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Compound nuclear processes should in fact exhibit all the resonances of the underlying

compound nucleus. In intermediate resolution experiments where the energy resolution hE
is considerably large compared to the width and spacing of compound nuclear states but

small compared to those of optical model shape resonances, one observes the well-known

intermediate structure. In the case of compound elastic processes a dynamically reasonable

account of intermediate structure resonances was developed by various authors; where one

assumes the existence of a doorway state through which the incident (or the final) state
couples to the compound nuclear states. An energy average of the resultant amplitude ex-

hibits intermediate structure. In the case of compound inelastic reactions the incident and

the final states are different and the doorway states that relate the final state to the com-

pound nuclear states will in general be different from the doorway states which relate the
incident state to the compound nuclear states. The former doorway states will be referred

to as the exit doorway states and the latter as the entrance doorway states. A dynamical

theory is developed acknowledging the notion of these two kinds of doorway states. The
energy averaged transition amplitude shows two sets of intermediate structure resonances

corresponding to these two kinds of doorway states. It is expected that one of these sets of
resonances will usually dominate a reaction in an energy domain. The present formulation

can possibly explain the different sets of intermediate structure resonances observed in dif-

ferent exit channels of a nuclear reaction, for example, those observed in various exit chan-

nels of the "C+' 0 system.

NUCLEAR REACTIONS Intermediate structure resonances, entrance
and exit doorway states, inelastic compound nuclear processes.

I. INTRODUCTION

The resonancelike bumps in the average cross sec-
tion for a nuclear reaction are called intermediate
structure resonances and have been a topic of dis-
cussion in reaction theory for the last two decades.
The appearance of intermediate structure can be ex-

plained by assuming the existence of doorway states
which couple the incident state to the compound
nuclear states of the system. ' The hypothesis of
doorway states has been a powerful tool in explain-
ing interm'ediate structure in compound elastic pro-
cesses. Many authors have discussed the theory of
intermediate structure and doorway states in nu-

clear reactions. '

But in compound inelastic processes, experiment
has revealed that in certain systems the intermediate
structure in various exit channels are not consistent
with each other. This is true, for example, in the
' C+ 0 system. This work may illuminate the

understanding of the appearance of intermediate
structure in such cases where various exit channels
exhibit different intermediate structure resonances.

The formation of the compound nucleus explains
sharp peaks in the energy dependence of the cross
section of a nuclear reaction. ' Such compound nu-

clear resonances usually have very narrow spacing
and a small width (-1 ). On the energy scale l
can be as low as a few keV. The optical potential
on the other hand, deals with average features of
the cross section over an energy interval I,p

1 2
MeV. In order to observe the compound nuclear
resonances one needs to perform a very high resolu-
tion experiment where energy resolution EE«I.
In poor resolution experiments where AE is large
one observes only the optical potential peaks. Usual
experiments will have an energy resolution AE
which is intermediate, where j.",p))AE)) I Such
an experiment will exhibit intermediate structure
resonances with characteristic widths and spacings
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much larger than those of compound nuclear reso-
nances and much smaller than those of optical
model shape resonances. '

Intermediate structure in compound elastic pro-
cesses is explained by the doorway state hypothesis
which assumes that the system has simple modes of
excitation called doorway states which are the only
states having strong coupling with the entrance (or
the exit) channel. ' Hence the incident state passes
through the doorway state to the complicated com-
pound nuclear states. The compound nuclear reso-
nances arising from compound nuclear states hav-

ing a strong coupling with the doorway states will

be more strongly excited than those having a weak
coupling with the doorway states. If the compound
nuclear states which couple strongly with a door-
way state are located in a relatively narrow region
one observes a smooth peak whose width I d will be
intermediate, i.e., I,p ))I p ))I . Such a resonance
will be called an intermediate structure resonance.
If the energy resolution AE of the experiment is
large compared to the spacing of doorway states one
will have the poor resolution of the optical model.

Now let us consider the compound inelastic pro-
cess where the incident and the final states are dif-
ferent. Then one can generalize the concept of usu-
al doorway states and introduce two types of door-

way states —the entrance and the exit doorway
states. The entrance doorway states are the only
states which are strongly coupled to the entrance
channel. Analogously the exit doorway states are
the only states which are strongly coupled to the
exit channel. In the case of the compound elastic
process these doorway states are the same. Both
doorway states also couple to the complicated com-

pound nuclear states. The entrance and the exit
states, on the other hand, do not couple with the
compound nuclear states. So in the time develop-
ment of the nuclear process the system will pass
through the entrance doorway states before forming
the complicated compound nuclear states. Subse-

quently such compound nuclear states have to pass
through the exit doorway state before decaying to
the exit channel state. In this paper, using the con-

cept of entrance and exit doorway states, we develop
a dynamical formalism in order to explain the inter-
mediate structure resonances observed in various
exit channels of a nuclear reaction.

With this introduction to the entrance and exit
doorway states we now discuss the associated modi-
fication that one would expect in the observed inter-
mediate structure resonances in a compound inelas-

tic process. The compound nuclear states which

strongly couple with an entrance doorway state will

be easily excited. If such states are located in a nar-

row region one again observes the intermediate
structure resonance corresponding to the entrance
doorway state. Similarly an exit doorway state will

also couple strongly with some of the compound
nuclear states. If such states are located in a nar-
row interval of energy, one will again observe an in-
termediate structure that now corresponds to the
exit doorway state. When there are many doorway
states of both types one may observe intermediate
structure resonances corresponding to both types of
doorway states. Of course, both of these types of
intermediate structure resonances may not be simul-

taneously observed in a reaction. Depending on the
nature of couplings of these doorway states with the
compound nuclear states on one hand and with the
entrance and exit channel states on the other hand,
one type of intermediate structure resonance may
dominate over the other type.

The importance of such exit doorway states can
be made more explicit if we look at the reaction in a
time reversed way. As the transition amplitude is
time reversal invariant we can also study the time
reversed process. In a time reversed picture the exit
doorway state becomes the entrance doorway state.
The importance of the entrance doorway state or
the "first collision" in nuclear reaction has been em-

phasized by various workers. The exit doorway
state corresponds to the "last collision" of the sys-
tem and should be equally important as is obvious
from the time reversed picture. Of course one
should remember that the existence of doorway
states does not necessarily imply the appearance of
intermediate structure resonances. For the inter-
mediate structure resonances to appear, the cou-
pling of the entrance (exit) doorway states with the
entrance (exit) channel should be strong and the
coupling of the doorway states to the compound nu-

clear resonances should not be spread out.
In this work we particularly emphasize the im-

portance of exit doorway states and develop a
dynamical formalism including the effect of such
states, Since the transition matrix is time reversal
invariant, one can easily write a formulation for the
entrance doorway state. The transition matrix for
the compound inelastic process is written as a sum
of three terms. The first one is a nonresonant term
which varies with energy on the same scale as opti-
cal model shape resonances. The second term varies
with energy on the same scale as the doorway states
and is called the doorway state term. The third
term is a rapidly varying term and varies with ener-

gy on the time scale as the compound nuclear reso-
nances. The last term after energy averaging varies
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with energy on the same scale as the doorway states,
and when combined with the second term, will lead
to the intermediate structure resonances of the pro-
cess. In cases of compound inelastic processes we
develop the formalism for the exit doorway state
and using the time reversal invariance one can easi-

ly write the result where the effect of the entrance
doorway state is important. The formalism of the
exit doorway state is particularly important because
it can possibly explain the inconsistency in the ob-
served intermediate structures in the various exit
channels of a nuclear reaction.

A striking example of this phenomena is the nu-

clear reaction involving ' C and ' 0 in the initial
state, where the observed intermediate structures in
various exit channels are found to be inconsistent
with each other. We would like to suggest an ex-
planation of this inconsistency in terms of the exit
doorway states. As for various exit channels the
exit doorway states may be different, the observed
intermediate structure can also be different in vari-
ous exit channels. The importance of exit doorway
states in explaining this inconsistency has been sug-
gested in a recent letter. If on the other hand the
entrance doorway state is the dominant reaction
mechanism, the intermediate structures in various
exit channels are supposed to be the same and this
is true in most of the reactions studied so far.

In this work we shall show how the entrance and
exit doorway states provide two competing mecha-
nisms for the formation of intermediate structure
resonances. We shall be mainly concerned with
compound inelastic processes. Our main
mathematical tool will be the rearrangement
scattering theory and we present a brief summary of
the same in Sec. II, which is appropriate to the
present formulation. In Sec. III we explain the ap-
pearance of intermediate structure resonances using
the idea of entrance and exit doorway states. Final-
ly in Sec. IV we present a brief discussion.

teractions internal to channels a and b, respectively.
The transition operator T for a transition from
channel b to channel a is defined by'

T= V'+ V'GV' (2.2)

and can be easily shown to satisfy

y —Vb+VG Z" (2.3)

where G is the full resolvent operator defined by

G =(E+i F. H)—

P = J d p I p @.& & ~"p I
(2.4)

where 4, is the product of the bound state of the
two fragments comprising the channel a and p is a
plane wave of relative motion between them. The
operator Q, is defined by

Q =1 P—
The operators P& and Qb are defined similarly for
channel b.

In Eq. (2.3) the intermediate state propagation in-
cludes both P and Q spaces. We can separate the
intermediate propagations in P and Q spaces by
breaking up Eq. (2.3) into the following two sets of
equations

and

T =M+KG, T,
M = V'+ V'QG, M,

(2.5)

(2.6)

and 6, is the resolvent operator for channel a de-
fined by

G, =(E+ie H, )—
with F. the center of mass energy of the system.

Now we introduce the projection operators P,
and Q, such that P, projects onto the open channel
part of the channel a and Q, projects on the
remainder of the space. Thus P, has the following
structure:

II. SCATTERING FORMALISM N=V'+V'QG, N . (2.7)

H=H + V'=H + V'= (2.1)

Let us consider the transition of a system from
an initial state b to a final state a. Both of these
states are assumed to be two-fragment states. The
full Hamiltonian is usually broken into two parts

In Eqs. (2.5) —(2.7) and in the following, we
suppress the suffix a on P, and Q, and represent
them simply by P and Q. The suffix b on the pro-
jection operators Pq and Qq will, however, be expli-
citly shown. Equations (2.6) and (2.7) have the fol-
lowing formal solutions:

where V' and V are the interactions external to the
channels a and b, respectively. The Hamiltonians
K, and Hb contain the full kinetic energy and in- and

M = V'+ V'Q QV'
QQ

(2.8)
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N=V'+V Q QV',
QQ

where

(2.9) T={1—V'PG, ) 'PM

+ (1—V' PG, ) 'PV'Q(E H—gg )

xQV'PG, T . (2.14)
Hgg=Q, HQ, =QHQ . (2.10)

In Eqs. (2.8) and (2.9) and in the following the ener-

gy parameter E of all the resolvent operators is as-
sumed to have an infinitesimally small positive ima-

ginary part.
Next we break up the transition amplitude T into

two parts. One of the parts represents the scatter-
ing by an average field and is expected to vary slow-

ly with energy and the second part varies rapidly
with energy and resonates if the energy is appropri-
ate. From Eqs. (2.8) and (2.9) it is obvious that
such resonances appear as E passes through one of
the eigenvalues Es of Hgg

(2.11)

+(1—V'PG, ) 'PV'Q

y (E—Hgg —Wgg ) 'Q V,
where

ep E Hp—p =E— P{H—.+—V')P

and

(2.15)

(2.16)

Equation (2.14) has the following formal solution

(see Appendix A for details):

T=(1—V' PG, ) 'PV

+ (1—V' PG, ) 'PV'Q(E Hgg——Wgg )

)(QV'Pe 'PV

Before writing a formal solution of Eq. (2.5) we

separate the group of states Ez in the neighborhood
of E, which contribute to rapid fluctuations in E
from the distant states which contribute to smooth
variations in E. Specifically we rewrite Eqs. (2.8}
and (2.9) as:

Wgg =QV'Pep —'PV'Q =-Hgpep 'Hpg . -

The channel states p, and pb satisfy

(E H, )P, =—0

(2.17)

M =Vb'+ V'Q Qvb
E—HQQ

(2.12)
and

(E Hb )Pb ——0—
(2.18)

and

N= V'+ V'Q QV'. (2.13)
QQ

In Eq. (2.12) Vb includes V and the nonresonant

part of the last term of Eq. (2.8). The second term
on the right hand side of Eq. (2.12) projects onto
the resonant part of M. In Eqs. (2.12) and (2.13)
and in the following Q has been redefined so that it
projects onto the group of resonant states around E.
The same comment applies to Eq. (2.13) where V'
contains the nonresonant part of N and the last
term contains the group of resonant states around

Substituting Eqs. (2.12) and (2.13) in Eq. (2.5)
and inverting the nonresonant part of the kernel

corresponding to the term V' of Eq. (2.13) we get

As P and Q are projection operators for two orthog-
onal spaces and as they commute with the channel

Hamiltonian H„we have

PQ=QP=O

and

PH, Q=QH, P=O.

Hence,

Hpg =PHQ =PV'Q

and

Hgp =QHP =QV'P

and the transition matrix element for transition
from channel b to channel a is given by

&&a I T14b&=&Pa 'I V'Idb&+&0,' 'IH~g {E Hgg IVgg) '(Q—V'+H—g~e~ 'V') Idb&,

where f,' ' is the distorted state defined by

&y.'-'I =&y. I(1—V'PG. }-'

and satisfies

(2.19)



222 SADHAN K. ADHIKARI 27

(E H—pp)f,' '=0, (2.20)

where Hpp is defined by Eq. (2.16). Equation (2.19) provides the desired separation of the transition matrix
element into its nonresonant and resonant parts. The first term on the right hand side of Eq. (2.19) varies

slowly with energy whereas the last term varies rapidly with energy. In a compound elastic process the exit
channel a is identical to the entrance channel b and in this case Eq. (2.19) reduces to

&ka I
T14'b&=&Pa 'I V' Ika&+&I' 'IHpg« —Hgg —IVgg) Hgp I

4'."&, (2.21)

where

and satisfies

N= V"+ V"Qb(E Hg—g) Qb V

where

Hgg =QbHQb .(b)

(2.29)

(E Hpp)g—,'+'=0 . (2.22)

Equation (2.21) is the well known separation of the
transition amplitude for the compound elastic pro-
cess into its resonant and nonresonant parts and was
first derived by Feshbach. Equation (2.19) is the
generalization of Eq. (2.21) for the case of com-

pound inelastic scattering.
We have derived Eq. (2.19) from Eqs. (2.2) and

(2.3) for the transition operator. But we could have
started with the equivalent definition'

As in Eqs. (2.8) and (2.9) M and N of Eqs. (2.28)
and (2.29) will resonate as E passes through one of
the eigenvalues E,'"' of Hgg given by

(Es '
Hgg )P—,'"'=0 . (2.30)

Again in Eqs. (2.28) and (2.29) we separate the
group of states of energy E'b' in the neighborhood
of E, which contribute to rapid fiuctuations in ener-

gy, from the distant states which contribute to a
smooth variation in energy. Then we rewrite Eqs.
(2.28) and (2.29) as

T= V'+ V'GV

for the transition operator which satisfies

(2.23)

and

M = V' + V Qb(E Hgg ) Q—b V (2.31)

T= V'+TGb V (2.24)

where Gb (E+ie ——Hb) '. —We can break up Eq.
(2.24) into the following sets of equations

T=M+ TGbPbN,

where

(2.25)

and

M=V +MGbQbV (2.26)

N=V +NGbgbV (2.27)

M = V + V Qb(E Hgg ) Q—b V (2.28)
l

Again Eqs. (2.26) and (2.27) have the following for-
mal solutions

N=V +V Qb(E Hgg) 'Qb—V . (2.32)

In Eqs. (2.31) and (2.32) V' (or V ) includes V'(or
Vb) and the nonresonant part of the second term on
the right hand side of Eq. (2.28) [or Eq. (2.29)j. In
Eqs. (2.31) and (2.32) and in the following the
operator Qb has been redefined so that it projects
onto the group of resonant states around E. Now
performing exactly the same algebra needed to
derive Eq. (2.19), we can deduce an expression for
the transition matrix element, where the resonant
and the nonresonant terms are separated. Without
repeating essentially the same steps, we can read off
the final expression in this case by using time rever-
sal symmetry of the transition matrix element.
Then we have

&P. I
T

I A&=&4.
I

V'
I
A"'&+&0"

I
(V'Qb+V'ep, 'Hpg)(E Hgg IVg'g) —'Hg'p

I

—@'b"&,

where Hpg =PbHQb, Hgp =QbHPb,(b) (b)

ep, =E Hpp E Pb(Hb—+ V )P——b, —(b)' b'

and

Wgg=gb V Pbep Pb V Qb Hgpep Hpg . ——(b) b —r b (b) —& (b)

In Eq. (2.33) tabb+' is the outgoing scattering state of Hpp' satisfying

(2.33)

(2.34)

(2.35)
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(E H—'"' )f'+'=0 . (2.36)

In Eq. (2.33) the first term on the right hand side is the nonresonant term and varies smoothly with energy,
whereas the last term is the resonant term and varies rapidly with energy. In the case of a compound elastic
process the entrance channel b is identical to the exit channel a and Eq. (2.33) reduces again to Eq. (2.21).

Following Feshbach we now study how resonances appear in Eqs. (2.19) and (2.33). Let us study Eq.
(2.19) first and assume that Hgg has a single eigenvalue Es near E such that Eq. (2.11}is satisfied. In order to
keep the algebra and the discussion simple we shall not consider the possibility that H~~ has many eigen-
values near E. This later possibility only increases mathematical complication and can be treated as in the
formulation by Feshbach. Then the transition matrix element of Eq. (2.19) can be written as

&4. 17'14b&=&4' 'I I"
I 6&+&0' 'IHpg lds&

x ', &y, 1(gI "+H„.,-'I ')
I y, &,

E—Es —hs+ —,iI's
(2.37)

where 4s and —I s/2 are the real and the imaginary parts of the diagonal matrix elements of the operator
8'gg

&ys18'Qg I Ns &=as ,'iI—s—,

where

~s = &((s I Hgp Hpg I ds &

ep

and

I s =2m &(t)s
I Hgp5(ep)Hpg I ks &

(2.38)

(2.39)

(2.40)

where 9' and 5 represent the principal value and the 5 function parts of ep '. We should recall that the
eigenvalue Es is real and the term Wgg provides a non-negative width I's for the resonance and hence allows
the system to decay from the compound state (()s.

Analogously we could have studied the transition matrix element of Eq. (2.33). Let us assume that Hgg has
a single eigenvalue Es ' near E such that Hgg I ps '& =Es '

I ps '&. Then the transition matrix element of Eq.
(2.33) can be written as

&& I
T

I 6 & =&4.
1

I"
I
fb"&+&0" I

(I"Qb+ V'ep HPQ}

&4s"
I Hgp I

kb+'&
~

E—Es —~s + iI s
(2.41)

where i4 ' and —I s '/2 are matrix elements of the
real and imaginary parts of the operator 8'~ de-
fined as in Eqs. (2.38}—(240). Again the term
WQ(~Q) provide a non-negative width I s(b) for the res-
onance and hence allows the system to decay.

Both Eqs. (2.37) and (2.41) show a typical Breit-
Wigner form for the resonance amplitude. In these
cases the resonance energies are shifted from Es
and Es by hs a11d As, respectively. The energy
spectrum of H~ and H~ are usually very compli-
cated at moderate excitation energies. The cross
sections for such processes show a fine structure in
a good resolution experiment. As pointed out in the
Introduction the observed intermediate structure
corresponds to certain energy averaging of the
scattering amplitude to be carried out in the next
section. We recall that Eqs. (2.19) and (2.33) are

l

identities but we shall see in the next section that
after introducing the concept of entrance and exit
doorway states and after performing the energy
averaging, Eqs. (2.19) and (2.33) or Eqs. (2.37) and
(2.41) will correspond to different intermediate
structure resonances —one corresponding to en-

trance doorway states and the other corresponding
to exit doorway states. But depending on the resi-
due and width of such resonances only one of the
two sets of intermdiate structure resonances is ex-

pected to dominate a reaction amplitude for a cer-
tain domain of energy.

III. DOORWAY STATES
AND INTERMEDIATE RESONANCES

The projection operator P projects onto the exit
channel part of the nuclear wave function. Now we
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introduce the projection operator corresponding to
the exit doorway state by d. The operator d is con-
sidered to be orthogonal to I' and hence it belongs
to Q. The rest of the Q space is denoted by q such
that

doorway state hypothesis is that the more compli-
cated states corresponding to the projection opera-
tor q do not couple directly to the exit channel by
the Hamiltonian, i.e.,

and

I'+d+q =1 (3.1)

(3.2)

Hpq =0 Hpg@0, Hgq+0

so that

HPQ HPd ~ HQP HdP .

(3.3)

(3.4)

The projection operators I', d, and q are mutually

orthogonal to each other. Now the essence of the
I

Introducing the concept of exit doorway states to
Eq. (2.19) we have

Ieb&=&0' 'I ' Ieb&+&0' 'I Pd I( +q) '+ {?1~1
' "'Ileb&E—HQQ —Add

Now using the following identities (see Appendix B for details)

1 8=8 1

HQQ ~dd E Hdd ~dd Hdqeq Hqd

and

d q=d1 1

(3.5)

(3.6)

XHdq 8q
—1 (3.7)

where eq
——E—qHq =E—Hqq and

HPd .—1

Equation (3.5) reduces to

&4a I& 1kb&=&4' 'I v' Ikb&

1 b 1 b'
&q(

—) IH (dv'+H, pep 'v'+H, ,e, -'qv")
I yb-& .

E —Hdd —Wgd —Hdqeq 'Hqd

Now using a second identity'

(3.8)

(3.9)

where

1 1 1 1 1+ Hdq H d
Hdq ~q Hqd E dd ~dd Hdd ~dd Hqq ~qq E Hdd dd

(3.10)

W =H 1
qq qd E H ~ dq ~

dd dd

Eq. (3.9) reduces to

(3.11)

where
1

&&a
'

I H~~ E H lv
(dv +HdPeP v +Hdqeq 'qv')

I pb &

(3.12)

(3.13)
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and

( —) 1 1

H —W 'qE —H

XHqd (~I +HdPeP V +Hdqeq 'qI ')
l 4 &E —H —8 „ (3.14)

It should be noted that Eq. (3.12) is an exact identi-

ty, where Td gives the resonant contribution from
the doorway states and Tq is the resonant contribu-
tion from the compound nuclear processes. Equa-
tion (3.12) reduces to similar amplitudes discussed

by Feshbach, Kerman, and Lemmer' in the case of
compound elastic processes. The doorway state
term Td varies on an energy scale many times that
of the widths of compound nuclear resonances
which appear in Tq. The first two terms on the
right hand side of Eq. (3.12) are nonresonant ampli-
tudes on the energy scale of compound nuclear reso-
nances.

As has been explained in the Introduction, the in-
termediate structure will correspond to an energy
averaged transition amplitude. This averaging pro-
cedure has essentially been carried through in many
places' and we quote the essential results here. %e
write the q space propagator in Tq as

E —
Hqq

—8'qq

(3.15)

where pP and pP" are the biorthogonal set of eigen-
states of the operator (Hqq+ Wqq) corresponding to
the complex eigenvalue eP. Following Ref. 1 we de-
fine the energy averaged propagator corresponding
to Eq. (3.15) as

(3.16)

where the weight function p is only appreciably dif-
ferent from zero in a region AE surrounding E and
is normalized to unity over hE. %e consider in this
paper the Lorentz weight function defined by

p(E,E') = I 1

2w (E E')z+ —I2
(3.17)

with

I -26E/m . (3.18)

This function is employed mainly because of its an-

alytic convenience. ' If it is used to average a func-
tion F(E) which is regular in the upper half com-
plex E plane and decreases rapidly enough for large

~

E ~, then the energy averaging of F(E) yields

F(E+iI/2) .

Hence the energy average of the operator

(E Hqq
—

Wqq )—

is Aqq and that of (E Hqq) is (Aqq +Wqq)
which has been established in detail by Feshbach,
Kerman, and Lemmer' and by de Toledo Piza and
Kerman. Then after energy averaging, the terms
Td and Tq of Eq. (3.12) can be combined and we ar-
rive at

&N. IT 1kb&=&4.
I

v Idb&

~here

+&0m 'IHPd {~I'+HdPeP I'b+Hdq(Aqq +Wqq) Cv } ~4b&
+dd ~dd ~dd

(3.19)

Wdd Hdq(Aqq + Wqq) Hqd '
—1 —1 (3.20)

The main resonance feature of the amplitude given by Eq. (3.19) is contained in the energy denominator
(E Hdd Wdd Wdd )—, whic—h is sim—ilar to the energy denominator (E Hdd —

Wdd ) of Td—of Eq. (3.13). In
Eq. (3.19) Wdd is an additional complex interaction for doorway states. It is obvious that Wdd is nonlocal,
complex, and energy dependent. The imaginary part of 8'dd provides the doorway state with a decay channel
back to the exit channel in addition to the imaginary part of Add which provides the doorway state with a de-
cay channel down into the compound nuclear states. A particularly simple form for 8'dd results if we recall
that
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E —
Hqq

—8'qq E E—, &$, 18;,1$, &

(3.21)

where Pq are eigenfunctions and Eq are real eigenvalues of the Hamiltonian Hqq. (Eq Hq—q)gq
——0. We know

that the effect of energy averaging with Lorentz weight factor (3.17) is to introduce an imaginary term iI/2 to
the energy denominator. Hence

Lorentz

(E Hqq Wqq ) Aqq (E + 2
iI Hqq W'qq )

average
(3.22)

Lorentz

(E Hqq) (Aqq + Wqq) (E+ 2iI Hqq)
average

(3.23)

Equation (3.19) for the average transition matrix demonstrates that the exit doorway state resonances are
given by the poles of the complex propagator (E Hdd —IV~ ——IVqq) '. The analysis of the resonance
behavior of this averaged transition operator is similar to the analysis of Sec. II after Eq. (2.37) for the actual t
matrix. For the sake of simplicity we consider again the case of an isolated exit doorway state fd satisfying

(Ed Hdd 4'd =0 ~

where Ed is a real energy eigenvalue. In this case Eq. (3,19) becomes

&Au I
T

1 kb&=&Pa 'I v'16&+&Pa 'I ldll~&
1

1&6 IHd, I kq & I'
Ed &@d I

-~dd
I @d &

E —Eq+ —,iI

V +Hd V +QHd, , qV Ips& .b' I kq &&0q I b

E —Eq+ 2iI

(3.24)

(3.25)

As in the usual doorway state formulation' let

and

&ttd I
IVu I A & =~d ,«~——

I &4 I Hdq I dq & I

'
E —Eq+ —,iI

(3.26)

(3.27)

I d and I d contribute to the width of the exit doorway state. I"~ is the width acquired by the doorway state
because of its coupling to the compound nuclear states and I q is the width acquired because of its coupling to
the exit channel. The width I d and the energy ed of the resonance are

and

I d ——I'+I d (3.28)

d =Ed+~d+~d . (3.29)

Hence if the exit doorway states are important the transition amplitude is expected to exhibit a resonance at
an energy ed of width I d.

We have deduced Eq. (3.25) starting from Eq. (2.19) and stressing the importance of the exit doorway state.
But we could also have started from Eq. (2.33) and stressed the importance of entrance doorway states and de-
duced another set of intermediate structure resonances similar to those of Eq (3.25). W.e do this in the follow-
ing. Unless confusion arise we shall suppress the exit channel index a in the following and represent the en-
trance channel explicitly by the index b.

In place of Eqs. (3.1) and (3.2) we now have
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Pb+d, +qb ——1,
Qb ~b+9b ~

(3.30)

(3.31)

for the entrance channel. Again the projection operators Pb, db, and qb are mutually orthogonal to each other.
The doorway state hypothesis amounts to

Hpd'+0, Hdq'+0, but HIq' 0.——
Performing the same steps needed to deduce Eqs. (3.19) and (3.20), we have

&+&&
I
t~'+(A~~ +~~~ ' ~d+~'~ H~d+~'"bI

1 (b) (+)
&( (b) (b) ~ (b) HdP I 4bE —Hdd —8'dd —Add

(3.32)

(3.33)

Equation (3.33) is self-explanatory once one recalls the content of Eq. (3.19). All the variables of Eq. (3.33)
can be defined in a straightforward way once one remembers the definition of the variables associated with

Eq. (3.19}. The resonance feature of Eq. (3.33}is contained in the energy denominator of this equation. As in

Eq. (3.19) the imaginary part of Add' will provide the entrance doorway state with a width because of its cou-

pling to the entrance channel, and the imaginary part of 8'dd' will provide it with a width because of its cou-

pling to the compound nuclear states.
Once again we consider one isolated entrance doorway state fd

' satisfying

(Ed Hdd 4'd (3.34)

where Ed ' is a real energy eigenvalue. Now introducing the entrance doorway state fd"' in the formulation
and performing the energy average as in the case of exit doorway state, we have for the transition matrix ele-

ment

&0" I
T

I db &= &0. I

I'"
I
0'b"&+&0"

I I I"eb (,), (,)
Hqd'+ I'"e~" 'H~~'+V'~b)

I
fd" &

X (b) H(b) (b) 2

z z(b) (q(b)
I

~(b)
I

y(b)
& g I ~d e s

d d dd d (b) ( . (b)

~ (g(b)
I

H(b)
I

0' + (3.35)

where the index b again explicitly refers to the en-

trance channel. As before let
and

d d d (3.39)
(3.36)

and

I & 4d I dq I 4q &
I (b), |. (b),

qb
—

q +g&
, ir,

(3.37)

(0) E(b)+ g(b)t+ g(b)l
d d d d (3.38)

where I d" is the width acquired by the entrance
doorway state because of its coupling to the com-
pound nuclear states and I d

" is the width acquired

by it because of its coupling to the entrance chan-
nel. The energy and the width of the resonance are
given by

If the entrance doorway states are important the
transition amplitude is expected to show a reso-
nance at energy ed

' and of width I d '.

Equations (3.25} and (3.35) are the main equa-
tions of this work. If conditions are favorable these
equations will represent intermediate structure reso-
nances corresponding to exit and entrance doorway
states. In the case of a compound elastic process
both Eqs. (3.25) and (3.35) reduce to the usual door-

way state formulation of Ref. 1.
Writing Eqs. (3.25) and (3.35) formally and ex-

ploiting the exit and entrance doorway states does
not guarantee the intermediate structure resonances.
As is well known we must have certain conditions
for the intermediate resonances to be observed. The
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first condition is that the residues at the poles of the
transition amplitudes given by Eqs. (3.25) and (3.35)
be large. In Eq. (3.25) the necessary condition for
this to happen is that the exit doorway state should
have strong coupling with the exit channel, i.e., the
term Hzd is reasonable. The second condition is
that the coupling of the doorway state with the
compound nuclear states not be too spread out. In
Eqs. (3.25) and (3.26) it means that I ~ should be
small. If I d is large and approaches the spacing
and width of exit doorway states, intermediate
structure in the average cross section will not be ob-
servable. In such cases the doorway state will be
shared among compound states which are too far
away in energy for the doorway state strength to be
gathered up without averaging over many doorway
states. Similarly in Eqs. (3.35) in order to observe
intermediate structure resonances we must have a
large residue at the pole of the energy denominator
and a small compound nuclear width I d

".
If conditions are favorable both sets of intermedi-

ate structure resonances given by Eqs. (3.25) and

(3.35) will be observed in a reaction. In the case of
a compound elastic process in channel a the inter-
mediate structure resonances are given by'

(3.40)

where hd, hd, I'~, and I ~ are defined by Eqs. (3.26)
and (3.27). Hence the resonance energies and the
widths given by Eq. (3.40) are identical to those

given by Eqs. (3.25). But the resonance energies

and widths given by Eq. (3.35) are different and are
identical to those of the usual doorway state reso-

nances for a compound elastic process in channel b

Now let us consider the physical transition from
channel b to channel a, and as a reference, let us

keep in mind the compound elastic process in chan-

nel b. Now it is obvious that if the entrance door-

way state is the dominant reaction mechanism, both
the compound elastic and inelastic processes will

show an intermediate structure resonance at energy
ed' and of width I &' given by Eqs. (3.38) and

(3.39). In the case of the compound elastic process
the exit and the entrance doorway states are the
same. But in the inelastic process from channel b

to channel a the exit doorway states are, in general,
different from the entrance doorway states. If the
exit doorway state is the dominant reaction
mechanism the compound inelastic process will

show an intermediate structure resonance at energy
ed and of width I z given by Eqs. (3.26) and (3.27).
This resonance will not be observed in the com-
pound elastic process in channel b.

In a compound inelastic process in a certain
domain of energy one of the two sets of intermedi-
ate structure resonances may dominate a reaction.
The present formulation is aimed at explaining re-
actions where the intermediate structure resonances
corresponding to the exit doorway states dominate a
reaction. This may be the explanation for the dif-
ferent sets of intermediate structures observed in
various exit channels of a nuclear reaction, for ex-

ample, in the system ' 0+ ' C.

IV. DISCUSSIQN

In this paper we developed a formalism for the
compound inelastic process including the effect of
entrance and exit doorway states. The present for-
malism does not depend on the use of a special
model for a nuclear reaction, for example, a shell
model or an alpha particle model, etc.

The doorway states are not eigenstates of the full
Hamiltonian, but they are eigenstates of parts of the
Hamiltonian. The doorway states are, however,
states of definite angular momentum, parity, etc.
Hence the observed intermediate structure corre-
sponding to a doorway state formalism will have
definite angular momentum, parity, etc. The same
will be true, in particular, for the case of exit door-
way states.

In their discussion of doorway states Feshbach,
Kerman, and Lemmer' also considered the case of
true inelastic reaction. But in such cases they as-
sumed that the exit doorway states are identical to
the entrance doorway states and the observed inter-
mediate structure contains the intermediate reso-
nances of the entrance channel. In the present for-
malism we include the possibility that the exit door-
way state can be different from the entrance door-
way state. It is not, however, expected that the exit
doorway states will be different for all exit chan-
nels. It is very reasonable to have the same exit
doorway state for more than one exit channel. In
that event the intermediate structure resonances
arising from the exit doorway formalism for these
exit channels are expected to be approximately the
same. The small difference will be due to different
coupling of the exit doorway state with the exit
channel and the compound nuclear states.

We can illustrate this considering the reaction
channels in the system ' C+ ' O. Experiments



27 EXIT DOORWAY STATES IN NUCLEAR REACTIONS 229

show that the intermediate structure resonances for
this system are not consistent with each other for
various exit channels. '" A rotational bandlike
structure is observed in the elastic scattering of this
system. But the intermediate structure observed in
the reaction ' C(' 0, Bes, ) Ne is completely dis-
tinct from the intermediate structure observed in
the elastic channel. For another exit channel, for
example, in the reaction ' C(' 0, He) Mg, the in-
termediate structure resonances can be different
from both the intermediate structure resonances
mentioned above. It is to explain these discrepan-
cies that we formulate the present hypothesis of exit
doorway states. We hope that the present formal-
ism will be useful in explaining intermediate struc-
ture resonances in various other reactions.

Another example of a recent light ion experimen-
tal work which may illustrate the exit doorway ef-
fects is given in Ref. 12. In this work the authors
measured the decay width of compound nuclear
states to various exit channels and the experimental
results may imply the existence of exit doorway
states. Further experimental works are needed in
order to verify the hypothesis of exit doorway
states.
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APPENDIX A

In this appendix we present a formal proof of Eq. (2.15) starting from Eq. (2.14). For this purpose we con-
sider the following formal Neumann series solution of Eq. (2.14):

T =(1 V"PG, ) —'PM+(1 V"PG, ) —'PV'Q 1

E —Hgg

)& QV'Pep 'PM+ (1—V"PG, ) 'PV'Q QV'Pep 'PV'Q
E —Hgg E —Hgg

QV'Pep 'PM

+(1—V"PG, ) 'PV'Q QV'Pep 'PV'Q QV'Pep 'PV'Q
E

QVaP

ye~ 'I'M+- (Al)

where

ep E Hpp =E ——P(—H, + V")P—.

Now using the identity

(A2)

1 1 1 1
Q Q =Q + IVggE —HQQ —8'QQ E —HQQ E —HQQ E —HQQ

1 1 1+ 8'Qg 8'gg + Q,E —Hgg E —Hgg E —Hgg
(A3)

where

8'gg QV'Pep 'PV'Q——,

we can sum up the series (Al) and get

(A4)

T =(1—V"PG, ) 'PM+(1 —V"PG, ) 'PV'Q QV'Pep 'PM .. 1
0 E H ~ P (A5)

Now substituting for M in Eq. (A5) from Eq. (2.12) yields
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T =(1—V"PG, ) 'PV +(1—V"PG, ) 'PV'Q QV'Pep 'PV +(1 V—"PG, )
1

E —Hgg —8'Qg

XPV'Q + IVgg QVs,Q 1

E —Hgg E —Hgg —8 gg
gg E —Hgg

(A6)

T =(1—V"PG, ) 'PV" +(1—V"PG, ) 'PV'Q
QQ QQ

X QV'Pe, 'PV'+(1 V"P—G. ) 'PV'-Q QV" .E —Hgg —JYQQ
(A7)

Equation (A7) is the equation we wished to prove.

APPENDIX B

In this appendix we would like to prove Eqs. (3.6)
and (3.7). A proof of Eq. (3.6) appears in the Ap-
pendix of Ref. 1. Here we provide a similar proof
of Eq. (3.7). Let us define

and

1 1
ed d q —Hdq q q =0

eg '
eg

1 1—Hqd d g +eq g g =g
eg eg

(86)

eg QE —Hg——g —JVgg,

ed ——dE —Hdd —8'dd

eq =qE —
Hqq .

(81)

(82)

(83)

Then using the definition of d and q spaces and
their associated properties, we have

Eliminating q(1/eg)q between Eqs. (86) and (87)
we arrive at

1 1 1 1
dq qd d q +ed d q =Hdq q

eq eg eg eq

(88)

eg =ed+eq —Hdq —Hqd .

Now we have

Q =(egd) d +(egq) q
1 1

eg eg

(84)

(85)

or,

1

eg 1
Hdd ~dd Hdq Hqd

eq

1
dHdq —P,

Now premultiplying and postmultiplying Eq. (85)
by operators d and q, we arrive at which proves Eq. (3.7).

(89)
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