
PHYSICAL REVIEW C VOLUME 27, NUMBER 5 MAY 1983

Coupled bound and continuum eigenstates in momentum space
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Described is a procedure for solving in momentum space the Coulomb plus nuclear prob-
lem for coupled bound and continuum eigenstates. The method is an extension of the
Kwon-Tabakin formulation of the Lande subtraction technique. Complex eigenenergies are
now determined after formulating and incorporating the correct momentum space "boun-
dary conditions" into the Schrodinger equation. This exact numerical procedure can be ap-
plied to local or nonlocal, complex or real potentials even with relativistic kinematics. Ap-
plication to the EC p problem and other systems with strongly coupled absorptive channels
is indicated.

NUCLEAR STRUCTURE Hadronic atoms, momentum space formu-

lations, coupled channels.

I. INTRODUCTION

Since the strong interaction of two charged had-
rons must be accompanied by their Coulomb in-
teraction, a great deal of effort has gone into solving
the combined Coulomb plus nuclear force problem.
Although its solution in coordinate space is a clas-
sic, ' a number of physical effects such as nonlocality
and relativistic kinematics are handled more directly
in momentum space. This paper continues the
development of momentum space techniques.

The momentum space solution of the Coulomb
plus nuclear problem for scattering boundary condi-
tions was found rather recently by Vincent and Pha-
tak, and for bound states by Kwon and Tabakin.
By using a Coulomb potential with a large r cutoff
R, Vincent and Phatak could deal with a nonsingu-
lar momentum space transform. They then could
solve for the phase shift, which in turn yields the
wave function %(r) for r &R, and by matching to
Coulomb waves at r =R, produces the full solution. 4

By employing an ingenious subtraction technique
suggested by Lande, Kwon and Tabakin solved a
matrix eigenvalue problem for the bound state ener-
gies of hadronic atoms (the KT-L technique). This
singularity removal is similar to the principal value
subtraction introduced by Haftel and Tabakin to
permit direct solution of the Lippmann-Schwinger
equation. Both the Vincent-Phatak and KT-L tech-
niques are "exact"—albeit numerical —with no re-
striction to local or separable interactions.

In actual hadronic atom calculations, the nuclear
potential usually contains an imaginary part to ap-

proximate the absorption of flux into another chan-
nel. Although these complex potentials lead natur-
ally to complex "eigenenergies, " with El related to
the lifetime of the state, it would be more correct to
solve for a "bound" state in one channel which has a
certain lifetime to decay into a different, but open
continuum channel (in both cases we are really
dealing with poles of the S matrix). While the
coupled-channel nuclear problem in momentum
space has been studied extensively, particularly by
Dalitz et al. and Gal et al. ,

' we are not aware of
any discussion of the extra complications introduced
by including the Coulomb force when there are both
open and closed channels. Since the "true absorp-
tion" of hadrons, such as E 's, p's, and m's from
atomic levels into coupled channels are important
processes for us to understand, we wish to describe
here some techniques we have developed for this
problem. In separate works we describe the applica-
tion of this technique to the E -p system" and the
E -nuclear system. '

A phenomenon related to the Coulomb plus cou-
pled channel nuclear problem is the Krell oscilla-
tions. '3 This is a nonmonotonic dependence of the
shift of a E Coulomb level upon the depth of a
strongly absorptive optical potential. Koch et al. '

reproduced these oscillations with a schematic,
coordinate-space coupled channels model in which
the Coulomb force was simulated by a shallow,
long-ranged square well. In a more recent, related
work, Barrett' calculated the shift and width of the
1S state in hydrogen —where experiments' indicate
a possible anomaly. He used a coupled channels
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model with a separable potential to simulate the
Coulomb potential. Although no conclusion was
drawn as to why the experimental results were not
reproduced, it is possible that the approximation for
the Coulomb potential caused the disagreement.

In Sec. II we review the single channel KT-L for-
mulation. In Sec. IIIA we introduce the coupled
channels Schrodinger equations and in Sec. III B dis-
cuss the sometimes subtle connection between boun-
dary conditions and eigenenergies. In Sec. III C we
present the major new development of this paper, a
Green's function formulation which permits cou-
pling to continuum channels with the appropriate
boundary conditions in momentum space. In Sec.
IV we describe a few numerical tests of our method
and in Sec. V we summarize our findings.

II. SINGLE CHANNEL FORMULATION:
A REVIEW
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The Schrodinger equation (2.1) is then
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where VL, (p Ip') can contain nuclear and Coulomb

parts.
If we consider an attractive Coulomb potential,

A. Schrodinger equation

We wish to solve the momentum space
Schrodinger equation,
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where & p I
V

I p '& contains both the Coulomb and
(nonlocal) strong potentials. In the Landau-Phatak-
Tabakin' (LPT) conventions (which are consistent
with LPOTT's), the potential
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has the Legendre polynomial expansion

where QI is the Legendre function of the second
kind, e.g.,
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z i —1 p —pPP
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and our VL, (p I
p') is m/2 times the KT (Ref. 3) VL .

B. The Kwon Tabakin-Lande technique

The logarithmic singularity of the Coulomb po-
tential (2.8) at p =p' makes a numerical solution of
the Schrodinger equation (2.4) difficult. KT re-
moved this singularity by subtracting a term from
the integrand in (2.4) (the Lande subtraction) which
makes it nonsingular, and then adding a simple
correction term SL (p). For the pure Coulomb prob-
lem these steps take the following form:
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l. Zpp

Amazingly, the integral SL (p) can be evaluated analytically.
Since the bracketed term in (2.11) vanishes for p =p', this integral equation can be converted to a matrix

equation by replacing the integral over p' with a sum over N grid points and evaluating the equation for %'(p)
on the grid, p =p
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Note that the diagonal (n =m) part of the Coulomb
potential makes no contribution to the sum in (2.14),
and so by defining a diagonal term to include the
subtraction term in braces,
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(2.14) reduces to a conventional eigenvalue problem:
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III. COUPLED CHANNELS EXTENSION

A. Eigenvalue equations

where it is obvious that a relativistic definition of
the kinetic energy operator can be substituted easily
into (2.17).
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We wish to extend the KT-L procedure to solve
for a bound state in one channel (e.g., K p), coupled
to one or more open channels (e.g., X2r ) and possibly
closed channels (e.g., K n). For simplicity we con-
sider only two channels:
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M~ is the total mass and iM; the reduced mass in channel i In sup.ermatrix form analogous to (2.16), this is the
eigenvalue equation

K1+ ~11

~21
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where the KT-L subtraction can be included in the V's, and where K2 =& /2@2.

(3.3)

B. Boundary conditions
and complex eigenenergies

As is true in coordinate space—but rarely dis-
cussed for momentum space—correct boundary con-
ditions are essential in obtaining correct solutions of
the Schrodinger equation. ' When applying the
KT-L momentum space method to the single chan-
nel equation, (2.4) or (2.16), the mere finding of a
stable, normalizable eigenvector with finite eigen-
value is equivalent to the usual bound state condi-
tions. Specifically, any solution containing e+ ' for
large r, or r ' +" for small r, would not be normal-
izable (the small r behavior, r ', for I.=O would be

normalizable, but its eigenvalue would be infinite' ).
The single channel Schrodinger equation yields

real eigenvalues k =iK for real potentials, and com-
plex eigenvalues,

E =Eg+iEI,
for complex potentials. As we shall see, the
coupled-channels Schrodinger equation can produce
complex energies even for real potentials. If we as-
sume the conventional time dependence,

%,(x,t)=e ' '%,(x)=e '(e "%,(x)),
(3.4)
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EI must be & 0 to produce the lifetime ~ of the com-
plex energy eigenstate:

Yet since

r = —2EI (3.5)

E=k /28
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the condition

(3.6)
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EI( ——2kakl/2p) &0

also determines the asymptotic wave functions to be
one of two forms:

channel 2 and escapes. It is a non-normalizable
wave function and can represent a coupled continu-
um channel or a resonance (its exponentially grow-

ing space part indicates a state decaying with time
which was stronger at an earlier time —as seen at
larger r).

Although the above asymptotic forms may seem
unusual, it is in fact the pure outgoing wave condi-
tion in channel 2 which leads to the imaginary parts
of the eigenenergies. The relevance of the above dis-

cussion to our problem is that we cannot use the
usual complex energy eigenvalue procedures to in-

clude open channels. These procedures yield nor-
malizable solutions, such as %z, Eq. (3.7), whereas

we need include the non-normalizable states %'~, Eq.
(3.8).

ilk„Ir fk, lr
%s(r)-e e (3.8)

C. Green's function approach
Since %z decays exponentially in space, it

represents a normalizable bound state appropriate to
the closed channel 1 (its incoming wave part is re-
quired to "feed" this state so that it can maintain
the exponential decay with time).

Since +~ contains an outgoing wave part, it
represents the wave which "leaks" into the open

l

Rather than try to build boundary conditions
directly into a p space wave function, " it is best
when solving integral equations to place them into
the Green's functions. The Lippman-Schwinger
equation appropriate for our problem is the follow-
ing9 2 1
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T11 T12
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Yet since there are no incident waves in the continu-
um and bound channels, the potential (homogene-
ous) term on the rhs of Eq. (3.9) must be set to zero:

~11 T12 V11G 1 V12G2 ~11 T12

T21 T22 V21 G1 V22 G2 T21 T22

(3.10)

To make connection with the previous formalism,
we write the wave function form of the Lippmann-
Schwinger equation with no incident waves:

G1V11 G1Viz
(3.11)+2 G2 V21 G2 V22 +2

The appropriate Green's functions for Eqs.

I
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To be more explicit, we rewrite the Lippmann-
Schwinger equation (3.11) as the following:

The V's, E 's, and G 's can be considered operators,
or the matrices (2.16). The condition for the ex-
istence of nontrivial solutions of a transformed ver-

sion of (3.11) yields the bound state energies via:
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If we replace the integrals by sums over grid points p„and define '
—~npn
2 2
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(3.15)

(3.16}

det

the bound state condition (3.13) becomes the matrix equation
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A new aduance introduced into the above formulation is the possibility that the Coulomb potential be included
in the V(pl

~
p„) Uia the Kwon, Tabakin Land-e subtraction procedure as summarized in (2.8) and (2.15).

To apply (3.17) to problems in which channel 2 is open, Re(kz ))0, we must evaluate explicitly the ie
prescription of (3.14}. [For k& (0 no special treatment is required since it is not possible to reach the singular

point p =ki in (3.14).] This means that we are treating kq and E as real numbers until after the ie prescrip-
tion is completed —analogous to the Kapur-Peierls theory of resonances. Thus if channel 2 is open the
—VGzql terms take the following form:
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where we have made the Haftel-Tabakin subtrac-
tion in computing the principal value prescription
P. %e can thus extend the technique introduced in
Ref. 6, and define an extra grid point p~+&, and
D(pe+&) as:

Yet if kq is complex we must evaluate the potentials
in (3.17) at complex momenta. In practice, however,
this just means that we search in the complex E (and

kz) plane for a self-consistent solution of (3.17).

pN+1=k2 ~ (3.21)
IV. NUMERICAL TEST
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If we now simply enlarge our grid to include the kq
point, the same equation (3.17) can be used to find
Coulomb plus nuclear bound states coupled to open
channels.

Since the ie prescription makes Dq(p~+1) a com-
plex number, (3.17) will produce complex "eigenen-
ergies" even for pure real potentials —if there is an
open channel. Of course, if E is a complex number,
Eq. (3.16) requires kz to be complex but with the
boundary condition (3.8) demanding a purely outgo-
ing wave in channel 2:

As a first test of the above method we studied the
single channel pure Coulomb problem. We found
that searching for zeros of the determinant, (3.17),
produced bound state energies numerically identical
to those found as eigenvalues of the Schrodinger
equation (2.16)—provided the same grids were used
(see the Appendix). Typical results for an increasing
number of grid points are given in Table I.

To test the method's ability to describe a coupled
channels problem, we studied" K p bound states
for the coupled system:

K p+0 MeV

K p~'K n —5 MeV (4.1)

Xm. +100 MeV

In Fig. 1 we present a theoretical experiment which
demonstrates the sensitivity of the K p 1S level
shift e and width I to the strength A of the cou-
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TABLE I. Pure Coulomb binding energies in eV for K -proton, nonrelativistic kinematics,
point proton.

Atomic state Exact N=8 N= 16 N=20 N=32 N =40

1S
2S

—8613
—2153

—9557
—2550

—9083
—2112

—8652
—2341

—8623
—2192

—8613
—2154

pling to the K n and Xa channels
(bE = —6 —il /2). In Fig. 1 A=O is a pure single
channel with real nuclear potentials, whereas A=1
is the full coupling strength of the separable poten-
tial model C of Henley, Alberg, and Wilets. ' For
weak coupling we see a large positive (more bound)
shift and small width, whereas as A —+0.65 there is a
sign change in e and a maximum in 1. This
behavior is an example of a level crossing effect and
is just the coupled channels version of the Krell os-
cillation. ' The sign change in e occurs at the point
where the channel coupling becomes strong enough
to bind a nuclear (inner) state, Y0, in addition to the
kaonic hydrogen Coulomb (outer) state. '

nuclear bound state problem, and indicated how it
could be extended to include coupling to open, un-
bound channels. Since many attributes of nuclear
potentials can be incorporated best in momentum
space, the extension of precision momentum space
techniques of the types introduced in Pittsburgh3 6 ~

is valuable. In particular, since the numerical solu-
tions are exact we believe they can be developed to
the point where the exotic hydrogen atoms such as
E p, pp, and Xp, which have strong absorption into
coupled channels, can yield more reliable informa-
tion on the two body interactions.
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APPENDIX:
CHOICE OF GRID

As Kwon and Tabakin indicate, the choice of
grid points to use in (2.13) can be crucial—
particularly for a problem like K -p where there is
a strong imbalance in the ranges and strengths of
the Coulomb and nuclear potentials. We generally
tried several grids, with the requirement that we
reproduce separately the pure strong and pure
Coulomb bound states so that —presumably —we
have a good grid for the sum. The grids we used are
the following: the standard choice of LPOTT, ' the
one outlined in Appendix A of Ref. 3, and a com-
bination of the two in which the standard Gaussian
points are scaled in a more linear fashion:
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Interval

0—+Cg

C~ ~Cs

Number of points

Ng/2

N~/2

Scaling ( —1&x &1)

Cg Cs(1+x )

Cs —(Cs —2C& )x

NN/2

N„/2

C C
Cs+CN CN —CsS~ N + x

2 2

CN~CM
CN+CM + xm

2 2

The A, S, N, and M denote atomic, size, nuclear, and maximum, respectively, and for a typical K p case we

used Nq ——40, N~ ——24, Cz ——2.4 MeV, C, = 157 MeV, Cz ——2400 MeV, and CM = 10' MCV.
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