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The one-nucleon contribution to threshold pion production in pion-nucleus collisions is
calculated using a Fermi gas model of the nuclear excitation spectrum in order to carry out
the sum over final nuclear states. For the one-body input a threshold approximant to the
production amplitude from the phenomenological Lagrangian theory is used. The cross sec-

tions are found to have an g" dependence near threshold, where g=(cok —2m )/m for to-
tal incident pion energy cok. In a simple eikonal approach incident pion attenuation is found
to lead to a reduction of threshold estimates by a factor of —10.

NUCLEAR REACTIONS "B(m,2m ), ' N(m, 2m ), ' O(m, 2m ),
Al(~+, 2m+), "P(m+, 2m+); threshold pion production cross section cal-

.culated in the Fermi gas model with phenomenological Lagrangian input. .

Some time ago in anticipation of the experimental
study of threshold pion production in pion-nucleus
collisions at the various meson factories, I studied
again' the (n, 2') reaction in nuclei and presented
estimates for the total cross section for collective
excitation in nuclei based on the simple collective
approach afforded by the Goldhaber-Teller model
generalized to spin-isospin vibrations. I was then
able to conclude that "while the cross sections for
the (n.,2n. ) reaction in nuclei are still expected to be
quite small, the prospect for their accessibility seems
reasonably improved. "

Recently (m, 2m. ) activation measurements have
been proposed at the Clinton P. Anderson Meson
Physics Facility (LAMPF), and this and the conse-
quent need for threshold estimates for both
(n. ,2n. ) and (n+, 2'+) reactions on a variety of
nuclear targets have prompted the present recalcula-
tion of the one-nucleon contribution to this process,
this time in terms of the Fermi gas model of the nu-
cleus. One recalls that this particular model proved
rather efficacious in providing simple cross section
estimates in the initial calculations of threshold pion
electroproduction from nuclei' and the same is no
less true of this approach in the present context. It
turns out that some of the more tedious calculation-
al aspects of such a simple approach can be done
away with if, instead of viewing the necessary phase
space calculation conventionally as an integration
over a response function, one views it rather as a
Fermi averaging of phase space With this use.ful

~(m-, 2m-) =+i(1) + +

2F~ gv

(rp)(tr k),

where coo is the total incident pion energy at thresh-
old. [Note that this matrix element is perfectly
analogous to the one-body matrix element for P
wave n.~ absorption (in a nucleon-to-nucleon transi-
tion). Thus the associated matrix element
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change in perspective I am able to relate directly the
calculation of the Fermi-averaged phase space for
the threshold emission of two pions to that for a sin-

gle pion (which is what is encountered in the case of
threshold electroproduction). I have relegated these
interesting details (as well as those pertaining to the
reconstruction of the threshold behavior of the in-
coherent cross section of Ref. 6) to the Appendix.

In the threshold region the one-body (~+-,2m —+) in-
put is the one-body matrix element (in a nucleon-to-
nucleon transition) which I write approximately as '

'3 '
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with transition spin (S} and isospin (T) operators,
will figure in a two-body contribution to the thresh-
old (ir, 2m) cross section analogous to that occurring
in I'-wave pionic absorption. The estimate of this

I

contribution will be the subject of a later communi-
cation. ] It is then easy to write the expression for
the threshold (n.,2n) cross section with M~' ~ as
input in the Fermi gas model. One has'
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with rz 1.2 f——m. Expression (2) reduces to
6
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and

ri=(cok —2m )/m

After making the threshold approximation of Ref. 6
in Eq. (4), namely,

p+ k —
q&

—q2-p+ k

[I have already set

1/co ico2-1/m

with

coi+co2-2m (q, +q2 )—/2m

inside the 5 function], I find the threshold behavior,

4
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where all masses (as well as F } are given in MeV
and ro is given in fermis. The threshold predic-
tions'3 of expression (8} are presented in Fig. 1. For
display purposes the curves are extended beyond the
region of validity given by (7) which determines the
proper threshold region.

The effect of incident pion attenuation on the
one-body cross section o(re+~2m +) may be sem—i-
quantitatively treated in a simple eikonal approach.
I use for the distorted incident pion wave function
the eikonal function'

for k &2' (with p~-260 MeV) and for'

il&(k/2M'm )(2pF —k) .

Finally, for cr conveniently expressed in pb I write

(7)
1(k(r;~'-)=e'"'exp '

fo f p(b, g)dg
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f 0 is the averaged forward n ~N scattering ampli-
tude, with'

ikf o
——[Ncr +„(1 i—a +„)4+i

+Zcr + (1 ia—+ )]

50
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for N neutrons (Z protons) with total cross sections
cr „(0z) and real-to-imaginary amplitude ratios
a«(a z). (Note that for (~+-,2m—+) processes, there
is only the single relation

f p
=—fp(n)= [(2 n)—o+.(1 ia—+ )

4m' m+n a+n

+no + (1 ia —+ }], (12)

where n =Z for a (n+, 2n.+) process and n =N for a
(m. ,2n. ) process. )

In the absence of initial-state interaction one has
formally for o, using the discrete notation for sim-
plicity, '

I

200
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240
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FIG. 1. Theoretical predictions for threshold (m, 2m. )

cross sections on "B, ' N, and ' 0 targets and for thresh-
old (m+, 2n.+) cross sections on Al and 'P targets versus
incident pion kinetic energy T in the one-nucleon model.

where 0 is the volume of the interaction "box."
The usual result,

where the integration is to be performed along the
direction of the incident pion momentum k and b is
the customary impact parameter variable perpendic-
ular to that direction. I take the nuclear density p to
be the same for protons and neutrons and uniform
within the nuclear radius R,

=0+57 -„(5(b,E(1)))F, ;,„, (14)
1

is, of course, understood. In the presence of initial-
state interaction, this result is altered to

0' ~ g 1
~
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4m.E.
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with the transform P z (I;m—+) given by
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=fdb dz 8((R —b )' —is i
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where

A, =A, ,+iA,; = 2 3 fo(n)
2k rp

In the limit of large R,
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Performing the integration over ill first, in the approximation of small width, where

1 —+ n.5(ill —k+kA, „)
1

(ill —k+kA, , ) +(ki,;) (k&;) «&;
(19)

and neglecting the small shift k —+k =k —A,k„ in the phases of the integrals over the impact parameter, one
finds
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2 f b dbe

2k', ; lg R

(kA, ;R )
(20)

Thus the cross section corrected for incident pion attenuation is given to a good approximation in terms of the
uncorrected cross section O.

p by

o =op 1+ 8 +k p(k ) 1 2 —2k', ;R 1 —2kb, ;R
k2 p(k) 4k', ;R kA, ;R (kA, R)

(e ' —1) (21}
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where

p(k) {5(ALE(k)))F,
p(k) {5{DE(k)))„,

(22)

The corrected threshold cross sections are displayed
in Fig. 2. The input values of fo(n) have been taken
from the tabulation of Hohler et al. ' One finds the
uncorrected threshold estimates of Fig. 1 reduced by
a factor of —10.
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APPENDIX: FERMI-AVERAGED PHASE SPACE
FOR ONE- AND TWO-PION EMISSION

NEAR THRESHOLD

0,2

o. i
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t
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The gas model calculation of Czyz and Walecka
of threshold pion electroproduction by nuclei

proceeds straightforwardly via the integration of the

product of the appropriate one-nucleon cross
section and the familiar response function

R (e) ep to—e, k ——q), 17

T. (Mev)

FIG. 2. Theoretical predictions corrected for incident
pion attenuation for threshold (m, 2m ) cross sections on
"8, ' N, and "0 targets and for threshold (m.+,2m+)

cross sections on Al and "P targets versus incident pion
kinetic energy T in the one-nucleon model.

R(el e2 co k q) dp ~(pF p)@
l
p+"—q I

pF)& e& e& co +Q (p+k —q) p
2~' 2M* 2M*
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QM*

n'/k —q /

—PF
2

M*(e&—eq —coe )

/k —q[

2

2
—PF

/k —q/
2

—PF (A2)

over the outgoing pion variables q and 0&. It is remarked that the ensuing integrations are "elementary but
quite tedious, "although for e& —eq close to m they simplify to some extent. In terms of an energy-defect vari-
able, g

—= (e~ —eq —m )/m, they find the interesting threshold result'
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where the region of validity of this formula is g & (
/

k
f
/2M m )(2pF /k—

f
).

On the other hand, it proves useful for determining the threshold behavior of the suitably weighted integrat-
ed response function, and especially in the present context of tioo partic-le emission, to defer the Fermi averaging
implied by the integration in (Al) over p, i.e., to integrate the threshold approximant over the outgoing meson
momentum q first. Thus I write

f dq
R(e& —e2 —co, k —q}

CO
q7

q

—fdp8(p p)8(
i

p+—k
i

—p )f 5 — +ri
21T3

(A4)

~here the threshold approximations, '

q2
coq m~+, p+ k —q p+ k2' ~

(A5)

enable just such a reversal of the order of integration over p and q. Since the integrand of the threshold ap-
proximant (A4) is a function of the magnitude of q, there remains only the "Fermi averaging" of the result of a
trivial q integration,

2

f R= 2~2m. fdp 8(p„—p)8(
~
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~
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p
2

2M*
L

' 1/2
(p+k)'

2M~
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This is routinely camed out using the formal device introduced a long time ago by Dubois for dealing with
such calculations in the regime k & 2pF Thus.

J R=Q +2m~pr'k f—da f, xdx8 rim~+(2a I),—pF-
COq

1/2
k~ kx

X ~m. +(2a-I} . pF, 8(-2pF-k)

M*2
V 2 m g ~ 8[k/(2M~m }(2pr—k) —g]8(2pF —k) (A7)

In the case of near threshold pion production by pions one has to deal with the analogous Fermi-averaged
phase space calculation involving two-particle emission. Conforming to the notation of the text, I write
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f q)d q2 8 (coi, —co~ —co2, k —q ~
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where in its last incarnation the threshold approximations

co, +co2~2m + (q, '+q, '), p+ k —q, —q,~p+ k
2m~

have been made along with the explicit deferral of the integration over p. The dependence of the threshold ap-
proximant on Q =q~ +q2 suggests we work in the six-dimensional momentum space of the emitted pions
with d q td q 2~~ Q dQ. The result

with

f 8 M~ m ri 8[(k/2M m )(2@~—k) —ri]8(2pF —k)
N~Q)2 3k

'Qmm =k —2m'.

then follows routinely as in the case of one-particle emission discussed earlier.
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