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The problem of alpha decay is discussed on the basis of a theory which describes discrete

and continuous states in a unified manner. A formula for numerical calculations is given in

which configurational mixing as well as channel coupling is taken into account. The R-

matrix approximation is shown to be justified if the width is spread over a small number of
decay channels. Generally, renormalization of the wave function is necessary if a factoriza-

tion of the width is assumed. The importance of channel coupling for the case of a small re-

duced width is discussed.

RADIOACTIVITY Continuum shell model, spectroscopic factors, in-

fluence of channel coupling on absolute values of partial widths.

I. INTRODUCTION

The problem of understanding alpha decay of nu-

clei has stood since the early days of nuclear phys-
ics. A. great number of experimental investigations,
not only of the very alpha decay but also of reac-
tions with transfer of alpha particles between two
nuclei or with knockout of alpha particles out of nu-

clei, have been performed. Theoretical investiga-
tions on alpha decay are based on the formula for
the decay constant or lifetime of the parent nucleus.
The problem concerns the fact that a discrete state
of the parent nucleus needs to be considered, the
coupling of which to the surrounding continuous
states, formed by the residual nucleus and the alpha
particle, determines its lifetime. Therefore, both
discrete and continuous states need consideration
with comparable accuracy although they show a
very different mathematical behavior.

Most calculations of alpha widths were performed
on the basis of the R-matrix theory. The formula
for the width is approximated, in these calculations,
by the product of a spectroscopic factor and a
penetration factor. While the spectroscopic factor is
defined as the overlap of the wave function of the
parent nucleus with the wave function of the two
residual nuclei in a bound state, the penetration fac-
tor describes the penetration of the performed alpha
particle through the barrier. The spectroscopic fac-
tor describes the nuclear structure properties of the
nuclei and can be calculated on the basis of the ex-

isting nuclear structure models with high accuracy.
The penetration factor is calculated by means of the
Coulomb wave functions in a comparably much
worse approximation.

Numerical calculations have shown that the accu-

racy in the description of the nuclear structure wave

functions has a large influence on the alpha widths
calculated. Configuration mixing has been shown to
play an important role, especially for the alpha
widths of heavy nuclei since they are small in abso-
lute value; see Refs. 1—6. Despite much effort to
improve the nuclear structure wave functions of the
parent and residual nuclei, the calculated alpha
widths of heavy nuclei are generally still too small in.
absolute value (see Refs. 7 and 8).

For this reason, the alpha widths are attempted to
be calculated without using R-matrix theory, i.e.,
directly from the matrix elements connecting initial

and final states of the decay. ' The disadvantage
of these calculations consists in the fact that, with

the exception of the method, ' the nuclear structure
wave functions are calculated with less accuracy
than in the E.-matrix theory calculations in which
the proved wave functions of the nuclear structure
models are used. Moreover, in the numerical non-
R-matrix calculations channel coupling is not taken
into account although the theory allows its in-

clusion. The results obtained did not solve the prob-
lem of small theoretical alpha widths.

Some years ago Fliessbach' proposed to calculate
the alpha widths on the basis of the R-matrix
theory, but carefully to normalize the final state
wave function. In further investigations
Fliessbach' stated, however, that the reduced width
amplitude (or spectroscopic factor) defined by him
depends on the reaction by means of which the de-

caying state is studied.
Recently, a method was proposed' for calculating

the alpha widths on the basis of a continuum shell

model. The results obtained numerically for several

polonium isotopes are on the order of magnitude of
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the experim. ental widths in absolute value, although
configuration mixing is not taken into account.
However, the calculations are defective, as will be
shown in Sec. II.

Watt et al. ' pointed out that the Pauli principle,
in most shell-model calculations of spectroscopic
factors, is violated. They renormalized the shell
model wave function and found agreement with the
spectroscopic factor obtained from the experimental
data by means of the antisymmetrized calculation of
Jackson and Rhoades-Brown' ' for the decay of
' Po. The problem of renormalization and factori-

zation will be discussed in detail in Sec. III. It
shows once more that the problem of small theoreti-
cal alpha widths has not yet been solved. Recent ex-
perimental investigations of alpha widths of heavy
nuclei confirmed only the old values. '

Although configuration mixing of the nuclear
wave functions has been shown to enlarge the calcu-
lated alpha widths, coupling of the decay channels is
not taken into account in any numerical calculation.
High shell model configurations treated as bound
states are shown to enhance the calculated alpha de-

cay width by several orders of magnitude. But
the high shell model states are indeed unbound.
Their mixing should be taken into account by the
method of channel coupling in order to correctly
describe the wave functions at the nuclear surface.

In order to characterize the present situation in
describing alpha widths of heavy nuclei, the follow-

ing can be stated. While the wave functions of the
bound states are treated with a high degree of accu-
racy, the properties of the unbound states are usual-

ly approximated with lesser accuracy. It is therefore
meaningful to look for a theory in which the same
Hamiltonian operator describes the coupling of the
discrete states (configuration mixing), the coupling
of the continuous states (channel coupling), as well

as the coupling of the discrete to the continuous
states (decay width). Such a theory can be formulat-
ed (the continuum shell model).

It is the aim of the present paper to provide the
formalism for calculating decay widths (see Secs. II
and III). Using the numerical results for nucleon
widths, the influence of channel coupling on the al-
pha widths of heavy nuclei, as well as some aspects
of surface alpha clustering, will be discussed in Sec.
IV. Conclusions are drawn in Sec. V.

II. THE DECAY %WIDTHS

The decay widths will be calculated here on the
basis of a theory which describes the coupling of the
bound states and the coupling of the unbound states,
as well as the coupling between the bound and un-
bound states by the same Hamiltonian operator.

The widths of the decaying states follow from the
imaginary part of the eigenvalues of the operator
(see Barz et al. )

Hgg ——Hgg +Hgp Gp Hpg,eff (+)

which appears effectively in the subspace of discrete
states (Q space) when the coupling to the continuous
states (P space) has been taken into account. Here,

H~ =—QHQ, H~I =QHP, . . . , while

6(+) p 1 p(+)E —Hpp

is the Green's function in the P space. Q and P are
the projection operators onto the corresponding sub-

spaces. The P space contains all functions with one
particle in the continuum where the particle may be
either, e.g., a nucleon or an alpha particle. Decay
channels different from the considered type are
neglected. It is P+Q =1 in the framework of the
model. The width of an isolated decaying state R
given by the imaginary part of the eigenvalue of
H&~ at energy E~ can be represented aseff

I =2~2&4 IHIP''&&41014 &I = „.

Here, Ez is the energy of the state. The function PR
of the discrete state R follows from a usual nuclear
structure calculation, e.g. , from a shell model diago-
nalization with Woods-Saxon potential

(E Hgg)/R —0—.
It is PPz ——0. The continuous functions g are solu-
tions of the system of coupled channels equations

(E Hpp)g =0, —

where c is the decay channel characterized by the

quantum numbers of the residual nucleus and of the
emitted particle and Qgz ——0. The gE used for con-
venience here are normalized differently from the

(co) ~0 (co )

g,
' defined by Barz et al. The g,

' are normal-
ized asymptotically like sinkr in the entrance chan-
nel, while the g are normalized to 5(E E'). —

The amplitude of the partial width with respect to
the channel c follows from Eq. (3):

I ~,'=(2~)'"D. 1E=E,

&'= &41H I CE & ~

It should be noted here that the wave functions gz
do not describe the final states observed experimen-
tally since they contain admixtures from other states
due to the interaction operator V [Eq. (5)]. The final
states are described by the basic wave functions in
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the I' space defined by the solutions of the equation wave function, i.e., the spectroscopic representation

[E—(Ho)pp]XE =0 . 0, =pa, A (16)

The decaying states are described by the wave func-
tions

QR ——(1+GpHpg )pE,

i.e., by the wave function pE and some additional
term which takes into account the modification of
the wave function of a decaying state by the cou-
pling to the continuum. It holds that the equality

&((„ I
v

I g,'& =(n, I
v

I

x', ) .

In the following, Eq. (7) will be used in accordance
with the definition of a partial width given in Ref.
16. In the numerical calculations discussed in Sec.
IV [example (a)] for the isospin forbidden decays of
' N and ' C with one open channel, the decay width
(corresponding to the lifetime of the states) is ob-
tained directly from the eigenvalue of the operator
Hg~g [Eq. (1); see Ref. 22].

The coefficients D, can be determined in the fol-
lowing manner. ' Using the definition

Q= X I O. &«. I

R

of the Q operator, Eq. (5) reads

(E —H)g = QHg = ——g D,"PE .

The functions gE can be represented as

gc g~cO y DR(R
R

where the functions (E' and gE are defined by

(E H)k' =0, —

(E H)gE PE . — ——

Using the orthogonality relation

(P„ I

g') =0

(10)

(12)

between the scattering and bound states, it follows
from Eq. (10) that

R'

The coefficients D, computed as solutions of Eq.
(14} immediately determine the partial widths I E,
according to Eq. (6).

Numerical calculations are performed for isolated
states R. In such a case Eq. (14) reads

&C. I&E'& =D.'&C. Ir:&
Further, the wave function PR of the parent nucleus
is represented in the same coordinates as the channel

of the function pE is used. The functions pE are the
projections of the function pE onto the channels c'.
They are defined and normalized within the Q space
(with aE, ——1 in the one-channel case). By Eq. (16),
the totally antisymmetric states pE are transformed
into the form of linear combinations pE of antisym-
metric states of A —n particles vector coupled to an-
tisymmetric states of the n particles and to the rela-
tive motion of the two nuclei (A n} an—d n In. pE,
c' stands for the quantum numbers. The sum in Eq.
(16) runs over all channels, independently of their
energy. The spectroscopic representation (16) is
used in the standard shell-model calculations for
cluster spectroscopic factors. The amplitudes aE,
contain the fractional parentage coefficients and the
Moshinsky coefficients (if n & 1), or they can be ex-
pressed by using the second quantization method.
Equation (12) now reads

« H)kE= g—aE,.NE (17)

where the sum on the right-hand side runs over all
channels c' in the spectroscopic representation (16).

Since there is much discussion on the problem of
antisymmetrization and renormalization in the
literature (e.g., Refs. 13—15, 18, 17, and 21) some
comments are helpful here. Equation (16) as it
stands is an expansion of the wave function pE, an-
tisymmetric in A nucleons, into a set of wave func-
tions pE. The wave functions pE are not connected
with any physical state observed experimentally.
They are introduced only for the convenien"e of
their channel dependence, i.e., for mathematical
reasons. Indeed, it is relatively easy to calculate the
overlap of QE with the functions pE and g~. There-
fore, there is no reason to renormalize or antisym-
metrize the functions pE as long as the whole theory
is formulated consistently. The functions which
describe the final state observed experimentally are
the channel wave functions gE [see Eq. (7) and fol-
lowing]. These wave functions are antisymrnetric in
all A nucleons. Further, the Pauli principle between
the wave functions pE and g~ is taken into account.
Equation (17} clearly shows the difference of the
formulation given here compared to other theoreti-
cal treatments of the alpha decay problem. There is
some freedom to choose the basic set of wave func-
tions pE on the right-hand side of Eq. (17). Chang-
ing this set into another one will alter, of course, the
expansion coefficients aR, also [Eq. (16)], but the
wave functions gE on the left-hand side of Eq. (17)
and the wave functions g defined by Eq. (5) remain
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unchanged. By this, the spectroscopic amplitudes
aa, defined here can differ from those used in other
theoretical treatments. Fliessbach, ' ' e.g., uses a
set of antisymmetrized wave functions and therefore
gets spectroscopic amplitudes different from those
obtained here. The spectroscopic amplitudes az,
defined by Eq. (16) characterize the nuclear struc-
ture and correspond to the spectroscopic amplitudes
used successfully for many years in describing the
relative probabilities of excitation and the relative
decay widths on the basis of the 8-matrix theory.
The values az, do not imply any information about
the reaction (in contrast to the definition of the
spectroscopic factor by Fliessbach' ) or even the
continuous states, i.e., the final states observed ex-
perimentally. Such information is contained in the
partial widths. The problem of obtaining the partial
widths from the spectroscopic factors is not trivial.
The factorization assumption I ti, «aR, will be
considered in detail in Sec. III.

In the numerical calculations, Sandulescu et al. '

solve Eq. (15) by restricting the equation to only one
channel c. Furthermore, they also restrict the sum
over c' to one channel. Such a procedure would be a
good approximation in cases where (Pi'i 1)E' ) as
well as (Pi'i 1(z ) vanish for c&c'. The first condi-
tion is mostly fulfilled [see approximation (25)],
while the second condition implies the restriction to
one channel c in Eq. (17),

« H)4'=—ati,.A' .

Now, g depends on c. Using

&c:1&E')-6,
it follows from Eq. (15) that

(18)

(19)

According to Eq. (18), gE' in Eq. (19) is propor-
tional to aii&Pt't, while it should be proportional
to g, ,aii, Pi'i. Therefore, the values D, calculated
numerically from Eq. (19) are generally too large by
a factor of the order of magnitude az,

Other calculations for alpha widths on the basis
of Eq. (6) gave values smaller than the experimental
results. Thus, the problem of the large experimental
widths is numerically unsolved. Calculations with
channel coupling were not performed up to now.

III. THE PROBLEM OF FACTORIZATION
OF THE DECAY %IDTHS

The partial widths I z, are calculated mostly
from the overlap integrals of the wave functions of
the nuclei before and after the decay. The relation
between the I ~, and the overlap integrals can be

obtained in the following manner. Using Eq. (12)
and the representation of the Green's function, one
obtains from Eq. (14) (see Ref. 22)

&4 l

4"&
= g D. &A 1« —Hgg)

'
l 0

(20)

(y„1g,")1, , =—2D,'yr, .

By means of the spectroscopic representation (16) it
follows from Eq. (22) that

D,"=—I ~ gati, , &0~ 1g'&1E=E, ,
C

(23)

or by using definitions (6) and (7),
1/2

I', =i
2

I' gaii, (pi'i 1gs' ) 1F.=E„~
C

(24)

Equation (24) gives the relation between the ampli-
tudes I ii, of the partial widths of (isolated) decay-
ing states and the spectroscopic amplitudes a&, de-
fined as an overlap of the function Ps of the parent
nucleus with the functions Pi'i, which have the same
channel coordinates as the wave functions of the two
nuclei in the final state. If

(4R I EE ) 1E=Eg = &'4
I NE ) I E=Eg~«' (25)

holds, then the amplitudes of the partial widths can
be factorized into two parts

1/2
~R, c aR, cPR, c ~ (26)

where aii, contains the nuclear spectroscopic infor-
mation, obtained from nuclear structure calcula-
tions, and the coefficient

' 1/2

u. ,.= —, (27)

is the amplitude of the partial width for a preformed
particle in the nuclear state R. The function gE'

may be considered, according to Eq. (10), as the
wave function of the continuum modified by the
discrete states or, according to Eq. (11), as the total
solution Pz of the problem (see Barz et al. ):

For isolated decaying states it is

&4~1« —~gg) I NR & I E=E,

= —(2i jl ii)5iiii . (21)

Therefore Eq. (20) reads
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e

4'=kE+g« —ER+ —IR) '
2

I R (inverse lifetime) by means of diagonalization of
Hgg [Eq. (1)].

X (1+GPHPg )PR &PR l

H
l 4 &

Here

(28)

and

ER(E =ER)=ER

&PRIE'&= g E ER+ —I R—
2

&0'R IH 14& .

Using definitions (6), (7), and (16), Eq. (29) can be
rewritten in Eq. (24) for isolated resonance states.

In the traditional calculations, pR, is approximat-
ed by a penetration factor by means of Coulomb
wave functions where the factor I R does not appear
explicitly. The I R, of a state R relative to the vari-
ous final states, according to the different channels,
are proportional therefore to aR, .

Approximation (25) seems to be fulfilled for reac-
tions with knockout of particles or particle groups
by incident particles with intermediate energy. In
such a case, the nucleon groups performed in config-
uration (channel) c seem to be knocked out with a
large probability in comparison with that for the
other preformed configurations c'. In the decay
problem approximation (25) seems to be more poorly
fulfilled. Nevertheless, it is used generally. That
means g, ,aR, PR is replaced by aR, PR usually in

the same manner as was done by Sandulescu et al. '

As a consequence, the functions P' have to be re-
normalized since otherwise the I R, would be too
small according to Eq. (24). The renormalization is
of no importance so long as aR, JR is large in com-
parison with the whole sum (16). But for small aR „
and above all for the low-lying states )R, the re-
normalization plays an important role.

That means channel coupling according to Eq.
(24) should be taken into account in a theory formu-
lated consistently. This problem will be illustrated

by means of examples in Sec. IV. It should merely
be noted here that the partial widths I ~, obey the
condition I R

——g, l R, for isolated decaying states
in a nontrivial manner according to Eqs. (3) and
(6). The best method for numerical calculations in-
cluding all the effects discussed is the calculation of'

r„(E=E,)=r, .
Equation (24) can also be obtained directly from Eq.
(28):

IV. DISCUSSION OF THE
FACTORIZATION CONDITION

In the foregoing it has been shown that the partial
widths for particle decay do not factorize into a
spectroscopic factor and a penetration factor in a
trivial manner. Nevertheless, the factorization as-
sumption (26) can be used in most cases in order to
determine the relative values of the widths if the
spectroscopic factors are known and vice versa. In
the following, some examples are considered, howev-
er, in which the factorization assumption (26) is not
justified, even for light nuclei.

a. Isospin forbidden proton and neutron widths of
' X and ' C. Numerical calculations for the eigen-
values of the operator H~~ have shown that channel
coupling effects may play an important role in a
manner similar to configuration mixing. In the
considered case closed channels change the value of
the calculated width by more than one order of mag-
nitude since the absolute value itself is small.

b. Isospin allowed reduced alpha widths of the
1p-she/I nuclei. In light nuclei, many cluster spec-
troscopic factors relative to both the ground state
and the excited states are calculated theoretically
and determined experimentally from transfer and
knockout reactions. Mostly, the fractional paren-
tage connection of the ground state of the parent nu-
cleus with the excited states of the residual nucleus
is comparable to that with the ground state. Even in
the case of ' Cs, the alpha spectroscopic factor re-
lative to Bes, is theoretically only about 25%%uo of
the sum of the alpha spectroscopic factors while the
remaining 75% connect ' Cg, with Be in its excit-
ed states, mainly with the first 2+ and 4+ states.
The experimental data have verified the relative
values for the spectroscopic connection of a nucleus
with the ground and excited states of the residual
nucleus, i.e., the fragmentation of the strength.
Thus, the shell model approach for the description
of cluster properties in nuclei which takes directly
into account the antisymmetrization of the different
cluster wave functions has been supported by the ex-
perimental data. An exception is the alpha spectro-
scopic factor ' B~, —+ Liz, +'o.. According to the
two calculations with wave functions of intermedi-
ate coupling, "' this value is very small: about 1%
of the sum of alpha spectroscopic factors relative to
all states of Li. The experimental value is much
larger. Obviously, coupling between the different
channels Li+a leads to an enlargement of the
small width for the channel Li&, + a.

c. Isospin forbidden reduced alpha widths of ' C.
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The isospin-forbidden alpha widths of some T= 1

states in ' C are calculated in the framework of the
traditional shell model by taking into account the
isospin mixing due to Coulomb forces but neglecting
both the differences in the neutron and proton wave
functions and the channel coupling. The spectro-
scopic factors obtained are on the order of magni-
tude 10 . They are in the correct order of magni-
tude for the 1+,1 state at 15.1 MeV but much too
small for the 2+, 1 state at 16.1 MeV. The different
agreement between theory and experiment in both
cases is surely connected to the fact that 1+ states
with an alpha particle structure are forbidden by
reason of symmetry. Therefore, coupling of the al-
pha channels does not play an important role for the
1+,1 states in contrast to the 2+, 1 states. Conse-
quently, the spectroscopic factors of the 2+, 1 states
are enlarged due to channel coupling while there are
no favored channels for the 1+,1 states.

d. Enhancement of the absolute alpha widths of
the Ip shell n-uclei in knockout and transfer reac
tions. Chant et a/. recently discussed the data in
direct reaction theories of alpha transfer and
knockout reactions for light nuclei (A &16). They
pointed out that wave functions with excessive rms
radii are needed in order to reproduce predicted 1p
shell absolute spectroscopic factors. In shell model
language this result implies admixtures of four nu-
cleon components from higher shells which would
presumably enhance the wave function in the sur-
face region. As an alternative to this interpretation
Chant et al. considered significant inelastic coupling
to excited states having large alpha widths. These
couplings remain fairly constant from one reaction
to another. From the point of view of the continu-
um shell model, as discussed in this paper, the two
interpretations are not contradictory. Higher shell
model states, being unbound, are taken into account
together with the bound shell model states in solving
the Schrodinger equation HP =Eg:

PR'+'= g bR(It)4
R

+ g f dE'a'(E', c')k . (30)
C

The wave function of an isolated decaying state is
modified by the continuum [in analogy to the wave
function of the continuum which is modified by the
discrete states, Eq. (28)]. It consists of two parts
(see Barz et al. ):

+R 4'R +R

R —GPHPQNR

=X f, dE'«+ E') 'ez&Pz lHIP—R&
c

where $R is the usual shell model wave function (in
a Woods-Saxon potential) and coR describes the cou-
pling to the unbound shell model states (continuum),
i.e., the asymptotic behavior. The part coR contains
the wave functions g, and therefore the channel
coupling. The form factor is determined by the
wave function Q~ since pR as well as coR are cou-
pled to the external field by means of which the
state ll is investigated. While pR describes the
direct excitation of the state R, the part coR describes
the excitation of R via the continuum (channel-
resonance scattering). Thus, channel coupling is not
only projectile induced but determines the properties
of the very state investigated. Therefore, it remains
fairly constant from one reaction to another. Chan-
nel resonance scattering leads to a virtual enhanced
alpha clustering in the nuclear periphery. Its rela-
tive role depends on the reaction investigated. It is
presumably relatively more important in (a,2a) re-
actions than in (p, 2p) reactions at intermediate ener-
gies, since in (a,2a) reactions alpha channels mainly
contribute in Eq. (31).

In the considered examples, channel coupling
changes the widths even in light nuclei if they are
small in absolute value. Channel coupling is con-
tained in the wave functions gE, which are solutions
of the system (5) of coupled channels equations, in a
manner similar as to how configuration mixing is
taken into account in the functions pR defined by
Eq. (4). Both functions are important for the diago-
nalization of the operator H~& [Eq. (1)] from which
the widths I R are obtained. Since the alpha widths
of heavy nuclei themselves are small, configuration
mixing and channel coupling can lead to large ef-
fects. As to configuration mixing, this fact is very
well known from numerical calculations. For
channel coupling a similar effect is expected accord-
ing to the factorization condition (25) together with
the many results obtained numerically on the basis
of different approaches which all neglect channel
coupling.

The calculated (favored) alpha widths of different
states 8 in heavy nuclei show in most cases good
agreement for relative values with the experimental
data, although the absolute values are too small.
Experimental data are also obtained from an
analysis of alpha transfer reactions and elastic and
total reaction cross sections ' in the lead region.
The absolute reduced alpha widths obtained from
the reactions are in agreement with the experimental
values obtained from the decay. This fact suggests
that some averaging process is responsible for the
deviations in the absolute values. Channel coupling
may be such an averaging process, since it takes into
account the contribution of every open as well as
every closed channel in an averaged manner.
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The existence of some surface alpha clustering is
discussed not only for light nuclei but also for
heavy nuclei. From the point of view of the contin-
uum shell model, surface alpha clustering is directly
connected with the coupling of different alpha chan-
nels as well as configuration mixing in the higher
shells which are both concentrated in the surface re-
gion.

V. CONCLUSIONS

On the basis of a theory which describes nuclear
structure and continuum coupling effects with com-

parable accuracy, the problem of alpha widths was

discussed. The alpha widths of isolated states can
be expressed by means of spectroscopic amplitudes

(overlap integrals) characterizing the nuclear struc-

ture properties. The R-matrix approach has the ad-

vantage over the non-R-matrix approach without
factorization of the width in that configuration mix-

ing can easily be taken into account in the numerical
calculations. However, channel coupling should ad-

ditionally be taken into account to configuration
mixing in calculating the absolute alpha widths
which are fragmented over several states of the final

nucleus (channels). A formula for calculating alpha
widths by taking into account configurational mix-
ing as well as channel coupling is given by Eq. (14)
or (29) with functions obtained from Eq. (16) and
the method described by Barz et al. A factoriza-
tion of the partial width is possible only in special
cases.

Numerical calculations have been performed for
nucleon widths by diagonalizing the Hamiltonian
operator K~~ [Eq. (1)]. They led to the result that
in spite of a small spectroscopic amplitude, the par-
tial width of a certain resonance state may be rela-
tively large due to channel coupling to which open
as well as closed channels contribute. Channel cou-
pling should be taken into account therefore at least
in an averaged manner in calculating alpha widths
of heavy nuclei. Both types of mixing (configura-
tional mixing and channel coupling) are concentrat-
ed in the surface region and lead to a surface alpha
clustering.
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