried through. The single nucleon exchange amplitude is
defined by

Tg,'"(kp, k~)
rare]/2

a A b

A —1 b —1

)& 0'b 1.-. b %'q b+1. - a+1. - - a+A P~k F',
z 0', 1 . a %'q a+1. . - a+A

iGaj GA

I'E (a,b), k' E (A,B), (5.2)

(5.3)

where the operator P~ ~ exchanges the particles I' and k' with the condition that l' is a label common to b and
a, and k' is a label common to A and 8. The many nucleon exchange contributions are to be evaluated in a
similar manner. ' We have used the suffixes 0 and 1 for the transition amplitudes to denote the number of
nucleons exchanged. The general expression for the antisymmetrized Born transition amplitude is

]/28 a A b
n B(n)

&P,(kP, k )= g A „b „„„(—)"TP," (k, kP) .
A

The expression retains the same form for the exact transition amplitude also. It should be noted that we have
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used the prior version for the transition amplitude. ' This is due to the fact that in an experiment the initial
channel is a two body channel so that the interaction is easier to handle.

To calculate the correction to the Born amplitude, the method discussed in Sec. IV is immediately applica-
ble to what we have termed the direct amplitude Tp„' and has to be multiplied by the same normalization fac-
tor, i.e.,

1/2
B a

E"(4' 4) (5.4)

It is easy to generalize this for the case of exchange amplitudes. Let us consider the single nucleon exchange
amplitude. The exact single nucleon exchange amplitude is

T p'= N&(% b(1 b)%s(b+1 a+1 . a+A)
~

1+ $ $ Vz
iebjeB

' E —H

XPIk g g &~ ~%', (1 a)%'z(a+1 a+2)), l'E(a, b), k'6(A, B) .
iGaj EA

(5.5)

Thus the correction term is

ETp'=N, (+b(1 . b)%p(b+1 a+1 a+A)
~ g g F';~

iFbj CB

XPIp g g ~;, ~

'P(1 a)%„(a +1 a+A}), I'C(ab)k'E(AB) .
i6aj EA

(5.6}

Using the shorthand notation ~X) for the initial state and (X'
~

for the final state and V and V' for the prior
interaction and postinteraction, it can be seen that the functional

(5.7)

1/2

(e'i viz)(x'i v'p, „ ia)
(a'i(E —a)

i
a )

when multiplied by N&, yields an estimate for ET~. Here we have used N~ to represent the normalization
factor

B A a b

nn —b nn-n—=0

Thus the estimate for the total correction to the antisymmetrized transition amplitude is obtained as
1/2

( —)"Fp~(kp, k~) . (5.8)

In a practical calculation involving heavy ions, it
would in general be difficult to include all the ex-
change terms and a physical insight has to be used
as a guide to the possible dominant exchange
mechanisms. The variational principle which has
just been discussed can provide such an insight in
order to find dominant terms. The case of many-
cluster channels goes alorig the same lines, in a
straightforward but more tedious way.

VI. TRIAL FUNCTIONS
AND REACTION MECHANISMS

It has been seen that the class of trial functions
must be restricted, for obvious technical reasons, to
product-type wave functions, or sums of such. This
restriction does not prevent the investigation of a
large body of mechanisms.

As a first example, deformed orbitals can be used
for the single particle orbitals in 4 and O'. The
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variational parameters are then trivially chosen as
orientation angles or deformation parameters, not to
mention cranking parameters.

As a second example, density effects can be inves-

tigated through a scaling parameter converting an
orbital y(r) into an orbit y(Ar). A variable con-
straint on the mean-square radius provides a
Lagrange multiplier as the variational parameter.
Any constraint on any multipole can further be
considered.

A third example is that of a shock-wave mechan-

ism, although in principle it should rather occur at
higher energies. Static orbits centered around the
origin of the integration mesh can be boosted by a
factor

exp[ir A (r)],
where the position-dependent momentum function
M(r) could be chosen as Pi =Pi r =0 and

—(z+SP)'+(rg'8)(x'+y')
1+exp

$2

(6.1)

where 9F is the nuclear radius, hence defining the
tip of the shock-wave cone at position (0,0, —9P),
and 8 and b are variational parameters defining the
angle and thickness of the wave front, respectively.

Implosion-explosion mechanisms can be also in-

vestigated by means of radial boosting of the orbi-

tals, the momentum function 5"(r) being a radial
vector depending only on the distance r to the mesh
center.

Since combinations of mechanisms are always
possible, one has to design a procedure for practical
calculations. As seen in the illustrative example,
Sec. III, trial functions just depending on one varia-
tional parameter, i.e., K, already provide more than
one stationary solution. This will occur in general
every time the trial function depends nonlinearly on
the parameter, even though the exact variational
equations, Eqs. (2.7), are linear.

The first step of a general mechanism investiga-
tion seems therefore to select one class of trial func-
tions for each mechanism and only one variational
parameter in each class. It is indeed very impracti-
cal to search for the stationary points of the com-
plex functional F, Eq. (2.6), in a parameter space of
too large a dimension. This yields a set of station-
ary solutions j 4„,4„'

J for each mechanism m. A
suitable linear mixture of the 4„on one hand, and

on the other hand, then provides an additional
improvement of the theory. As seen from Eqs.

(3.22) and (3.23), the linear combination parameters
inserted in the functional 6, Eq. (2.9), are defined

uniquely by linear variational equations.
In a more general way, it might be sometimes

convenient to avoid using the functional F as an op-
timization procedure for the basis in which 4,4'
will be expanded. A variational parameter such as
K can be used directly as a generator coordinate,
under the ansatz

c =fd@(K'.)c -„, (6.2)

and the variational equation provided by the func-
tional G then reads

TDw (~(—)
~

V ~~t+))

One can define V and V~ in the projection opera-
tor formalism, ' with P a projection operator on the
elastic channel, and Q =1 P,as—
and

V~ =Q~HP~

(6A)

Vp=PpHQp,

if we assume that the distorting potentials used in
g'+', X~

' are the folded potentials.
The variational principle yields a correction to

the amplitude TP in the form

(Xp
'

i PpHQp i
@ ) (@p i Q HP

i

g'+')

(e, i(E —H)
i C.)

(6.5)

«' it ~
V~&& —fd&&c'K I(E —H) i@it &f«)

=0 . (6.3)

The other trial function 4' obeys an analogous
equation for its expansion in terms of a basis 4'g, .
As discussed earlier, ' time can be used as a special
case of a generator coordinate provided by TDHF
solutions.

Although the channel wave packets g, X' have
been obtained by plane-wave boosting, one may also
attempt to boost single particle orbitals in a way
similar to a distorted wave formalism. The ques-
tion of corrections to DWBA then arises. Consider
a rearrangement collision. The distorted wave tran-
sition amplitude can be written as
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If, in the space (Q, Qp), one introduces a basis X;,
/ ~

g] ~ 1.e.)

~e.&=pc,"~x, &, &cp~ =pc,'P'&x, ~,

(6.6)

one can show that the stationary value of Fp for
variations about the C 's is

where we have discretized the time interval into N
steps, we can again obtain expressions of the type of
Eq. (6.7) for the correction to DWBA. This possi-
bility of using Slater determinants again opens the
immense possibility of studying various effects
which might show up as precursors in TDHF such
as the effect of shock waves, strong deformation, or
large densities due to compression, on the measured
transition amplitudes.

Jp ——Sp M 'S~, (6.7)

where S is a column vector with components

S; =&X,'
i Q HP iX'+'),

S~ is the row vector with elements

Spj ——&Xp
~
PpHQp

~ XJ ),
and M is a square matrix with elements

Mj; ——&X,' ~(E H) ~X;)—. (6.8)

~Xr(K~)),i = I . . N,
which yield a representation for (E H) '. This—
method is equivalent to determining a "classical"
path for the propagator for the intermediate state.

Alternatively, one can use the solution of the time
dependent Hartree-Fock for the collision of nuclei.
This method generates a single Slater determinant
at each instant of time which has so far failed to
yield a procedure for calculating cross sections. We
can consider the TDHF solutions for a time interval

tl &t &tz during which the two colliding systems
are in close contact. By choosing the trial functions

~
@~) and & 4p

~

to be linear superpositions of the

type
N

) y c ~yTDHF( r ))
n=1

&cp~ = g c„'&yp ""(x,r„) ~,
n=1

The method is similar to Feshbach's approach to
elastic and inelastic scattering. What is worthwhile
to point out is that one does not obtain any term
similar to the nonorthogonality term in Jp . ' This
is due to the fact that the variational principle
avoids using a perturbation expansion and directly
tries to evaluate the representation of the total
Green's function (E H) '. In t—he particular case
that we wish to consider, one explicit rearrangement
channel which is coupled strongly to both the in-
cident and exit channel, i.e., & C&p = &Xr

~

and

) = ~Xr), we can introduce momenta Kr as
variational parameters and determine the best possi-
ble combinations of sets of functions

VII. DISCUSSION AND CONCLUSION

A first characteristic of this theory is the simula-
tion of channel wave functions by wave packets.
This prevents the calculation of exact on-shell am-
plitudes, but has the advantage of reducing all cal-
culations to square integrable functions. As a
matter of fact, the experimental energy and momen-
tum resolutions do allow for a certain amount of
averaging, and the theory is suited for that, through
the calculation of off-shell amplitudes.

If the study of a narrow resonance makes it
necessary to sharpen the wave packets in momen-
tum space, a generator coordinate formalism can be
used to define the channels. Distorted waves are
also easy to express in this formalism. It is clear,
however, that a sum or integral of factorized wave
functions provides a less tractable calculation
scheme than just one factorized wave packet. This
subtlety does not seem to be necessary at present.

It has been seen how exchange effects can be in-

vestigated in this theory. It is remarkable that the
permutational symmetry of the trial functions 4
and 4' is identical to that of the channel functions
X and X', respectively. Besides serving as guide for
the choice of trial functions, this symmetry rule
provides insight into the importance of various or-
ders of exchange.

The theory is obviously nonperturbative. This is
essentially due to the nondiagonal matrix element
&4'

~

(E H)
~

4), whence—the variational principle
derives a representation of the Green's function.
Complicated rearrangement processes from X to 7'
are thus expected to be not more complicated to cal-
culate than simpler processes.

The main feature of the theory is the possibility
of making practical calculations through factoriz-
able trial functions. Multicentered Hartree-Fock
and shell model techniques are now familiar in the
literature, and a large number of orbits creates only
a nuisance in the calculation, not an impossibility.
It has been seen how a large number of mechanisms
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can be investigated with factorizable wave func-
tions, or limited sums of such. The theory now
needs to be tested against a typical fragmentation
case. This is under study.
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