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Impulse approximation NN amplitudes for proton-nucleus interactions
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Transformations of nucleon-nucleon amplitudes from the center of mass frame to the
proton-nucleus Breit frame are developed for use in multiple scattering analyses. As a by
product, a matrix equation is given for the invariant NN amplitudes in Dirac spinor repre-
sentation. Based on recent NN phase shifts, Gaussian parametrization of the pp and np am-

plitudes are calculated and some proton-nucleus calculations are presented to illustrate the
effects of the Breit frame amplitudes. For ~Ca, these effects are quite small.

NUCLEAR REACTIONS Nucleon-nucleon amplitudes, impulse ap-
proximation, Breit frame, Wigner rotation, Dirac invariant amplitudes,

proton-nucleus elastic scattering.

Intermediate energy proton-nucleus elastic
scattering is qualitatively explained by the impulse
approximation, as has been shown in many analy-
ses.' In multiple scattering theory, the impulse ap-
proximation consists of the use of free nucleon-
nucleon (NN) scattering amplitudes without correc-
tions for off-shell effects or for the influence of the
nuclear medium. Gurvitz, Dedonder, and Amado *

have defined an optimal impulse approximation in
which leading order corrections due to Fermi
motion are shown to vanish provided that the NN

I

amplitude commutes with the nuclear potential.
This is expected to be a good approximation because
the NN amplitudes which determine the single
scattering optical potential do not involve the spin
of nucleons in the nucleus and these amplitudes
seem to be reasonably local (i.e., they depend mainly
on momentum transfer, q).

Working in the proton-nucleus center of mass
(c.m. ) system, the single scattering approximation to
the proton-nucleus elastic scattering amplitude cor-
responds to the diagram of Fig. 1:

F'"(k, k', TL, )= —- g(2n. )
' J d'pg,' p+ —,q ——k,

2&VI A

X k, ——qp+ —q ——k, t TL —H k+ —,qp ——
q ——k,

p ——,q ——k,

+

where k, —:—,(k+ k') and q—:k —k' are the average of initial and final proton momenta and the momentum
transfer, respectively. TL, is the laboratory proton energy, H represents the nuclear Hamiltonian, and vL is the
laboratory velocity of the proton. The single-particle wave functions QJ depend on the struck nucleon momen-
tum relative to the nuclear center of mass. In principle, off-shell XN t-matrix elements are needed to evaluate
Eq. (1). However, as already noted, the important t-matrix elements seem reasonably local. Furthermore, the
variation of the NN t matrix with momentum p in the integral of Eq. (1) is compensated to leading order in
p/rn by appropriate choice of the energy parameter upon which the t matrix depends. This is the optimal im-
pulse approximation of Refs. 3 and 4. The condition on the energy is that the NN t matrix be on shell when
evaluated at p =0 in Fig. 1 or Eq. (1). We refer to the p =0 situation as the Breit frame [see Fig. 2(a)].
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Approximating the t matrix by its value at p =0 in Eq. (1) permits it to be taken outside the integral and the
remaining integration produces the nuclear form factor (normalized to the number of nucleons)

S(q)= g(2ir} i I d pP~ p+ —, q ——k, fj p ——,q ——k,
J

(2)

Thus the optimal approximation produces the following factorized form for elastic scattering by a spin saturat-
ed nucleus:

F"'(k, k', E)=—,Tr fs(k, k')S(q), (3)

where the Breit frame NN amplitude, fz, is related to the t matrix by

fz(k, k')= — k, ——, q; —,q ——k,
~

t(Tp I
~
k, + —, q; ——,q ——k,),27TUL,

(4)
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FIG. 1. Impulse approximation for elastic proton-
nucleus scattering. k is the proton-nucleus center-of-mass
momentum.

and TL denotes the energy parameter appropriate to
the Breit frame [Eq. (6) below]. The trace over spins
of the struck nucleon [labeled 2 in Eq. (3)] elim-
inates all but scalar and single spin-flip terms in fs,'
however, for inelastic scattering, other spin com-
ponents of fs may contribute. When transformed
to coordinate space, Eq. (3) is seen to be equivalent
to the "tp" approximation commonly used for the
first-order optical potential with the optimality con-
dition being that the Breit frame NN amplitude is to
be used. A complete treatment of the optical poten-
tial can be made based on the diagram of Fig. 1 ex-

cept that in general the nucleons are not on mass
shell. Usually this complication is avoided by using
a first-order optical potential equal to Eq. (3) except
for kinematical factors. This line of reasoning leads
to the conclusion that the impulse approximation
optical potential should be based on the Breit frame
amplitude.

Since the Breit frame amplitude is on shell, it can
be related to the c.m. amplitude at the same invari-
ant energy and momentum transfer. From Fig. 2(a),
the square of the total four-momentum of the two
nucleons is calculated to be

ss(q }= E(k)+E ——,q ——k,
A

2

where

E(k) (k2+tti2)l/2

For fixed momentum k in the proton-nucleus c.m.
the q dependence in ss(q ) causes the Breit frame
amplitude to be evaluated at an effective laboratory
energy given by

Teff ss(q ) —4m
(6)

2m

The situation corresponds to the beam proton strik-
ing a nucleon with "optimal" Fermi momentum
——,q —(I/A)k, which invariably increases the en-

ergy, i.e.,

Tt'."(q')»I, (0)—= TL, ,

where Tz is the incident proton kinetic energy in the
laboratory frame. The two-body scattering is then
calculated under the assumption that the struck nu-
cleon is on mass shell.

In the following, we present two procedures for
calculating the Breit frame NN amplitudes. The
first procedure is more cumbersome but has the im-
portant by-product of providing a means of calculat-
ing Dirac invariant NN amplitudes directly from the
NN phase shifts. A very brief outline of the method
has been given in Ref. 2 and a more detailed treat-
ment can be found in Ref. 6. The second method
involves a Wigner rotation and is essentially the
same as discussed in Ref. 7. For completeness a
derivation of the Wigner transformation is outlined.

Assuming isospin conservation, the strong in-
teraction scattering matrix can be expressed in terms
of five complex amplitudes for pp and five more for
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np. A convenient parametrization in the NN
center-of-mass frame is

u, (k, )u, , ( —k, )P u, , (k, )u, ,( —k, )

(2ik, ) 'f, = A +&&i ~ &~+iqC(0', ~+0,~) where

=X,+, X,+, [(2ik, ) 'f, jX, X, , (9)

+D o ~ q F2 q+E& &,o2, , (7) X.
ug(k) =L ( k) (10)

where z is a unit vector parallel to average momen-
tum k« ——,( k, +k, ) and n =q Xz Su. bscripts 1

and 2 refer to the incident and struck nucleons,
respectively. Amplitudes A, 8, C, D, and E are re-
garded as known since they can be calculated from
the NN phase shifts in a standard manner, although
it is necessary to account for the effective energy of
Eq. (6).

For the purpose of transforming the NN ampli-
tude from one frame to another, it is useful to intro-
duce an invariant representation involving Dirac
matrices y" in place of the Pauli matrices 0. One
such representation is

~s+~vV1 3 2+~T o 2 os,y
jLCV

and

L(k)=
1/2

E(k)+m
2m o'k

E(k)+m

E(k)+m

L(k) is a Lorentz boost operator for Dirac spi-
nors. ' Equations (7)—(9) define a matrix relation be-
tween the Pauli and Dirac NN amplitudes:

=0(k, ;1) a r (12)

where the scalar (P s), vector (Wi ), tensor (a T),
pseudoscalar (a p), and axial vector (Pz) Dirac
amplitudes are functions of the Lorentz invariants s
and t = —q . An alternative representation is dis-
cussed in Ref. 9. Matrix elements of P between ini-
tial and final Dirac spinors appropriate to Fig. 2(b)
are equivalent to matrix elements of f, between cor-
responding initial and final Pauli spinors, X„as fol-
lows:

where 0( k„1 ) is a 5 && 5 matrix to be specified short-
ly. Given the Pauli amplitudes, this matrix may be
inverted to determine the Dirac amplitudes.

From the Dirac amplitudes, one can determine
the Breit frame amplitude corresponding to Fig. 2(a)
by a relation similar to Eq. (9):

u, (k')u, —,q ——k, ~u, (k)u, ——,q ——k, =X+, X+, [(2iks) 'fs]X, ,Xg, (13)

This relation fixes the form of the Breit frame am-
plitude to be

Eqs. (13) and (14) imply a matrix relation,

(2iks) 'fs A+Boi o——2+iq(Cioi„+Cpo2„)
Ci

+Do, qo, q+Eo-„o-„. (14}
C2

=0(k;A) aT (15)

Note that six complex amplitudes are present in the
Breit frame whereas only five are needed in the c.m.
frame. Owing to time reversal invariance, the coef-
ficients of oi„and a2„are identical in Eq. (7).
There are two different coefficients in Eq. (14) be-
cause the momenta of Fig. 2(a} do not transform
into one another under time reversal. As before,

Breit

where 0( k;A) is a 6&& 5 matrix for A & 1.
Solving Eq. (12) for the Dirac amplitudes leads to

a direct relation between the (known) c.m. and the
unknown Breit amplitudes:
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)ka+ &q

kc=kc~+ 2 q

(a)

k =k(,——q2

I-
kc= kco

The general 6)(5 matrix 0(k;2) is defined in Tables
I and II. From this matrix, the 5X5 matrix,
0(k„l), is obtained by (i) replacing k by the c.m.
momentum k„(ii) setting A =1, and (iii) deleting
the fourth row. In the limit 2 =1 and k=k„ the
two amplitudes C& and Cz of Eq. (14) become iden-
tical and one of them may be simply eliminated to
obtain the matrix 0(k, ; 1).

In the case where the invariant energy for NN
scattering is the same in the c.m. and Breit frames,
the c.m. momentum is determined by

k, =[—,ss(q )—m ]'~,

kc
(b)

kc

FIG. 2. (a) Breit frame NN scattering. (b) NN c.m.
frame scattering.

which also corresponds to using the effective labora-
tory energy of Eq. (6). The relation between c.m.
and Breit frame amplitudes is a Wigner rotation of
the spins. The Wigner rotation may be expressed as
a 6X 5 matrix equivalent to

A

8
C)

C2

D

Breit

8
=0(k;A)0 '(k0,'1) C

D
(16)

8'=0(k;A)0 '(k, ;1) i,

The notation carries the reminder that the s value
must be the same in the Breit and c.m. frames.
Table III expresses the Wigner rotation matrix 8' in
terms of two angles defined by

1—qk 1——
1

tan( —,g) =
~sz[ —,~sz+E(p)+E(k)+m]

TABLE I. The matrix 0(k;A) used in Eq. (15) of text. Formulas for matrix elements are given in Table II. To obtain
the matrix 0(k„'1) used in Eq. (12), row 4 of the table, corresponding to amplitude C2, is omitted, the c.m. frame momen-

turn k, is used in place of k in Table II matrix elements, and the parameter A is unity. The momentum transfer q is the
same in both cases.

X)X2

—X6X7

X3X4+X5

—X,(1+X,)

—2X6(1+X7)

2X5+2X3X4

X6X7

—X]X2

X2Xg
k,—X4Xg-

2Am 2

k,—2X3X9-
m

—X)X9

C2 X&X9
k,—X3X9-

2m

k,—2X4Xg-
Am

—X2Xg

X7

4m

1+X7
4m

X&O
1

4m

X6X7 X6X7 X]3
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TABLE II. Matrix element formulas for given values of q, the momentum transfer, and k, =1/2(k+ k'). Note that
k, q =0 holds for elastic proton-nucleus scattering and for elastic NN scattering.

[f2+k 2~( lq2]1/2 [m +(k /'g )+(~)q ]
z & zE, +m

X) = 1—
2m (E)+m)

E+m (k /A )—( —)q
Xz= 1—

2m (E,+m)'

E, +m
x3 —— 1+

2m (E]+m)

k,
Xg=

Am

k, z

A (E/+m)(Ez+m)
k,

2Am (Ez+m)
X) Xz X6

X)]= +
4m (Ez+m) 4m (E/+m) 4(E)+m)(Ez+m)

X4x ~z ———2x5(1 —x7)
A'm {E,+m) m {E)+m)

k, xi k, zxz
X]3— X5( 1 +x7) zA m(Ez+m) m(E~+m)

E+m
x4 —— 1+

2m {Ez+m)z
2

q
4m

k,
2m(E, +m)

X3 X4 X6
X 10 + +

2m (Ez+m) 2m (E~+m) 2(E~+m)(Ez+m)

tan( —,p) =

I 1—qk 1 ——
A

~s~ —,~sz+E(p)+E ——,q ——k, +m
1-

where k, =
~
k+ k'

~

/'2 and
' 2 1/2

E(p)=m 1+(k, /ss) 1 ——
W=L2( k, )L((k, )M—, L2(k, )L)(—k, ),

(21)

where

The Wigner rotation limit provides the simplest
connection between on-shell c.m. and Breit frame
amplitudes. It also provides a nontrivial check on
the 0 matrices since both sides of Eq. (18) can be in-

dependently calculated. The utility of the matrix 0
is mainly in providing the link between the (known)
c.m. amplitudes and the invariant Dirac amplitudes
of Eq. (8). A paper in preparation" shows that the
phenomenological Dirac first-order optical potential
is essentially the impulse approximation based on
the Dirac amplitudes of Eq. (8).

The matrix 8' is derived by the following steps.
Equations (9)—(11) can be solved for the Dirac am-
plitude W by applying inverse boost operators [e.g.,
u(k) =u(0)L ( —k) since y L (k)yo=L ( —k)
=L '(k)] as follows:

1+j $ 1+/]
M m =(2ik) ' f,

~ =L~(p)L2(p)~L~( —p)L2( —p) . (23)

The boost momentum p connecting the c.m. and
Breit frames is

mk,
p= 1

1——
A

(24)

Since ~ is Lorentz invariant, it is unaffected by fur-
ther transformations. In particular, boost operators
Lt(p) and L2(p) which correspond to a boost from
the c.m. frame of Fig. 2(b) into the Breit frame of
Fig. 2(a) can be applied to P yielding the invariance
relation
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or equivalently, the boost velocity is p/E(p). The
Breit frame amplitude defined by Eq. (13) is also re-
lated to the Dirac amplitude ~ by boost operations
as follows:

Ms =L, ( —k')L, ( —p, )a L, (k)L, (p, ),
where

1~ 1
P2 2 l a

(25)

and

(26)

Combining Eqs. (21), (23), and (25) yields

Ms = L, ( —k')L, ( —p, )L,(p)L, (p)L, ( —k, )

XL)(k, )M, m L2(k, )Li( —k, )L2( —p)

XLi( —p)Li(pz)L)(k) . (27)

The boost operators L (p ) were inserted using Eq
(23) in order that the transformations would reduce
to Wigner rotations of the spins, i.e., one can show
that

Li( —k, )L)(—p)Li(k)=Li( —k')Li(p)L)(k, )

i (1/2)Xa&„=e (2&)

L,(k, )L,( —p)L, (p, ) =L,( —p, )L,(p)L, ( —k, )

—i ( 1/2)Pcr22lg (29)

where X and p are the angles defined by Eqs. (19)
and (20). These results lead to the Wigner rotation
form for the transformation of spin components of
the NÃ amplitude

i(1/2)re)„—i(1/2)pa2„
2lks J's = 8 "e

i (1/2)Xo
&

—i (1/2)P02"e

(30)

Substituting the forms for f, and f~ as given by
Eqs. (7) and (14) leads, after some algebra, to the
matrix W of Table III.

Calculations of the Breit frame NN amplitudes
have been performed starting from a recent XX
phase shift solution (SP82) of the Virginia Polytech-
nic Institute (VPI) group. ' For elastic proton-
nucleus scattering, Eq. (3), only the A and Ci terms
of Eq. (14) contribute due to the trace over spins.
Nevertheless, all spin components of the Breit frame
NN amplitudes have been tabulated in Table IV for
pp and in Table V for np scattering. Generally the
NN amplitudes enter into proton-nucleus analyses
multiplied, as in Eq. (3), by a nuclear form factor
S(q). Since the form factor rapidly decreases with

q, the most important range in which the 1VÃ ampli-
tudes are needed is

0&qt&(2 fm )~=0.16 (GeV/c)

In this range the amplitudes tend to be well approxi-
mated by Gaussian functions of q, e.g.,

p 2
—P, ,

2

A(q)=ADe ~A i, C)(q )=C)oe ', and so on,
where A(q) and Ci(q) are defined as in Eq. (14).
The tables give numerical values of these Gaussian
parameters applicable to the range 0'&8, &40'.
In the case of the double spin flip amplitude E, the q

—q sin{+—p)sin+ s1Ilpcosg cosp

TABLE III. Wigner rotation matrix. The angles P and p are defined by Eqs. (19) and (20).

0 0

sing sirlp

sing cosp

q

cos+ slnp

COS+ COSP

cos+ slnp

sing cosp

q

—q sin(y —p)

cos{g—p)

cos(X—p)

0 0

0 0

0 0

SIDE $1IlP
2

1 —cosg cosp
2

sin(g —p)
q

1 0

Br
—sing sillp 1 —cosg cosp q sin(g —p) E
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TABLE IV. pp Breit frame Gaussian amplitude parameters for the amplitudes of Eq. (14). Forward (q =0) amplitudes

Ap, Bp, and Ep are in units of (GeV/c) ', C~p and Cpp are in units of (GeV/c) ', and Dp is in units of (GeV/c) ~. All P
parameters are in units of (GeV/c) . Apply powers of Pic =0.19732 GeVfm as necessary to obtain parameters in fm
units. The tabulated amplitudes do not include the effects of the energy shift of Eq. (6).

~lab

100
200
300
400
500
600
700
800
900

1000

Ap

3.21 —i 5,96
2.46—i 3.12
2.49—i 1.99
2.62—i 1.52
3.07—i 1.27
3.66—i0.91
4.48 —i0.42
4.81+i 0.14
4.84+ i 0.57
4.83+i 0.61

Cio

—1.24 —i 17.50
—0.26—i 13.18
—0.46—i 10.78
—0.62 —i 9.28
—0.86—i 8.17
—1.29—i 7.25
—1.51—i 6.53
—1.62 —i 5.99
—1.29—i 5.49
—0.86—i 4.63

Ceo

—1.71—i 16.47
—0.67—i 12.33
—0.95—i 10.00
—1.24 —i 8.54
—1.71—i 7.44
—2.36—i 6.62
—2.83—i 6.06
—3.07—i 5.67
—2.78—i 5.29
—2.39—i 4.52

Bp

—0.72+ i 2.65
0.0 +i2.02
0.0 +i 1.92

—0.14+i 1.81
—0.40+ i 1.75
—0.42+ i 1.47
—0.27+ i 1.30
—0.17+i 1.23
—0.08+ i 1.21
—0.05+ i0.95

Do

—10.7—i 388.
3.0—i 299.
1.1 —i 241.
0.4—i 200.

—0.9—i 175.
—3.1 —i 153.

—10.2 —i 134.
—11.5 —i 120.
—9.5 —i 108.
—7.7—i 97.8

1.0 +i3.24
1.55+ i 1.13
1.37+i0.28
1.10+i 0.07
0.95—i 0.48
0.85 —i0.76
1.07—i0.85
1.01—i 0.72
0.74—i 0.63
0.54—i0. 11

~lab

100
200
300
400
500
600
700
800
900

1000

13.40—i 1.56
13.75 —i 4.62
10.S2—i 7.94
7.17—i 7.75
5.42 —i 5.92
4.41 —i 4.46
4.82—i 3.38
4.48 —i 2.67
3.98—i 2.22
3.89—i 1.80

6.75 —i 0.88
4.74—i0.36
4.53+i 0.05
4.54+ i 0.38
4.55+ i0.62
4.47+i 0.88
4.29+ i 1.21
4.14+i 1.27
4.03+i 1.42
4.25+ i 1.90

Pc,

6.32—i 1.08
3.99—i0.59
3.60—i 0. 17
3.54—i0. 17
3.46+ i0.30
3.36+i 0.37
3.32+ i 0.29
3.33+i 0.23
3.20+ i 0.39
3.20+ i 0.73

5.81—i 2.95
14.85+0.72
16.47+i 1.21
15.61+i0.41
16.60—i 1.43
20.16—i 1.80
20.47+i 12.2
12.54+ i 3.84
10.23+ i 11.95
7.39+i 15.54

40.9 —i 0.93
40.2 —i 0.34
36.4 —i 0.04
33.8 —i 0.08
31.3 +i0.65
30.0 +i 2. 11
26.6 +i 5.77
23.1 +i6.29
20.35+i 5.69
19.98+i 5. 10

TABLE V. np Breit frame Gaussian amplitude parameters. Units are as specified in Table IV.

~lab

100
200
300
400
500
600
700
800
900

1000

Tlab

7.37—i 7.45
4.21—i 2.90
3.64—i 1.16
3.39—i0.35
3.52+ i 0.09
3.54+ i 0.54
3.82+ i 0.96
3.90+i 1.37
3.83+i 1.69
3.77+i 1.79

Cia

—5.45 —i 14.65
—4.30—i 11.31
—3.47 —i 9.01
—2.86—i 7.S1
—2.62—i 6.40
—2.39—i 5.62
—2.25 —i 4.98
—2.10—i 4.49
—1.78—i 4.05
—1.43 —i 3.47

Pc,

Ceo

—6.23—i 14.16
—5.01—i 11.21
—4.24 —i 9.08
—3.70—i 7.65
—3.58—i 6.64
—3.42 —i 5.90
—3.38—i 5.38
—3.29—i 5.00
—2.99—i4.66
—2.65 —i 4. 16

Pc,

Bp

0.84—13.39
—0.09—i 2.33
—0.30—i 1.48
—0.36—i 0.95
—0.39—i0.89
—0.39—i 0.55
—0.28 —i0.47
—0.20—i0.39
—0.14—i0.34
—0.12—i0.40

Do

—10.0+ i 289.
—5.6+ i 133.
—3.0+ i 89.4
—1.9+i 63.6

0.0+ i 57.7
—2.3+i42.4
—5.7+i 36.2
—6.3+31.2
—5.1+i27.5
—4.3+i 24.2

&0

1.05 —i 0.25
1.18—i 1.37
0.91—i 1.78
0.66—i 1.98
0.49—i 1.47
0.42 —i 2.27
0.50—i 2.31
0.46—i 2. 18
0.32—i 2.03
0.22 —i 1.74

100
200
300
400
500
600
700
800
900

1000

11.S3—i 0.61
14.68—i 2. 15
11.76—i 6.20
7.81—i 6.19
6.19—i 4.61
4.76—i 3.34
4.77—i 2.51
4.53—i 1.82
4.25 —i 1.34
4.18—i 0.97

11.78—i 3.87
7.62—i 2.02
6.31—i 1.02
5.64—i0.38
5.32—i 0.40
4.86+ i 0.34
4.48+i 0.66
4.18+i 0.77
3.92+ i 0.89
3.82+ i 1.22

11.59—i 4.23
6.96—i 2.65
5.43—i 1.68
4.67—i 1.01
4.45 —i 0.97
3.97—i 0.35
3.78—i 0.20
3.67—i 0. 12
3.50+ i0.02
3.43+ i0.24

—2.30+i 1.18
—8.62—i0.04

—11.01—i 1.45
—11.91—i 3.05
—8.47—i 2.45
—9.66—i 5.08
—9.11—i 4.96
—8.45 —i4.77
—7.85 —i 4.07
—5.95—i 3.10

26.48 —i 1.23
13.03—i 0.46
11.22 —i 0.11
9.09+i 0.23
8.71+i 0.16
8.01+i 0.26
7.81+i 0.04
7.79—i0. 16
7.72—i 0.14
7.67—i 0.11
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TABLE VI. pp and np c.m. frame Gaussian amplitude parameters. Units are as specified
in Table IV.

Tlab Ap
pp

Cp Ap

np

Cp

100
200
300
400
500
600
700
800
900

1000

3.21 —i 5.96
2.46—i 3.12
2.49—i 1.99
2.62 —i 1.52
3.07—i 1.27
3.66—i0.91
4.48 —i0.42
4.81+i 0. 14
4.84+ i 0.57
4.83+i0.61

—1.47 —i 16.99
—0.46—i 12.76
—0.70—i 10.39
—0.92—i 8.91
—1.27 —) 7.80
—1.79—i 6.93
—2.13—i 6.28
—2.29—i S.81
—1.96—i 5.36
—1.S5—i4.SS

7,36—i 7.45
4.21 —i 2.90
3.64—i 1.16
3.39—i 0.35
3.52+ i 0.09
3.54+ i 0.54
3.82+ i 0.96
3.90+i 1 ~ 37
3.83+i 1.69
3.77+ i 1.79

—5.83—i 14.41
—4.65 —i 11.27
—3.84—

& 9.06
—3.27—i 7.59
—3.08—i 6.53
—2.88—i 5.76
—2.78 —i 5. 18
—2.65 —i4.74
—2.33—i4.34
—1.98—i 3.79

Tlab

100
200
300
400
500
600
700
800
900

1000

13.40—i 1.56
13.75 —i4.62
10.51 —i 7.96
7.16—i 7.78
5.40—i 5.95
4.39—i4.49
4.79—i 3.40
4.45 —i 2.70
3.94—i2.24
3.8S—i 1.82

6.46—i 0.97
4.38—i 0.47
4.08—i 0.04
4.05+ i 0.30
4.01+i 0.50
3.90+i0.67
3.76+ i 0.79
3.67+ i0.78
3.55+ i0.94
3.62+ i 1.35

11.52 —i 0.61
14.68 —i 2. 16
11.75 —i 6.23
7.78 —i 6.22
6.15—i 4.64
4.72 —i 3.36
4.72 —i 2.53
4.48 —i 1.85
4.19—i 1.36
4.13—i 0.99

11.68 —i4.04
7.27 —l 2.32
5.84—i 1.34
5.12—i 0.68
4.84—i 0.67
4.35+i0.0
4.06+ i 0.22
3.85+i 0.30
3.64+ i0.42
3.55+i 0.68

dependence is not Gaussian and thus the corre-
sponding pE parameters have been omitted from
Tables IV and V.

For comparison, some of the c.m. frame ampli-
tudes of Eq. (7) are given in Table VI. Owing to the
convention of dividing out the momentum from
both fs and f„the forward amplitudes Ap Bp, and

Ep are invariants (see also the discussion in Ref 2). .
Furthermore, the rotation angles X and p defined by
Eqs. (19) and (20) tend to zero as q~0. Thus the
Wigner rotation only effects the spin flip amplitudes

C~ and Cq and the Gaussian falloff parameters p as
may be seen by comparison of the tables. The ef-
fects are largest when q is largest. Sizable differ-
ences have been observed in calculations of proton
elastic scattering by light ions due to the energy
shift of Eq. (6), however, the Wigner rotation of Eq.
(16) seems to yield =6% effects in spin observables
for p+ d elastic scattering. Very large differences
between c.m. and Breit frame NN amplitudes have
been demonstrated in Ref. 5 for cases where q in
proton-nucleus scattering corresponds to NX
scattering angles exceeding 90' at the beam kinetic
energy. This occurs for 8 g 60' in p-"He scattering.

For proton scattering by heavy nuclei, the form
factor S(q) suppresses the large q values and thus

only minor differences are observed due to the
difference between c.m. and Breit frame NE ampli-
tudes. This conclusion is documented by calcula-
tions based on the Kerman-McManus- Thaler
(KMT) optical potential formalism as shown in
Figs. 3 and 4. Figure 3 shows the analyzing power
for 500 MeV p- Ca elastic scattering as a function

0.8—

0.2—

0—
!FULL BREIT

- O 4 ——-- WI GNE R ROTATION ONLY———-- NO TRANSFORMATION
0.6—

0.8—

Q I I l I

0 4 8 I2 I6 20 24

8, (deg)
28

FIG. 3. Impulse approximation calculations for 500
MeV p+ Ca. Analyzing power using XN amplitudes:
(1) in the Breit frame, Eq. (16) (solid curve); (2) using the
Wigner rotation only (no energy shift, dashed-dotted
curve); and (3) with neither of these effects (dashed curve).
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TABLE VII. Results for root mean square neutron ra-
dii deduced from elastic proton scattering as in Ref. 13.

(r, ') ' '(fm)
15—

I I I I I I I I I I I I I I

Ca, 500 MeV

' C, 800 MeV

Ca, 800 MeV

Full Breit
Wigner rotation
No transformation

Full Breit
No transformation

Full Breit
Wigner rotation
No transformation

3.048
2.971
2.995

2.127
2.081

3.234
3.201
3.214

10—

I-
R
LLJ

O
K 5—
LLI
CL

of the center-of-mass scattering angle. The calcula-
tions labeled "full Breit" were made on the basis of
Eqs. (6) and (16) using an interpolation of the energy
dependence of the NN phase shifts in order to ac-
count for the energy increase with q . The results
labeled "Wigner rotation only" are based on ignor-
ing the energy increase and thus include only the ro-
tation as in Eq. (30). Neither of these effects is very
large, as can be seen by comparison with the dashed

CR
SE
M
I

12 16 20 24 28

e|:.fbi. (deg )

FIG. 4. Percentage differences for 800 MeV p+~Ca
differential cross sections using the impulse approxima-
tion NN amplitudes in the Breit frame, and with the
Wigner spin rotation only, compared to calculations with
lV1V amplitudes omitting these effects.

TABLE VIII. pp and np invariant amplitude Gaussian parameters. Forward amplitudes
P so and Wvo are Gaussian falloff parameters and are in units of (GeV/c) . Owing to the
convention of Eq. (7), a factor 2ik, must be applied to convert these amplitudes to c.m. frame
scattering amplitudes.

Tlab

100
200
300
400
500
600
700
800
900

1000

~SO

—9.18—i 94.10
—3.73—i 46.91
—2.68—i 31.26
—2.16—i 24.09
—2.25 —i 19.13
—2.74—i 15.85
—2.91—i 13.5S
—2.80—i 11.96
—1.74—i 10.5S
—0.64—i 9.02

~VO

11.20+ i 79.66
5.11+i 36.10
3.92+i 22. 18
3.35+i 15.82
3.47+ i 11.65
3.91+i 9.12
4.23+ i 7.53
4.11+i 6.53
3.36+i 5.68
2.65+i4.66

~SO

—25.12—i 68.30
—15.43 —i 36.56
—10.19—i 24. 10
—7.26—i 17.75
—5.89—i 14.68
—4.96—i 11.23
—4.35 —i 9.39
—3.80—i 8.13
—2.90—i 7.09
—2.05 —i 6.03

~VO

29.35+i 54.99
16.19+i 27.74
10.48+ i 17.38
7,47+i 12.20
6.14+i 9.64
5.18+i7. 18
4.68+ i 5.93
4.15+i5.13
3.44+i 4.48
2.82+i 3.78

~lab

100
200
300
400
500
600
700
800
900

1000

4.55—i 1.07
3.23—i0.41
3.33+i0.06
3.94+ i0.41
3.72+i 0.47
3.78+ i 0.47
3.85+ i0.29
3.93+i 0.20
3.89+i0.46
3.93+i 0.85

3.25 —i 1.44
1.69—i0.85
1.70—i0.34
2.26+ i 0.11
2.06+i0.06
2.20—i 0.05
2.55—i0.51
2.80—i0.57
2.70—10.28
2.63+i0.05

1.41 —i 7.03
0.16—i 4.26
0.49—i 2.77
0.80—i 1.85
1.90—i 1.36
1.20—i 1.17
1.36—i 1.08
1.54—i0.95
1.52 —i 0.60

. 1.39—i 0.20

Pv

0.99—i 8.74
—0.52—i 5.90
—0.23+i 4. 16

0.12—i 3.03
1.31—i 2.34
0.88—i 2.07
1.32—i 1.94
1.66—i 1.66
1.71—i 1.28
1.72 —i 0;97



2132 J. A. McNEIL, L. RAY, AND S. J. WALLACE

curve which includes neither the energy shift nor the
Wigner rotation, but obviously the energy shift is
more important.

Figure 4 shows similar results for the 800 MeV
p- Ca elastic scattering cross section where the
small differences are shown as percentage changes
of the cross section. Again the effects are not large.
Table VII summarizes the effects of the use of Breit
frame amplitudes on the neutron root-mean-square
(rms) radii determined by fitting proton-nucleus
elastic scattering as in Ref. 13.

Table VIII lists Gaussian amplitude parameters
for the scalar and vector invariant amplitudes of Eq.
(8), for example,

and

~ v(e) =~voexp( —&vs') .

The scalar and vector amplitudes ~qp and M yp
have opposite signs and are considerably larger in
magnitude than the corresponding forward ampli-
tudes in the Pauli representation. These differences
can be traced back to the influence of the Pauli C

amplitude of Eq. (7) through the transformation of
Eq. (12). The amplitudes Pso and P vo determine
the impulse approximation Dirac optical potential
as is explained in Ref. 11.

For proton scattering by nuclei, the Breit frame
amplitudes are the natural ingredients of calcula-
tions based on the impulse approximation. These
amplitudes differ from the c.m. amplitudes because
of the energy shift Eq. (6) and the Wigner rotation
of spins. For heavy nuclei these differences produce
only slight changes to the observed scattering, how-
ever, results for light ions show much larger effects
at high q . One of the reasons for the larger effect
in light ion scattering is that the single scattering
term remains influential at large q and the energy
shift in Eq. (6) can become quite large.

As a by-product of the derivation of a transfor-
mation between c.m. and Breit frames, we have de-
rived a general matrix relation, Eq. (12), from which
the invariant Dirac amplitudes of Eq. (8) can be cal-
culated directly from the XEphase shifts.
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