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Triaxial Hartree-Pock-Bogolyubov calculations with D 1 effective interaction
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The Hartree-Fock and Hartree-Fock-Bogolyubov methods are used for the description of
nuclei with triaxial (i.e., ellipsoidal) shapes. The Gogny D1 finite range density dependent
interaction is employed. A comparison between various prescriptions for the calculation of
pairing correlations in nuclei indicates the necessity for the self-consistent treatment of pair-
ing. Using this last method we obtain results concerning nuclear shapes and deformation
energy surfaces for nuclei ranging from the lightest ones to the fission barrier of Pu.

NUCLEAR STRUCTURE Density-dependent Hartree-Fock-
Bogolyubov approximation applied to the description of nuclei with tri-
axial shapes: pairing correlation, comparison HFB-HFBCS, potential

energy surface, density distributions.

I. INTRODUCTION

The Hartree-Fock (HF} method has met with a
great success, this last decade, in the description of
the structure of the nucleus. This can be mainly at-
tributed to the use of density dependent interactions
which has made possible simultaneously a satisfac-
tory description of nuclear binding energies, sizes,
and also detailed level structure. The two main
components of this approach are the following.
First, an assumption is made that the many-body
wave function of the nucleus is a single Slater deter-
minant. This, of course, amounts to neglecting all
correlations due to the nuclear interactions, localiz-
ing the center of mass position as well as the orien-
tation of the (deformed) nucleus, while fixing the de-
formation of a soft nucleus to the ground state one.
This approximation can nevertheless be adequate in
certain cases, especially for closed-shell or light
X=Z nuclei. The second assumption is related to
the effective interaction. In most modern Hartree-
Fock calculations the interaction used has been a
variant of the Skyrme force. ' The technical advan-
tages of this zero range velocity dependent interac-
tion have made possible the use of large oscillator
bases, necessary for the precise description of the
single particle orbitals, or even the solution of HF
equations in configuration space, as the HF Hamil-
tonian for the Skyrme interaction is a local one. On

a more fundamental level this interaction presents
the advantage of having been derived (or rather a
posteriori justified) through a short range (on nonlo-
cality} expansion of the one-body density matrix.
However, due to its specific form, the Skyrme in-
teraction does not exhibit good pairing properties,
which are of crucial importance when it comes to
describing nonmagic, X&Z nuclei.

The Hartree-Fock-Bogolyubov approach, first
substantiated by the work of Gogny, was the natur-
al extension of the HF approach as it allows a
correct description of the pairing correlations in nu-
clei. This was made possible by the determination,
by Gogny, of the effective interaction Dl with good
pairing properties, together with the separation
method which makes feasible the computation of
matrix elements in an oscillator basis, with speed
competitive to the ones achieved by the Skyrme in-
teraction. Moreover, although the D1 interaction is
purely phenomenological, it exhibits a more realistic
behavior than the more fundamentally derived
Skyrme force, as it closely follows the behavior of
realistic g matrices on each particular S-T subspace
in nuclear matter. Results obtained with the Gogny
D 1 interaction have been presented in previous pub-
lications concerning spherical nuclei, giant reso-
nances on magic nuclei, charge and matter densities
of the latter, axially deformed nuclei, and two
center calculations of extremely deformed systems. '
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In this paper we will focus our attention on the tri-
axial degree of freedom in nuclei. The importance
of the inclusion of the ellipsoidal degree in studies of
the nuclear shapes is well established. First of all,
some nuclei indeed present a departure from the axi-
al symmetry in their ground state. " Also, in a nu-
cleus with an axial ground state, there might exist a
low lying triaxial isomer state. ' In some cases a
saddle-point deformation, as a fission barrier, ' can
be triaxial. Next, a fact already known from the
Jacobi instability of a rotating liquid drop, a nucleus
can adopt a triaxial shape when it is cranked to high
angular momenta. ' But the triaxiality has a still
greater impact on the dynamics of the nucleus. In
the low frequency regime the importance of the y
degree on the quadrupole motion of the nucleus has
been demonstrated in the works of Kumar and
Baranger. ' In the giant resonance regime the non-
axial vibration is the source of (experimentally ob-
served) splitting of the giant quadrupole resonance. "
Moreover, the nonaxial component is the one which
incorporates the largest part of the energy weighted
quadrupole sum rule. ' Finally, in a different
domain, the triaxial degree of freedom has been
found to be of the utmost importance for the correct
description of heavy-ion fusion' in the framework
of the time dependent Hartree-Fock method. In this
work we will limit ourselves to a study of the static
aspect only of the triaxiality in nuclei. This paper is

organized as follows. In Sec. II the triaxial sym-
metries are presented in detail. The particular form
the Hartree-Fock Hamiltonian assumes under these
symmetries is also given, while the technical details
are relegated to an appendix. The Hartree-Fock-
Bogolyubov equations are next presented together
with their approximation: the self-consistent HF
plus BCS scheme. Our results are given in Sec. III,
while Sec. IV briefly presents our conclusions.

II. HARTREE-FOCK AND
HARTREE-BOGOLYUBOV EQUATIONS

IN THE PRESENCE OF
TRIAXIAL SYMMETRIES

A. Hartree-Fock equations

We limit ourselves to a sketchy presentation of
the derivation of the HF equations existing in stand-
ard textbooks. The HF method is based on the as-
sumption of a determinantal wave function,

~
+)= det(tpg(r;)J,

1

where A is the nucleon nnmber and up~ are the single
particle orbitals. The Hartree-Pock equations are

hHF
~

A, ) =eg
~

I,), (2.1)

where hHF is a single particle Hamiltonian (the
Hartree-Fock Hamiltonian), and the quantities e~
are interpreted as the energies of the HF orbitals.
The Hartree-Fock Hamiltonian can be most easily
given through its matrix elements on a basis of arbi-
trary states a,P, y, . . .,

&&I~H I
)&=&&I tlr& +X &&~II'IR&.

A, GF

The dependence of the Hartree-Fock Hamiltonian
on the occupied states, besides the fact that it makes
Eq. (2.1) a nonlinear one to be solved in an iterative
way until self-consistency is achieved, has particular
consequences as far as the symmetries of hHF are
concerned.

B. Triaxial self-consistent symmetries

As is well known, the symmetries of the Hartree-
Fock Hamiltonian, i.e., the self-consistent sym-
metries, are not those of the nuclear Hamiltonian.
Actually the following theorem holds true. ' If U is
a unitary operator which commutes with the nuclear
Hamiltonian and leaves invariant the space spanned
by the occupied orbitals, then U commutes with the
Hartree-Fock Hamiltonian, i.e., U is a self-consis-
tent symmetry.

In the following study we will be interested in the
triaxial shapes in even-even nuclei. It then seems
reasonable to choose as self-consistent symmetries
the symmetries of the ellipsoid or triaxial sym-
metries, i.e., reflections with respect to the planes
yz, zx, xy, and time reversal. ' '

We denote by II~, H2, H3 the unitary operators as-
sociated to the three reflections

IIJ =PRJ(m)= IIJ( ioj.), . —

where P is the parity operator, Rj(m ) a rotation of n.

around the j axis, IIJ a space reflection operator
(xj~ —xj), and oj a Pauli matrix, the latter form
being due to the fact that we are dealing with spin —,

particles.

obtained through minimization of the total energy
(with respect to normalized 4's)

E=&q' H Iq'&= X &~Ir I~&
A. EF

+-,' g &xp, ~v~x~),
A, ,p&F

where H is the nuclear Hamiltonian, containing a
kinetic t and a potential V part. The symbol A, EF
denotes an occupied orbital. As a consequence of
the application of the variational principle, the
Hartree-Fock orbitals are solutions of the equation
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The three reflection operators do not commute
with one another, so one can form a complete sys-
tem of operators including two out of the reflection
operators, or, preferably, two combinations of them,
namely:

So the Hartree-Fock orbitals will be characterized
by two good quantum numbers p, q associated to the
operators P and II&2.

The fact that the time-reversal operator K com-
mutes with the Hartree-Fock Hamiltonian can be
used in order to deduce reality properties of the
single-particle wave function. We actually know
that the phase of the eigenstates of a unitary antilin-
ear operator (such as E) can be chosen in such a way
as to make the eigenvalue equal to one.

For spin —, particles a set of commuting

observables is R,S,S3 and the corresponding basis is

~

r )
~

—,o ). The standard choice of phase is then

E/r)= fr),
R2(n)K

/

—,cr.) =
f

—,o) .

We can now write the wave function of a state
i=(nqp) as

4;(r,o)= g (f;+(r)+if; (r))g(o),
1

cr =+—
2

where the functions f;~o are assumed to be real.
One can further show that 4, as defined above, is

an eigenstate of II|A with eigenvalue q, and that the
state E4 is also an eigenstate with eigenvalue —q.
These two states are degenerate in energy (Kramer's
degeneracy).

Let us make a final remark on isospin. We do not
allow for any isospin mixing in the Hartree-Pock
wave functions which are thus eigenstates of the iso-

spin component:

err;(r, o,r)=X„(r) g (f;+(r)+if; (r))&(cr) .
1o=+—
2

C. Cartesian oscillator basis

The basis on which we expand the Hartree-Fock
wave functions is the basis formed by wave func-

tions of a three-dimensional harmonic oscillator in
Cartesian coordinates:

(r
~
n„npn, ) =(i) "gn (x)f„(y)P„(z),

where g„(x) is a normalized oscillator function in
Z

the x direction

g„(x)=~a„e "~ '~ h„(g) .

~2
For the set of observables H, II,2,P,S we are in-

terested in, we can introduce a basis
~
nqp , )—

characterized by the quantum numbers of the opera-
tors of the set. One can readily show that the opera-
tor II2E commutes with the operators of the set.
The operator II' being antiunitary, we can choose

1

the phase of the wave function
~
nqp —, ) such as

II2&
~
nqp —, ) =

~
nqp —, ) .

We expand now on the basis
~

r )
~

—,o ) and get

(2.2)
We have made use of the usual definition (=a„x,

where a„=(mco„/A)'~, with co„ the frequency of
the oscillator and m the mass of the particle. The
normalized Hermite polynomial is given by

~
nqp ,

'
) =f d'rg—f~ (r)

~

r )
~

—,
'
o ) .

It can be shown easily that the application of (2.2)
leads to

(2.3)

We can further exploit this relation by writing f as a
sum of functions even and odd with respect to II2..

h„()= H„(),
z . / nz

1 ]/2 z(v qr2 "n„!)

where H„(g) is the usual Hermite polynomial

H„(g)= ( —I )"e& e
n

For a spin —, particle the wave function is a spinor,

and the basis functions become

(cr
~
( r

~
n„npn, o ) =(i)"'q'„(x)q'„(y)q', (z)&(cr. )

+
fnqpo

=
fnqpo +fnqpo—

The relation (2.3) gives then

Imfn+qpo =0

Ref ~ =0.

withX( —, )=(o) andX( ——,)=()).
The phase (i) " is consistent with the phase choice

(2.2) and can be shown to lead to real matrix ele-

ments for the Hartree-Fock Hamiltonian.
The quantum numbers p and q can be expressed in

a very simple way on the basis:
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and

P
I
n„nyn, o, ) =(—1) " y '

I n„n„n,o, ),
II/2 I n„nyn, o, ) =(—1)" og

I n„nyn, cr, ),

following relations:

Pp~=P13~

n~+n~
Pps=( 1)—" 'op spps

(2.4)

( 1) x Jl 2

q=( —1)" ycrg .

where p denotes the density matrix for the time re-
versed states. The relations (2.4) for the density ma-
trix will be useful for the calculation of the
Hartree-Fock Hamiltonian.

In what follows we will make use of the time re-
versal properties of the basis. Let us denote by (a)
the quantum numbers (n„,ny, n, ;o) Th.e following
relations hold for the basis wave functions under
time reversal:

Ia)=E Ia)—=(—1) ycr Ia),
where

(a) =(n„nyn„' cr) —.

Let us consider the expansion

IA)=gC Ia)

of the Hartree-Fock wave function on the basis
functions. The application of IC on both members of
the expansion gives

C =C

Ca~=( —1) yo~C~ .

The density matrix

pps=g CpCs,A. A,

where the sum runs over occupied states, obeys the
I

D. Hartree-pock Hamiltonian

In what follows we present the results for the
direct and exchange parts of the Hartree-Fock po-
tential for a general finite range interaction;

Vo ——(W+BP HP, —MP~P,—) V(
I
r) —r2

I ),

where P~,P, are spin and isospin exchange opera-
tors.

A somewhat more detailed derivation can be
found in the Appendices, together with the final ex-
pressions used in the numerical computation. The
matrix elements of the Hartree-Pock field are given

by

I)'&=X &a&I V IR &pps,

where the tilde denotes antisymmetrized matrix ele-
ments.

Restricting ourselves to the mean field for one
species of particles, and using the notation

V, =(8'+BP )V, V, = (H+MP )V—

we get

&a
I

VHF
I

1'& =X I &a&
I

Vi
I r&&(pps+Pps) &a&

I
Vi

I &r&pps

+ &aP
I

V2
I
1'f &pps &aP

I
V2 I

~r—&(Pps+Pps) I .

By making the spin dependence of the matrix elements explicit we obtain

&a
I VHF I y& =g j &a@

I VI)»(pps+pps)(IV&. .p.~,+B~..J.~ )

—&a&
I

V
I &)'&pps(IV& .,&,+B~ .,&

+ & aP I
V

I
y&)pps( H5. .S.~, Mn.—..S. —

& a&
I

V
I &y&(&ps+ pps)( —H& .,& —M&. P, ) ) .
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We readily distinguish the different structure of
the space-direct and exchange terms. The general
form of the direct term is

I' r'=g(aP~ V~y5)pps5 5 ~, ,
p5

r 2=/(ap~ V ~y5)&,s5
p5

For the exchange potential we have

G r' =g (aP
~

V
~

5y)pps5, 5 ~,
p5

G, '=g(aP~ Vi5y)pp5 5
p5

(2.5)

%hen the effective interaction includes zero range
parts, as is the case of the Gogny interaction, ' the
Hartree-Pock potential associated to the latter can
be calculated by using the standard techniques
developed for the treatment of the Skyrme interac-
tion involving the calculation of various densities. '

The treatment of the Coulomb interaction follows
the method sketched above, the only difference
residing in the evaluation of the matrix element
(ap

~

V
~

y5). In the numerical calculations we have
performed, only the direct part of the Coulomb po-
tential was considered.

E. Self-consistent Hartree-Fock
plus BCS and HFB theories

Let us introduce the creation and annihilation
operator of one nucleon in a Hartree-Fock orbital

The relation between these operators and
the operators corresponding to the basis states a is
simply

gj~=+C~at . (2.6)

The phase convention, under time-reversal, for the
Hartree-Fock states amounts to

K ggE=gg .—1

The BCS transformation u~, v~ transforms the
particles qq into quasiparticles gq which are
obtained as linear combinations of a particle state
and the time-reversed hole state:

The transformation C being unitary we can in-
verse relation (2.6) and find

a.=g

up=up,

a =gC u~g~+C Usga.
A (2.7)

The wave function of the nucleus is a wave func-
tion of independent quasiparticles

~
0) = II~/~

~

0),
where

~
0) is the true particle vacuum.

In order to simplify our expressions we introduce
the following convention. The base states are
characterized by the quantum number q. All states
with q & 0 correspond to the same block of the
Hartree-Fock Hamiltonians and are referred to as
states q. The time reversed of the former states are
referred to as states q and correspond to q &0.

The density matrix for a BCS state is

p~ ——(0
~

a sa p ~

0) =g Cpug C~su„(0
~
g'gg„~ 0)

A,p

=QC+su~ . (2.8)

Its properties are the same as in the Hartree-Fock
case:

Pps=Pep

Pps=Ppz
(2.9)

Contrary to the Hartree-Pock case there exists
another nonzero contraction, the pairing tensor

K~= (0
~
asap

~

0)

=(0
~

a pas ~
0)

= g CgCpugUg
A. Eq

The notation A, Eq means that A, belongs to the
block q. Consequently, A, belongs to the block q, and
5 is a state of this block. A correct notation for v is
then vp~.

The symmetry relations for a are better under-
stood with the aid of Fig. 1 which represents the
blocks q, q. The big symmetry relates ~p~ and x&p,
while p and 5 remain in their initial blocks. We find

and we have

u~ +v~ ——1 .2 2

The v~ will subsequently be interpreted as the prob-
ability of occupation of the state A.. The Hartree-
Fock plus BCS transformation can now be written
as

The convention for the u~, v~ coefficients is the
following:

The small symmetry is a relation between x@and

asI), where 5 and P swap blocks:
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made, the application of the variational principle be-
comes straightforward.

The Hartree-Fock-Bogolyubov (HFB) theory al-
lows one to get rid of the simplifying assumptions
about the pairing potential that one makes in the
Hartree-Fock plus BCS case. In this theory we start
with the most general Bogolyubov transformation
on the nucleon creation operators:

gx=+Ua +Va

FIG. 1. The symmetry relations of the pairing tensor.

The total energy for a BCS wave function is given

by

(0 lH l
0)=g (a

l

r
l ) )p.,

cy

+-, X &~f31 V
I ~~&ppsp r

aPy5

+-, g (a)
l vl ye)~,@.,

aPy5

The last term on the right-hand side is the pairing
energy. We can thus introduce the pairing field,
whose matrix elements are given by

~.,=-,'g (anal vlPs)~„

= 2X &~xl V II I &u„U, -

The detailed calculation of the pairing potential is
given in an appendix. The pairing energy is now
given simply by

E& ———,Tr(b~)= —,g b, a
ay

The BC S approximation relies upon the hy-
pothesis that the pairing field is diagonal in the
Hartree-Fock basis. This means that only matrix
elements of the type

bx~ ———,g (AX
l

V
l pp)u„u„

exist while

gx = —,
' g (A,v

l
V

l pp, )u„u„
P

for A&v are zero. In practice this approximation is
well justified: The off-diagonal matrix elements of
5 are in fact smaller than the diagonal ones by two
or three orders of magnitude. Once this approxima-
tion of the pseudodiagonalization of 5 has been

Again in the HFB case the wave function of the
nucleus is a wave function of independent quasipar-
ticles, the expression for the total energy is the same
as in the BCS case, and p and z are defined as:

psp= (0
l
a p as

l
0) =g VpVs,

iL

aqp ——&0
l asap lo&=g U-, Vp .

iL

The a~plication of the variational principle on
(0

l
H

l
0), with the constraint AN for —the mean

particle number to be conserved, leads to the HFB
equations. We write, in matrix notation,

U
'

ea
cry ay Vy Va

E~y ——t~y —X5~y+ I ~y

with I r being the Hartree-Fock potential (direct
and exchange). The matrix e r is evidently sym-
metric. This eigenvalue problem can be transformed
into an eigenvalue problem for a symmetric matrix,
using the properties of I and h.

III. RESULTS

A. Choice of the oscillator parameters:
Optimization of the oscillator basis

The parameters of the oscillator basis are varia-
tional parameters of the problem. The total energy
must be minimized with respect to these parameters.
This is particularly important as the basis of the os-
cillator is truncated according to the prescription

n„+n&+nz &&0

where n,. is the number of quanta on each direction.
However, the exact minimization being prohibitively
long for large bases, for which the dependence of the
energy on the oscillator parameters is not absolutely
crucial, the following method for an optimal choice
of these parameters has been introduced. We as-
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similate the nucleus to an ellipsoidal liquid drop
whose axes are given by

(3.2) using (3.1). In order to obtain the volume
parameter of the oscillator,

Rx =Rp 5

4m

' 1/2 2'
Pcos y—

3

N = (COzCO&Nz)
1/3

we start by calculating the radius

R, =Rp 1+ 5

4m
P cosy

' 1/2
5 2m'

Ry ——Rp 1+
4m

Pcos y+
3

' 1/2

(3.1)
R =R„+Ry +Rz R„——( 1+q +p ) .

For volume conservation we introduce R p through
3

Rp 3RxRyRz =Rx pqv'3

where P, y are the usual Bohr-Mottelson parameters.
If one wishes to employ a prescription which is
volume conserving to all orders, then one should use
the Hill-Wheeler prescription

' 1/2
5 2'R„=Roexp Pcos y-

4m. 3

etc. We present our analysis solely for the first
prescription, the extension being evident.

The P, y parameters are related to the quadrupole
moments Qo, Q2 through

(Q 2+ 3Q 2)1/2
P=

ZRp +WR~
' 1/2

Qp
——2AR P

477
cosf,

y=arctan
v3Q,

Q, =uR2P
4m

' 1/2

siny/V 3,

R, Ryq= ~ p= (3.2)

If one chooses to constrain the values of P and y,
the p and q can be directly calculated starting from

where

Qo ——I p(r)(2z x y)d r, — —

Q2 ——f p(r)(x y)d r, —

arid Rp~N~ is the mean square radius of protons
(neutrons). We introduce the parameters p, q of the
deformation of the basis through

2 2
O'x &xp=
Qz Qy

We make the following choice for p and q: We sup-
pose that they are fixed by the shape of the nucleus,
i.e.,

and finally

RpR=
(p )

1/3

' 1/2
1 +p2+q2

3

B. Comparison between HF Bogolyubov,
HFBCS, and HF plus schematic

pairing calculations

As we have previously seen, the treatment of pair-
ing correlations in nuclei can be performed in the
framework of the full Hartree-Fock-Bogolyubov ap-
proach or the HF plus BCS approximation. The
latter can be carried through either in a self-
consistent way, as described in Sec. II (and will be
hereafter denoted as HFBCS), or at a more schemat-

Here Rp is the real rms radius calculated, through
an exact minimization with respect to Amp, at the
spherical point p =q = 1. The volume parameter of
the oscillator basis %co can then be calculated
through a scaling on the radius:

3(pq )
2/3

1 +p2+q2

However, this prescription is not always good, the
Hartree-Fock energy depending crucially on this
parameter. The best solution to this problem is to
explicitly minimize with respect to fico@ at each axial
point (y=0), and estimate the fico for the same P at
y&0 through

2/3
Ace =Scop

2+p
We have verified in certain cases, through an ex-

plicit minimization with respect to the oscillator
parameters, that the above prescription for the latter
is very successful, leading to an error in the binding
energy of the order of AE & 200 keV.

Note that this error concerns the basis effects.
The numerical accuracy of the calculations is of the
order of AE-100 keV. This has been checked
through the comparison of results of the spherical,
axial, and triaxial codes.
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E(MeV) '

74
Ge

625

630 HFg
HF BCS

76

645

ic level using a constant gap b, (denoted by HF 5).
Let us focus first on the HFBCS and HF 6 compar-
ison. The constant gap is in most practical calcula-
tions chosen equal to the experimental one. Of
course once the HFBCS calculation result, at a fixed
deformation, is known, the constant gap 6 can be
chosen equal to the "mean" HFBCS gap, in which
case the total energies calculated by the two methods
coincide for this deformation. The main difference
between the two approaches lies in the deformation
dependence of the gap. This may result in quite dif-
ferent potential-energy surfaces. A particularly
striking example is offered by the nuclei Ge and

Se, for which we present the energy as a function
of the axial quadrupole moment in Figs. 2(a) and (b).
The HF 6 calculation predicts a deformed, oblate
and prolate, respectively, shape while a full HFBCS
treatment leads to a spherical minimum. In general,
for the nuclei we examined, the HFBCS calculation
has led to a substantial gain in energy for the spheri-
cal shape, and thus a reduction of the spherical bar-
rier.

For the comparison of the HFB and HFBCS
methods we have calculated the energy as a function
of the axial deformation for the nucleus "Sm. In
Fig. 3 we present the result together with the HF b,

one. The HFB and HFBCS energy surfaces are in-
distinguishable, their difference being smaller than

~ E (MeV)

I
I

1

1200
I

l

152
Sm

HFB HFBCS
HFQ

—1210

1215

1220

a„(f 2)
I I I I

—3000 -2000 -1000 0 1000 2000 3000

FIG. 3. The potential energy surface of ' Sm obtained
by full HFB calculation (HFB), restricted HFB calcula-
tion (HFBCS), and constant gap prescription (HF 5).

the line thickness. Other quantities of physical in-
terest are the gap (which is materialized in our cal-
culation by the minimum quasiparticle energy,
which explains why the "constant gap" we represent
graphically is not constant) and the pairing energy.
Their variation as a function of the quadrupole mo-
ment is shown in Figs. 4(a) and (b). The difference
of the various quantities is indeed minute, far small-
er than the accuracy with which these quantities are
usually calculated. The same applies to the calcula-
tion of other quantities as, for example, collective
inertia parameters, which can influence the dynam-
ics of the nucleus.

The above conclusions hold provided that one
uses the same space for the HFB and HFBCS calcu-
lations with no cutoff whatsoever. This is possible
solely thanks to the finite range of the interaction.
It would be impossible to perform an analogous cal-
culation with a velocity dependent, Skyrme-type
force, even if the latter had good pairing properties.
So, to conclude this subsection, we may state that
the HFB and self-consistent HFBCS methods are
equivalent for the study of the statics of the nucleus,
and, leading to the same inertia parameters, for the
dynamics as well. '

-500 0 500 Q~tfm2 I

FIG. 2. The potential energy surface (PES) of ' Ge and
Se obtained by restricted HFB calculation (HFBCS) and

the constant gap prescription (HF 5).

C. Alpha particle structure
of light nuclei

One of the most important characteristics of the
D1 interaction is its alpha-clustering property which
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manifests itself in the light nuclei domain. As a
matter of fact, most currently used density depen-
dent interactions do not lead to appreciable u clus-
tering. The Skyrme forces typically belong to this
class. The only variants of the Skyrme interaction
which lead to some clustering achieve that at the
expense of an unphysically large binding for the a
particle. This is not the case for the D1 interaction,
with which the a-particle binding energy is quite sa-
tisfactory, 28.4 MeV.

Lacking detailed a-particle model calculations for
light nuclei with the D1 interaction, we present here
the HFB predictions for two selected structures: the
aligned (4p-4h) configuration in ' C and the dia-
mond (4p-4h) configuration in ' O. The energy
curve of the former, together with the density corre-
sponding to the prolate well-deformed minimum at
Q = 188 fm exhibiting pronounced clusterization, is
given in Figs. 5(a) and (b). However, this is not a
proof for the existence of the a structure. As a
matter of fact, detailed a-model calculations indi-
cate that the 4p-4h state is probably a mixture of
various triangular configurations. Such configura-
tions are unfortunately not compatible with the
symmetries adopted in our code. For the ' 0 case
we present a similar curve as a function of the quad-
rupole moment [Fig. 6(a)]. The diamond configura-
tion being a triaxial one, we have considered triaxial
shapes as well. They lead, in fact, to an energy gain.
The situation becomes even more interesting when
the spurious rotational energy is subtracted from the
potential energy surface. This is done according to
the prescriptions of Ref. 25, and from a physical
point of view corresponds to an angular momentum
projection. Thus, the spherical point stays at its po-
sition while a large energy gain is observed for de-
formed shapes. The triaxial minimum of the energy
curve around Qo

——150 fm (which corresponds to a

y of 10') is thus brought down to -10 MeV. This
point is to be associated with the band head at 6
MeV. An exact projection would tend to make the
agreement even better, but, anyhow, the agreement
is far better than the one observed with the various
Skyrme interactions. ' The density associated to
this 4p-4h state is also shown in Fig. 6(b) and ap-
parently exhibits cluster structure.

10

5
I I

—3000 —2000 - 1000 1000 2000 3000

FIG. 4. Neutron and proton gaps (a), pairing energy
(b), as function of the deformation of "Sm for several

pairing prescriptions (HFB, HFBCS, HF 5).

D. Contour maps
of the potential energy surfaces

The knowledge of the ground state energy and de-
formation of the nucleus does not suffice in order to
characterize its properties. One cannot form a clear
picture concerning its behavior with respect to col-
lective motion on this data alone. A far more clear
picture is offered by the potential energy surface.
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FIG. 5. ' C: the potential energy surface (a), proton density contour plot for the 4p-4h configuration (b).

The latter is given by the energy of the nucleus as a
function of deformation, and, as can be shown in
theories of collective motion, coincides with the po-
tential to be injected in the collective Hamiltonian.

A notion which is particularly useful in character-
izing the potential energy surface is the softness
with respect to a particular direction. If the nucleus
is easily deformable this would mean that its
description in terms of a single Slater determinant
(or HFB wave function) is not adequate. This is
especially important in the case of y deformations,
for which the great majority of nuclei are soft.

The potential energy surfaces we are going to
display were obtained through a constrained
Hartree-Fock-Bogolyubov calculation. Two con-
straints, on the deformation parameters P and y, are
used. The constraints are linear with respect to the
parameters P and y. The convergence on the con-
strained value of the deformation is achieved
through the iterative readjustment of the Lagrange
multiplier and density matrix as explained in Ref. 9.
The bases used corresponded to No ——4 for s-d shell

nuclei, Xo——6 for Ni and Ge, and Xo ——8 for the
heavier nuclei.
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FIG. 6. ' 0: the potential energy surface with axial and triaxial symmetry (a), nuclear density contour plots for 4p-4h
configuration of "0 in units of 10 "fm ' (b). The lengths are expressed in fermis. The density is plotted in two planes
through the nuclear center: x =0 on the top, y =0 on the bottom.

In Fig. 7 we present the energy surface for Mg,
which in the traditional s-d shell studies [SU(3) or
deformed oscillator] is a typical triaxial nucleus.
%'e observe that in our HFB calculation the Mg
has an axially symmetric prolate shape. This is a
feature already observed in calculations with Skyrme
interactions and is due to the spin-orbit interac-
tion. The S case is shown next (Fig. 8). This
map is particularly interesting as the oblate and pro-
late minima of the energy surface are very close in

energy. Thus the S is a y-unstable nucleus, at least
around the ground state deformation, and the full
dynamics of the collective motion must be con-
sidered in this case.

Next we focus our interest on the transition fami-
lies of Ni and Ge. The nickel nuclei are particularly
soft ones already in the P direction. Starting with

Ni, which is a doubly magic spherical nucleus, the
isotopes we examined are centered around a spheri-
cal shape. Although some deformation sets in by
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FIG. 7. Contour map for the collective potential
V (P, y) for ~Mg as it results from a constrained HFB
calculation.

Further examples of soft nuclei are offered by the
maps of " Pd and ' Ce [Figs. 11(a) and (b)]. In
both cases a small equilibrium P deformation is ob-
tained, with " Pd being axial. But even in this case
the energy surface is extremely soft in the y' direc-
tion, leading, undoubtedly, to a dynamic triaxiality.

Finally, we present the potential energy surfaces
for ' Sm and ' Sm. The spherical-deformed shape
transition in the samarium isotopes is well establish-
ed experimentally and has been theoretically stud-
ied. In this case the energy surface allows a better
assessment of the importance of the triaxiality in the
dynamics of the collective motion [Figs. 12(a) and
(b)].

This, in fact, is a general conclusion to be drawn
from the study of the potential energy surfaces in
this subsection. Qualitatively they allow us to
understand the behavior of the nucleus better than
the simple data of its static deformation. Quantita-
tively these energy surfaces can be injected in a col-
lective Hamiltonian and produce the excitation spec-
trum of the nucleus.

0

15

0 0
0. 0 0. 1 0.2 0.3 0. 4 0.5 0.6 0. 1 0.8 0.9

FIG. 8. Contour map for the collective potential
V (P, y) for "S.

the time we reach Ni, namely an oblate one with
p=0.2, the extreme softness is the mean characteris-
tic of this family [Figs. 9(a)—(c)].

In the case of the germanium isotopes, we follow
the transition from oblate shapes for Ge to spheri-
cal Ge and finally prolate for Ge. This transition
is in agreement with the experimentally deduced
one which operates around neutron numbers of
N =40—42. Although no statically triaxial shapes
are obtained in this study, the y softness of the ger-
manium isotopes is expected to lead to an appreci-
able dynamical triaxiality [Figs. 10(a)—(e)].

E. Electron scattering and
ground states densities

Electron scattering experiments, used in conjunc-
tion with model-independent analyses, have proven
extremely useful in determining the ground state
densities of nuclei. In view of what we have previ-
ously stated concerning the softness of nuclei, it is
clear a simple, rotational model based, treatment of
either the ground state or of the transition density,
may be inadequate. Calculations which include the
dynamical correlations in the ground state, or the
transition density, have indeed been attempted.
Such a complete treatment is of course beyond the
scope of this paper, and will be presented else-
where. In what follows we will limit ourselves to
considering ground state densities obtained from a
simple rotational model assumption. However, in
order to account for the effect of dynamics in some
crude way, we can choose as a ground state defor-
mation not the one resulting from static calcula-
tions, but the one corresponding to the mean
dynamic deformation, as obtained in Ref. 21.

In Figs. 13 and 14 we present the results for the
ground state spherical densities for the nuclei 24Mg

and Ni. These experimental results have been de-
duced from a model independent analysis of data
obtained from electron scattering up to very high
transfer. ' The results from our HFB calculation are
presented at both deformations corresponding to the
static and dynamic equilibriums. It is to be
remarked that the consideration of the dynamic de-
formation suffices in order to smooth the density os-
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FIG. 9. Contour maps for the collective potential V (P, y) for "Ni (a), 6 Ni (b), 6 Ni (c).

cillations in the interior of the nucleus, thus bringing
the calculation closer to the experimental result. In
the case of Mg the effect is small due to the rigidi-
ty of the nucleus, and some disagreement persists at
small radii.

F. The fission barrier of ~~pu

The importance of the triaxial degree of freedom
in the fission barrier of the actinides has already
been established in the framework of Strutinsky cal-
culations. In a detailed study Larsson and
Leander have shown that the height of the first bar-
rier in most actinides can be diminished by 1—2
MeV when we allow for a finite triaxiality 5—20

deg. In our case systematic study is out of the ques-
tion, one HFB iteration on an IBM 3033 computer
necessitating —10 min for a basis of 11 major oscil-
lator shells (the strict minimal basis for a fission
barrier calculation). So, we have limited ourselves to
the case of Pu, which is the test case of self-
consistent fission barrier calculations.

In Fig. 15 we present a part of the Pu fission
barrier as obtained by Berger and one of us (M.G.).
The effect of the triaxiality, solely on the first bar-
rier, is also displayed. We readily remark that a
substantial decrease of the barrier height results,
corresponding to a triaxiality of 7 deg. This result is
in fair agreement with the Larsson-Leander calcula-
tion.
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FIG. 10. Contour maps for the collective potential V (P, y) for Ge (a), Ge (h), Ge (c), Ge (d), 6Ge (e).
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FIG. 11. Contour maps for the collective potential
V (P, y) for "Pd (a), '34Ce (b).

FIG. 12. Contour maps for the collective potential
V (P, y) for ' Sm (a), ' Sm (b).

IV. CONCLUSION

In this paper we have presented Hartree-Fock-
Bogolyubov calculations obtained with a finite range
interaction, with triaxial self-consistent symmetries.
In our treatment we have been able to handle up to
very heavy nuclei with no assumption whatsoever
about inert core nucleons. Moreover, large oscillator
bases were considered throughout in order to ensure
a fair convergence of the results. This has been

achieved through an extensive use of the Gogny
separation procedure for the interaction while taking
full advantage of the symmetries of the problem.
The formalism and details of the calculation have
been presented in Sec. II and in an appendix.

From the point of view of the results, we have
here investigated just the static aspect of triaxiality
by looking into the effect of the y degree of freedom
on the ground or isomer states of nuclei, or in the
fission barriers. However, the most important result
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FIG. 13. Static HFB, dynamic HFB, and experimental
charge densities of Mg.

50

of this work is the estimation of the y polarizability,
as represented by the potential energy maps. The
latter confirm the alleged y softness of nuclei and
thus render imperative a full dynamical treatment of
the quadrupole collective motion in nuclei, while at
the same time constituting the most important in-
gredient of the collective Hamiltonian. Such work
is currently in progress and will be presented in a fu-
ture publication.

In the following appendices we present the neces-
sary formal development which can lead to the con-

FIG. 15. Potential energy surface of the Pu in axial
and triaxial HFB calculation.

struction of a HF or HFB code with triaxial sym-
metries. Our approach is quite general and as such
it encompasses the case of the Gogny D1 interac-
tion. The latter comprises, apart from the finite
range part, zero range density dependent and spin-
orbit parts. The technology for the treatment of
these zero range parts being standard, we will not
enter into any detail as far as these terms are con-
cerned.

0.09

0.05

~&t, (e fm )

58
I

gg exp
-—— sphetic HFB

triax. HF8

APPENDIX A: BRIEF RECALL OF THE
GOGNY SEPARATION METHOD

We recall briefiy the application of the Gogny
separation method to the calculation of the matrix
element

(ap~ v~)s)

f~ X~ PP X2 V X~ —~2 y& ~& y~ ~2

XdX)dX2 )

and for simplicity we limit ourselves to the one-
dimensional case. The essential property of the
basis functions which a!!ows the application of the
separation method is a general property of every
family of orthogonal polynomials, namely that we
can express the product of two functions as a prod-
uct of one weight function times a finite sum of
functions of the same family. In the case of oscilla-
tor wave functions (/ =ax),

FIG. 14. Spherical HFB, triaxial HFB, and experimen-
tal charge densities of "Ni.

g (x)=e-&'"
vmZ" n!

1/2

H„(g)
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We have

qr (x)yr(x) =e
~2"p,!

' 1/2

I„„y„(x), (Al)

where

lacy, =
p!(n !n !2&)'

a+9 ny ny+p a a+ y p
f f

2
'

2
'

2

Using the transformation (Al) we can rewrite the matrix element

—a2x 2/2 a2x 2 /2
&&Pl Vly&&=+I r&Ips f f q»(xi)e ' V(lx& —x2I)e ' q,(x2)dxidx2.

pv

We can verify that the integral in expression (A2) remains unchanged if we replace V(x) by

(A2)

P (x)=g f V(x)e '
q&&(x~)dx~ e

—ax& /22 2

q&„(xi) .

We set

W(x) =g f„(x2 )y„(x) ),

where

—a xl /2
yq(x, ) =e y„(x ) )

and

—a2x /2
f„(x2)=f e ' V(x)y&(x&)dx~ .

We thus obtain a representation of the potential F (x) by a sum of terms separable in coordinates 1 and 2. The
two potentials P"(x) and V(x) are perfectly equivalent as far as the computation of matrix elements is con-
cerned:

&~&
I V I )'&& = &~&

I
~ I)'» =X &~ I 9 p(xi)

I
)'& && lf, (x2)

I
&&

For the calculation of the two terms we proceed thus. Using relation (Al) we can calculate the matrix element
' 1/2

I y~.&~19p(xl) I r &
=

m 2~@!
(A3)

In —nrl &p&n +nr.
We remark that due to the presence of the term (A3) the sum comprises a finite number of terms. We now ex-
amine the second term J&p ——

& p
I f& I

5 &. Applying relation (Al) we get
1/2

a P+' Ips. —ax /2 —ax /2
&Pl f& I5&= g f f e ' y,(x2)y&(x&)V(x~ —x2)e ' dx&dxz .

~=
I p—s

I

2 v'

We perform now a Moshinsky transformation,

X) —X2 X)+X2x= ~, X=

But I~&& exists only if the factorials in the denominator make sense. This gives the following restrictions on
nanny:
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where the coefficients M," are the Moshinsky coefficients. We thus get

p+~ Ipg„
&P~f„~5)= g " g~,""ff e ""'+x""q„(X)q„~„,(x)V(v2x)dxdX.

lp sl Q2 v!

The integration on X can be readily carried through
T 1/2

f e p, (X)dX=5,0.

Thus s =0 and

P+' Ips.
(P fq ~5)= g " M()"f pre+„(x)e " V(V2x)dx

v=
I p sl +2—v'

with

Mg" =(—I)&

' 1/2
(p+v)!
2"+ ptv'

So, for a given interaction V we must calculate the integral

Sx= f yx(x)e " ~ V(V 2x)dx . (A4)

2 2—(x& —x2) /p,
In the case of a Gaussian interaction, integral (A4) can be performed analytically. For V=e we get

&(2k )!
kt

a~~
2+Q p

—1

2++ p

=0, A, =2k+1 .

The extension of the separation method to three spatial dimensions is straightforward. In general we obtain an
expression of the type

(aP~ V
~

y5) =+I„rJ„

where the sum is finite and I„~depends only on the indices o.,y, v and Jp incorporates the two-body interac-
tion. Such a representation allows a simple, rapid, and numerically precise computation of matrix elements.

APPENDIX B: CALCULATION OF THE DIRECT AND EXCHANGE HARTREE-POCK POTENTIALS

A. Direct potential

We start with the expression of the direct term (2.5),

r.,'=y &ap~ V~y5)P»5. .S. .. I.,'=g (ap~ V lly5)P»5. ..5.~ .
ps p5

The summation P5 is carried out over all occupied states. However, we can limit the summation over half of
the states (states with q &0 where q is the quantum number defined in Sec. II 8) and calculate the contribution
of the time reversed states.

We use relation (2.4) on the density matrix

n&+n5
PP5=Pps( —I ) upas

as well as the relation

& P~V~y»=& P~V~y»



TRIAXIAL HARTREE-FOCK-BOGOLYUBOV CALCULATIONS. . . 2335

between spatial matrix elements. Limiting the summations over states with q =+1 we get

I r' ——g (aPI VIy5)P»5 5 ~ [1+(—1)" «crpas],
P5&0

I „=g &apI VI y5&p»[5, 5 & +(—1) ' «ap s(1—5 .,)(1—5.& )] .
P5&0

We distinguish o.~ =o
&

and o.~= —o.
&

in the second term:

I j= g (apI VIy5)p»5 5 ~ [5 +(—1) ' «(1 —5 )]
P5&0

+&apI V
I y5&p»(1 —5 )[5 5 ~ —( —1) ' '(1—5,)(1—5 ~ )] .

Using the symmetry property of the density matrix p»=ps~ we can limit the summation to p & 5:

r.,'=g (apI VIy5)p»5 5 ~,(l+( —1) )(1+(—1) ' ')(1——,5»),
p&5

1 r
——g (aPI VIy5)P»5 5 & [5 +(1—5 )( —1)" "](1+(—1) « ")(1——5») .

p&5

The contribution with o~= —o.
z is identically zero. We distinguish at last the case n~ +n„=even:p

I ~r' ——g (aPI VIy5)2p»5 5 ~,(2 —5»),
p&5

I' r'= g (aP
I

V
I
y5)p»5 5 ~,(2—5») .

p&5

For n p+nz ——odd there exist no contributions to the direct potential.

B. Exchange potential

For the exchange field we have

G.,'=g (aP
I vI 5y)p»5. ..5.+,

p5
CT~O'g O'

y
&

G.,'=g(apI vI5y)p»5. .5. ,
p5

O'~O'y CTpCTg

The summation over the time-reversed states gives

6 '= Q ( pI VI5y)pp [5 5 +(—1) ' " po. (1—5 )(1—5 )],
P5&0

G r ——g (apI VI5y)p»5 5 ~(1+(—1) " ') .
P5&0

We distinguish o.~ =o.
&

and o.~= —o.z.

6 r ——g (aP
I

V
I 5y)P»5 5 ~,(1+(—1) ' '),

p5

6 r' ——g (aP
I

V
I 5y)P»5 5 ~ [5 +(—1) " «(1 —5,)],

Ger'=g &aP
I

V
I
5y&p»(1 —4.~ )(1—5~~,)[5~.~,—( —1) " '(1—5~.~,)] .

p5

We use the symmetry p» ——ps~ to limit the summations to p (5:

6 „'=p p»5 5 &,[(apI V I5y)+(a5I VI py&](1+( —1) ' '),
p&5
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G r'= XPpss. ,s &,[&aPI VISy&+&as l VIPr&][5...,+( —1) ' '(1 —5...)],
p&5

G r'= X pp (1—5 .„)(1—5 ~,)[&aP I
v

I sr &
—( —1) ' "&as

I
v

I Pr & ][5...—( —1)"""'(1—5,)1
p&s

We distinguish n~ +nz
——evenP

G.,'=g [&apl vlsy&+&asl
P&,5

G.,'= g [&ap l
v

l sy&+ &as
l

p&5

G.,'= g [& P l
v

l
sy) —

& 5
l

p&5

and n&~+n~ =odd,

G.,'= g [&ap
l
v

l
sy)+ &as

l

p&5

G.„'=g [&ap l
v

l sy&+ &as
l

p&5

For the actual computation of fields

25oaos —1=(raos .

V IPy)]2pp 5 5 ~,
(field 0),

VlPy)]ppss 5 ~
v

l Py)]pps(1 —5«)(1—5~& )(25 ~ —1) (field 1),

V
l Py)]Pps(1 —5~ ~ )(1—5 & ) (field 2),

V
l Py)]Ppss 5 &,(25,—1) (field 3) .

1 and 3 it is preferable to use the property

Field 0 must be multiPlied by (1—
2 sps) to avoid a double counting.

APPENDIX C: TREATMENT OF THE COULOMB INTERACTION

For the calculation of the mean field due to the electrostatic repulsion between protons we again use the
separation method. Actually we use the identity

f" -( ~ -P)'/ '"P
Vm' 0 p

The calculation of the 8 integrals (A4) is now straightforward and we find

3/2 I I Iaxa&az~x. ~y ~z.

v 3r (A,„/2)!(A,~/2)!(A,,/2)!
(2,„+2.@+i,g)/2

(20 dtO~—
0 (2+ )Nl+i/2(2+ )N2+l/2( )N3+I/2

We set

2= 2 a;
u = and =P;.2+at a

( 2/2) l + 2+ 3d
Q~—

00

0 2 (2„+i)/2 2 (23, +))/2
2 2 (Ag+i)/2

where we have set t =p and A,~, A,„,A,, are always even.
The complication of the Coulomb interaction stems from the fact that the integration over the range couples

the directions x,y,z and the three summations are no longer independent. A second difficulty is related to the
integration over t, the calculation of which using recursion relations may become unstable for certain values of
the deformation. We sketch the method we have adopted for a very precise numerical calculation of the in-

tegral
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The optimum choice of a is to take it equal to the maximum of (a &,a2, a3). The resulting integral can be calcu-
lated numerically with a Gauss-Legendre method. The above treatment has actually been limited to the case of
the direct Coulomb potential. The treatment of the exchange contribution, although possible, would have been
prohibitively long numerically. We have preferred to include, in a perturbative way, the contribution of the
Coulomb exchange energy in the Slater approximation:

1/3
2 3 4/3 3Ecex= 4 e Pp d

7T

APPENDIX D: CALCULATION OF THE PAIRING POTENTIAL

Before calculating the pairing field

b.,= -,
' g (ay i

V
i P5 )a„, (Dl)

we consider the isospin quantum number. We assume pairing between proton-proton or neutron-neutron only.
It follows that all four states a,P,y, 5 must possess the same isospin projection. A two body force of the type

8 +BP~—HP, —MP~P~

can be replaced by (W H)+(B—M)P . —In the following we are going to work with a force of the type
W+BP keeping in mind that the correct expression is (W H)+(—B M)P . —

We can rewrite expression (D 1) of the pairing potential as

g &ayl vl&5&&gp &ayl V—15&&~gp+ g &ayl Vl&5&&sy —&ay'I V 15&&&sp
PSCq j%Cq

By permutation of P and 5 after the second summation and using the fact that esp
———

op~ we get

z.„=g (ayi vip8)~» .
P5Eq

We remark that P, 5 can in fact be limited in a single block q and that the states of the block q contribute by a
simple factor of 2.

Using the expression of V= W+BP we obtain

& -=pa»[(ayi WiP5)5 5 +(ayiB iP5)5 5
p5

—(ayi Wi5P)5 5 ~ —(ayiB i5P)5 5 ].
We use the following relations between matrix elements:

& ay
i

V
i
P5) =a ~s(a5 i

V
i
Py& =(—I )"'+"'o~s& ay i

V
i
135),

(ayi Vi5P)=( —1)" o~s(aiji Vi5y),

&api Vi y5& =(api Vi yS&,

and find

(D2)

6 -=ozgoyc»[[(a5i WiPy) —(ai3iB i5y)( —1)" "]5 5 &,

+[(a5
i
B

i Py& —(aP i
W

i 5y)( —»"""~]5.,5.„I .

We distinguish, as in the case of the Hartree-Fock potential, o.~=o.
&

and o~= o. .a y.
We limit the summations to @&5, using the small symmetry zps ——«», and we finally obtain for

n~ +n~ =even,P
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b, -=err+ ostc&&[&a5I W 8 —
I Py)+&aPI W —8

I 5y)]5 5 & (25 —1) (field 0),
p&s

=o&-g oats&[&a5 I
W+8

I py) —&ap
I
W+8

I
5y) ]5 5 & (field 1),

p&S

and for ns~+ns =odd,

=o&g o-stcgtt[&a5 I
W+8

I py)+&apI W+8
I 5y)]5 5 & (25 —1) (field 2),

p&s

~.y=o, g oa gp[&a5
I
W+8

I
p)'&+&ap

I
W+8

I
5l'&]5...,5.~, (fteid 3)

p&s

These expressions can be further reduced using
the identity 25o op

—1=0. 0p. We remark that the
fields 50 i 23 are identical to the exchange fields

Go i 2 3 provided one replaces p by sc, and allows for
the multiplicative factors W+8. This is of a great
practical importance as it allows the use of the same
algorithm for the calculation of the exchange and
pairing potentials. Another remark concerns the
W+8 factor. For Gogny's interaction the only ap-
preciable combination is the factor W 8of th—e
field 0. This field is the singlet one, which, as ex-
pected, leads to strong pairing.

For a density dependent 5 interaction of the form
V=t(1+P )p 5 the pairing field is zero. As a
matter of fact, the action of the antisymmetrization

operator (1 P„PaP—,) reduces to (1 P), wh—ich
combined to (1+P ) from the force gives

(1+Pa)(1 Pa)=—1 Pa =0—.

For the evaluation of the spin orbit pairing field
one can calculate the associated densities. However,
a large number of densities results, and motivated by
the fact that their contribution, in the limit of axial
deformations, has proven to be negligibly small, we
have preferred to omit the spin orbit contribution to
the pairing potential altogether. The same applies to
the pairing Coulomb potential, the calculation of
which is of the same degree of complication as the
Hartree-Fock exchange Coulomb field.
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