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A calculation of the elastic scattering of mesons from 0 is performed, using a modifica-

tion of the first-order multiple scattering theory of Kerman, McManus, and Thaler, in

which Pauli blocking effects are omitted from the ~ operator. The modified ~ operator is

calculated in a three-body model, in which the struck nucleon is allowed to recoil in a
Woods-Saxon nuclear shell model potential exerted by the remainder of the nucleus. The in-

teraction between the meson and the struck nucleon is described by a separable potential. A
set of coupled differential equations that describe the elastic and the excited channel wave

functions is derived by approximating the shell model binding potential in the excited states

of the nucleon as a potential for the meson-nucleon center of mass. This approximation is

examined in detail. It is found that in the three-body model the bound states and the single

particle resonances of the shell model potential alter the results significantly from those ob-

tained in impulse approximation.

NUCLEAR REACTIONS ' O(m, ~), three-body model of m.-nucleon in-

teraction. cr ~(E) calculated.

I. INTRODUCTION

This article continues the previous study of
meson-nucleus elastic scattering by Silver and
Austern' (SA}, based on a three-body model of the
underlying meson-nucleus r operator, in a first order
multiple scattering theory. We now introduce a
more realistic l=1 meson-nucleori interaction, in
place of the artificial resonant l=0 interaction used
previously. We also treat the spectrum of the excit-
ed single-particle orbitals more completely.

A multiple scattering theory of elastic scattering
requires two sets of projection operators, one to
select antisymmetric nuclear states, and one to select
the ground state. These projectors can be introduced
in various combinations. For example, the Kerman,
McManus, Thaler approach (KMT) develops an an-
tisymmetrized multiple scattering formalism that is

subsequently projected on the nuclear ground state.
An alternative projected formalism first isolates the
role of the ground state and then develops a multiple
scattering expansion. This alternative approach was
applied in SA.

As it happens, the KMT approach and the pro-
jected approach are not only equivalent if both are
developed exactly; it can be proved ' that these ap-
proaches also give identical elastic scattering ampli-
tudes to first order in multiple scattering theory.
We therefore adopt the KMT approach for the
present work, because the first-order KMT expres-

sions are not cluttered with ground state projection
operators. The KMT ~ operator uses the entire
spectrum of antisymmetric target nucleus eigen-
states.

We develop a Schrodinger theory of meson
scattering, in which the pion has a definite coordi-
nate and retains its identity, and in which all parti-
cles interact by means of specified potentials. In our
three-body model of the underlying r operator, prac-
tical calculation requires a kinematic approximation
of the excited nucleon intermediate states, ' ' as ex-
plained in Sec. II. This approximation emphasizes
the center of mass coordinate of the pion and the
nucleon, as if they formed a b, particle. The same
approximation has been applied by Dedonder and
Schmit, by Garcilazo and Gibbs, and in the in-
teresting collective analysis in related "isobar door-
way" studies by Hirata, Lenz, Koch, Yazaki, and
Moniz and Freedman, Henley, and Miller. ' How-
ever, we retain standard shell model potentials in the
excited states. Woods-Saxon potentials are used, to
allow a reasonable evaluation of scattering in the nu-
clear surface region.

The three-body theory allows a quite accurate
treatment of the recoil of each individual struck nu-
cleon from which the meson scatters. However, the
antisymmetrization in this theory is a little obscure.
Although the emphasis on individual nucleons sug-
gests calculation with Watson t; operators instead of
the antisymmetrized KMT v operator, or the corre-
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sponding partially-antisymmetrized r;, analyses of
Pauli blocking disclose major differences between t;
and r;. For example, blocking effects in the r;
operators strongly influence the results in the isobar
doorway calculations. " On the other hand, the
blocking analysis in that work proceeds by a calcula-
tion that is second order in t;, to produce ~; opera-
tors that are used subsequently to derive a first-order
opiiea/ potential W. e recall that in one of the origi-
nal discussions of blocking, Feshbach, Gal, and
Hiifner' found that if the KMT optical potential is
calculated consistently to second order in t;, using
closure simplifications, then the second order block-
ing terms contained in ~ largely cancel against other
terms in the optical potential that are of second or-
der in ~. In their work the surviving Pauli correla-
tion effects are weak and can reasonably be disre-
garded. Similar arguments that Pauli blocking is
weak are given by other authors. ' On this evidence
we adopt the opinion that Pauli effects are carried
most consistently if the KMT optical potential is
calculated in a (modified) first order, using Watson

t; operators in place of KMT r; operators. Further
analysis of this question could be interesting.

The basic kinematic approximation of the three-

body model is considered in detail in Sec. IV, in an
analysis of the "frame potential" of the three-body
system. This approximation is seen to be more ac-
curate than might be at first supposed.

Section V presents the main results of the calcula-
tion. It opens with a sketch of impulse approxima-
tion models, for comparison with our results. Dif-
ferential cross sections and excitation functions for
total cross sections then follow. Most of the new

features of these cross sections seem to occur be-
cause the average excitation energies in the three-

body model are much lower than in impulse approx-
imation. A detailed analysis of the distribution of
reaction strength with respect to excitation energy
follows in Sec. VC. We then examine the radial
behavior of the meson optical potential, and we find
that it has a quite long range. Section VI is a brief
summary.

II. THE THREE-BODY MODEL

In this section the three-body model of the KMT
elastic optical potential is formulated. Nonrelativis-

tic expressions are given. Relativistic kinematics are
inserted later when calculations are performed.

The total Hamiltonian of the ~-A system is

H =Hp+ V,

where

Hp ——K~+Hg

and

V=gu;.

To describe the scattering we have to solve the
Schrodinger equation

(E Hp }O'=—PP (5)

with appropriate boundary conditions. However, in

the KMT procedure one introduces instead an auxi-

liary wave function %" that satisfies

(E Hp)% =(A——1)r+

in terms of an antisymmetrized one-nucleon r opera-
tor for which

v.=v+ vG&,

with

deaf

E —Hp+ie

Here M is the antisymmetrization operator. The
complete 4 can be obtained from V by

The scattered amplitudes obtained from 4 are
A i(A —1) times the amplitudes obtained from 4'.

The projection of 4' on the nuclear ground state
is written as

P%"=F'(s )@p(ri, r2, . . . , rz) . (10)

To first order in r, an optical equation for the meson
wave function F'( s ) is obtained from Eq. (6) in the
form

(E —8'p K~)F'( s ) =(A —1)—(@p,MpF') . (1l)

Thus (A —1}(@p,Mp} is the optical operator for
F'( s ).

In the above expressions K is the kinetic energy of
the pion, Hr is the internal Hamiltonian of the nu-

cleus, v; is the two body interaction between the pion
and the ith nucleon, and A is the total number of nu-

cleons in the nucleus. The target nucleus is assumed

to be at rest at the origin.
%e use the coordinate s to describe the pion and

coordinates ri, rz, . . . , r„ to describe the motion of
the nucleons. We suppress the spin and isospin vari-

ables of the nucleons. In terms of these coordinates
the antisymmetrized nuclear eigenfunctions are
denoted by 4 ( r „r2, . . . , rq ) with eigenvalues I',
I.e.,

Hz@ (r„r2, . . . , rq)=Ã 4 (ri, ri, . . . , r„) .
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For an antisymmetric nuclear ground state it is
convenient to replace ~ by

w=A (12)

The relation to corresponding Watson t; operators is
given by'

r=A-'gt &+A 'gt; . r;, (14)
M —1

with

1
Ug+Ug E —Ho+I, e

(15)

with no antisymmetrizers in (15). The second term
in r in (14) corrects for Pauli-violating intermediate
states in t;. It was already explained in the Intro-
duction that if we would extend the calculation of
the optical potential to second order, then the second
term of (14} would largely cancel against other
second-order terms of similar structure. We there-
fore omit the second term of (14) and adopt the sim-

ple substitution

r~A 'g ttW, -

to be used in (11}in the modified first-order optical
potential.

The presence of the target Hamiltonian Hz in the
propagator of (15) makes t; a many-body operator.
Following SA, Revai, Tandy, Redish, and Bolle,
Garcilazo and Gibbs, and the isobar doorway calcu-

I

in terms of contributions from individual labeled
nucleons, so that Eq. (11) can be rewritten as

(E —8'p —K )F'(s)
r

A —1
4p, Q r;@pF' . (13)

1
t; =u;+v; Us ~E —Hc —E~—E.—U —g-+i g

(18)

Since H, does not involve the coordinates of the
pion or of the ith nucleon, it represents a simple
shift of the total collision energy E. At this stage
we have a three-body problem —the bodies being the
incident pion, the ith nucleon, and the core. The in-
teractions between these particles are V;=v;,
V, =O, and V;, = U;.

The optical potential in Eq. (11) has now been re-
duced to the expectation of a symmetric one-body
operator for the nucleons. If the ground-state wave
function 4p for a closed-shell target nucleus is taken
to be a Slater determinant of occupied single-particle
orbitals, then the optical potential becomes a sum
over these orbitals, and (11)becomes

lations ' we reduce the many-body problem to a
three-body problem by isolating the ith nucleon of
the target and treating the rest of the nucleons as a
passive core. We write the target Hamiltonian as

H~=E;+E, +H, +~;,
where K~ is the kinetic energy of the ith nucleon, K,
is the kinetic energy of the center of mass of the
core, H, is the internal Hamiltonian of the core, and

ro; = g. v,j is the interaction of the ith nucleon with
the rest of the nucleus; co; can give rise to many-
body intermediate states since it involves the coordi-
nates of all the nucleons. The three-body approxi-
mation consists of replacing co; by the single particle
potential U;(r;). For simplicity, we neglect the
recoil of the core, i.e., we set K, =0. This is a good
approximation if the mass of the core is much larger
than the mass of one nucleon plus a pion. The error
due to this simplification is of the order of 1/A. We
now solve Eq. (15) for t; in terms of v; and insert the
above approximations to obtain

[E—N'p —K ]F'(s)= A —1

n

(occupied)

(g„,v g„F')+ f„,v vg„F'E —N'p+ e„K„Kz U(r—) v+—ie— —

(19)

where g„are single particle orbitals with energy e„,

[K„+U(r)]g„(r)=e„g„(r),
and

(20)

K = (fi /2m )V-, —

and

Kiv —(fi /2m~)V, ——

are the kinetic energy operators of the pion and the

I

nucleon, respectively. Equation (19) gives the wave
function of the pion in the pion-nucleus center of
mass frame. We need further approximations for a
complete numerical solution of (19).

In solving Eq. (19}we use two sets of coordinates
(r, s ) and (R,p) to describe the motion of the pion
and the nucleon; r and s are the coordinates of the
nucleon and the pion relative to the m.-A center of
mass, R is the coordinate of the ~X center of mass,
and p is the relative m.N displacement. The
transformations between these two sets of coordi-
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these equations take the form

2107

and

R=vr+vs, p = s —r

r =R—vp, s =R+vp,

(21a)

(21b)

[E—gt'0 —K ( s }]F'(s )

g [(f„,ug„F')+(f„,vG„(R,p) )] (23)
A

where

v=m /(m +m~); V=1—v. (21c)

The kinetic energy operator E +E~ separates in
the two sets of coordinates,

[E—8'u+e„—K-„—U(R} E —u]G—„(R,p }

=ug„F'+ [U(r) U(R)]—G„(R,p }, (24)

where

V, — V-,
2m 2m~

fP 2 fP 2V — V
2p ~ 2M R (21d)

and

Ka ———(fi /2M)V a

IC& —(A /——2p)V

U(r)=U(R) —[U(R)—U(r}] . (22)

The term within the brackets is the error incurred in
replacing r by R in the binding potential.

The Schrodinger equation (19) for F'( s ) easily be-
comes a set of coupled equations. By use of Eq. (22}

I

where

IM =m m~/(m +m~)

is the ~%reduced mass arid M=m +mN is the to-
tal mass of the pion and the nucleon.

We note that the binding potential of the nucleon
U(r) in Eq. (19) is expressed in the coordinate set
(r, s ), and the nNinterac. tion v is expressed in the
coordinate set (R,p). To take full advantage of the
short ranged nature of v (p) we evaluate the Green's
function in the second term on the right-hand side
of Eq. (19) in the (R,p) coordinates. We then have
to express the binding potential U(r) in terms of R
and p. We write

The second term on the right-hand side of (24) arises
because we transformed the binding potential U(r)
to (R,p) coordinates. Later in Sec. IV we shall
show that this term, called the frame potential term,
is smail for important situations and can be neglect-
ed. We solve Eqs. (23) and (24) with the frame po-
tential term set to zero, to get the elastic scattering
wave function F'( s ) of the pion, in the pion-nucleus
center-of-mass frame.

III. INPUTS TO THE OPTICAL POTENTIAL

The basic ingredient in the construction of the
pion nucleus (n-A} optical potential is the pion nu-
cleon (~-N) potential v. Because at medium energies
the m-N interaction is dominated by the 33 reso-
nance in the relative 1=1 state, which tends to be
separable in structure, it has been considered plausi-
ble to choose U to be an l=1 separable interaction. '

We choose the following form:

«P I
v

I p &
= v(P)u(p'} & Ylomo(p}Flam'o(p }FJ=3/2F1=3/21

mo

(25)

where lv ——1; Pi 3/2 is the projection operator on the nNstate of tota. l angular momentum j= —,; Pt 3/3 is the
projection operator on the mN state of isospin I= —,; and p and p

' are the relative nNcoordinates. .
The t matrix in the m.N center of mass is then

(p I
t«}

I p &=
2I 1 g I'lorna(p}~lama(p }~j=3/2FI=3/2 i

4n. u (p)u (p')

210+1 1 It,q—
where

(26)

with

f dppu(p) f dp'gt', "(~'p p'}p'u(p'» (27)

gt,"(~;PP'}= —t~
" PP'Jt, (CP, }"t,"(~P,} (28)
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X g Yi,~,(k) Yi,m, (k )~j =3/2' =3/2 &

mo

(29)

where ui, (k) is the spherical Bessel transform of
v(p),

' 1/2

ui, (k)= — J dpp'ji, (kp)u(p) . (30)

as the outgoing radial Green's function; p is the re-
duced mass of the pion and the nucleon;

q =(2)ME/fP)'/2

is the wave number in the mX center of mass frame;

ji (qp) is the spherical Bessel function; and h~"'(qp)

is the spherical Hankel function, hi' "=ji+ini,
where ni is the spherical Neumann function.

In momentum space the mÃ t matrix becomes

(k
i
r(E)

i
k')

4 ui, (k)ui, (k')

2lo+ 1 1 Ii,(q)—

orbitals are completely filled and the root mean
square (rms) radius is found to be 2.4 fm.

IV. CALCULATIONAL PROCEDURES

A. Partial wave analysis

To solve the coupled equations (23) and (24) we
introduce partial wave expansions (the prime on F'
is omitted)

and

F's
J~ s

(34)

In subsection A of this section we outline details
of the partial wave analysis of the coupled equations
(23) and (24) and we comment about a factorization
approximation used in certain multiple integrals. In
subsection B we investigate the importance of the
frame potential [the second term on the right-hand
side of Eq. (24)]. The final expressions used in nu-
merical calculations are summarized in subsection
C.

We choose a Yamaguchi form for v(p),

v(p) =use (31)
G&&LOMO(R&p ) g g +«&LI (R&p)

Jm eL&Ll

In momentum space
' 1/2

2 Uo9'
vi(q)=2 (y'+q')' (32)

where

G„(LpL iLl,p)X,(35)

uv ———6.26)&10 MeV/fm

where relativistic kinematics' ' is used to fit the
phase shifts.

The binding potential, U(r), of the nucleon is
chosen to be a Woods-Saxon well,

U(r)=
Up

r —R1+exp

(33)

where the parameters are chosen to fit the energies
of the occupied single particle orbitals of ' O. We
find Uo —— 57 OMe—V, R. =rQ'/ with ro 1.25——
fm, and a=0.5 fm. The bound state energy levels in
this potential are e&, ———37.79 MeV, e&~

———22.15
MeV, e&~ ———5.97 MeV, and e2, ———5.28 MeV. In
the independent particle model of ' 0 the 1s and 1p

The two parameters y and uv are then adjusted to fit
the a%phase sh.ifts 533 in the 33 channel. The
parameters are found to be"

y=3.91 fm

and

%««' '(R,p)= g (LOLiMcM, ~LM)
M&Mm

X(Lcm
~

J~)

&& g«, (R ) Yr, M (R ) Yi~.(P ) .

We use the label n =
t a,Lc,Mv J in (35) for the occu-

pied single particle orbitals of ' 0, where Lv and Mv
are the orbital angular momentum and its projec-
tion, respectively, and a = Im„m, J denotes the spin
and isospin of the nucleon. The excited orbitals
f«(R)YL M (R) in Eq. (36) are eigenfunctions of
the pion-nucleon center-of-mass Hamiltonian
Ez+ U(R), with energy e and angular momentum
L ~. We note that Lo and L ~ couple to L, the angu-
lar momentum transfer to the nucleon. The relative
pion-nucleon angular momentum I couples with L to
give J, which is both the incident angular momen-
tum of the pion and the total angular momentum of
the system. The sum over e in (35) runs through
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discrete and continuous values.
We now use the orthogonality properties of Eqs.

(34)—(36) and the explicit form of v given in Eq. (25)
to obtain coupled equations for the radial wave

functions F (s) and G„(LoLi,Ll;p). However, the
frame potential is omitted from the equations for
G«, in anticipation of the discussion in Sec. IVB.
Thus the coupled equations we treat are

[T &g(s—}]F(s)= s g IV~ F (s)/s+ g V„(LoLiLlo,s)A~, (LoLiLlo)
A 2lo+1

(37a)

and

[?~+e~r, 6~—[(p)]G~~(LpL i Ll,p) =5ii pv(p)[B„(LpL &Ll) +A„(LoL,Ll)],p 2&, +i
where tq(s) and ti(p} are partial-wave kinetic energy operators, and

Ao~(LoL iLl) = f dp pv (p)G„(LpL &Ll,p),

B„(LoLiLlo)= f dR f dp g p;1. , (&)YI.,M, (~)Yip~, (p)v(p)
MpMi

Mmp

xf,z (IR—vp I)YI".I (na „)YJ~(n R„+)
F~(

I R+vp
I

)
0 0 0 a +P P

I
R+vp

X (LpL iMpMi
I
LM ) (LloMmo

I
JM ),

V„(LoLiLlp s)= f dp f ds g YJ (s)Q,L,,(
I

s —p I )Yl,,~,(n-, -)v(p)
MpMl

Mmp

x i, ,(p)Q,L, (I s —vp I)YL, ,~,(n, „-)
X (LoL iMoMi

I
LM ) (LloMmo

I
J~)

and

(37b)

(38a)

(38b)

(38c)

F (s)
aLp f dp f ds YJ'~($)foLp(

I
s —p I )~LpMp(n p}—

Mpmp

xv(p) Yi,~,(p) f d p'&i, ~,(P')v(p')f. i,(
I

s vp vp I
)Y—L;~,—("- —.; .i

'
F (I s —vp+vp'I)

s —Vp+vp ' (38d)

A+&(L pL iLlp ) =A (q)B &(LpL iLl p ) (39)

with

Here, for example, n -„ is defined as a unit vec-

tor in the R—vp direction.
Equation (37b) is easily solved in closed form.

We substitute this solution in (38a) to obtain an ex-
pression for A„ in terms of B„,which in turn is
substituted in Eq. (37a). The sequence of expres-
sions obtained in this procedure is

Ii (q)
A'(q) =

0

and

q=[(2plk )(T +e,l F-)]~—(41)

Here Ii (q) already appears in Eq. (27) in the

separable-potential discussion of pion-nucleon
scattering. The final substitution of Eq. (39) in (37a)
gives
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[T~ t—J(s)]F (s)= s g W,I F (s)ls+ g V„(LOLiLlo, s)9P(q)B„(LOLiLIO) (42)

an optical model equation for the elastic scattering
wave function of the pion in the n-A center of mass
frame. The function 9t(q) introduces resonance ef-
fects in the optical potential.

We do not consider the spin and isospin variables
of the nucleon explicitly. Since the mNpo. tential v is
chosen to be confined in the 33 channel [see Eq.
(25}],and the expectation values of both the projec-
tion operators PJ 3/2 and—Pl 3' are —, for a closed
shell nucleus, the sum over the spin and iso-
spin variables indicated by the label a in (42} is re-
placed by a multiplicative factor of —,.

The expressions for W,L,, V„, and B„are diffi-

cult to generate. Therefore suitable approximations
have to be made for them before one attempts to
solve for F (s). These approximations are discussed
in detail in Ref. 5. They are extensions of the fac-

I

torization method introduced in SA, whereby the in-
tegrations over the short ranged functions v(p) are
performed analytically by factoring the p depen-
dence in Eqs. (38b)—(38d), as if the wave functions
were plane waves. The factorization approximation
can be interpreted as a partial transformation to
moinentum space for the purpose of the p integra-
tions. If the entire calculation were formulated in
momentum space this approximation would not be
needed.

B. Frame potential

In Sec. IVA we neglected the term involving
U(r) U(R—) in the equation for G„(LOL iLl,p). If
we now restore this term, Eq. (37b) takes the extend-
ed form

[T~+ep e tt(p)—]Ga—t(p) =St i pv (p)(1+%'(q))B,L i
4m J

+ y f dR f dp+,,'t (R,p)[U(r) U(R)]+—„t(&,p)G, & r(p) .
e'L'I'

(43)

X Q~L, (R ) YIst (R ) Yt~ (p )

=—[P.i(R» Yt(P) J J (44)

For simplicity of discussion we have specialized to
the case Lp ——Mp =0, lp = 1. For this case, the angu-
lar momentum functions in (43) are

+eLI(+~P)= g &Ll~rri I ~~&
Mm

The second term on the right-hand side of (43) is the
correction that arises from transforming U(r) to
(R,p) coordinates. To facilitate discussion we de-
fine an equivalent potential obtained by dividing this
term by G,Lt(p). We call this equivalent potential
the frame potential, PF.

P~(E,e,JL,l p)=[G,Lt(p)] 'g f de' f dR f dP 3',tt (Rp)[U(r) U(R)]3', I—p(RP)G, t t (p) .
L'I'

(45)

The dependence of PF on the total energy
E =T + 8'0 comes from G&1 t (p) in the numerator
and from G,L,t(p} in the denominator of Eq. (45).

Although the difference potential

U(r) U(R) = U(
~
R—vp

~
) ——U(R)

becomes zero as p~O, it remains finite for large p.
But as we shall see, the energy averaging indicated
in Eq. (45) makes the entire frame potential go to
zero for large p. Since it is also a smooth function
for all p, the PF tends not to affect the outgoing

boundary condition imposed on G,i, i(p). It is a
great simplification to drop the P~ term from Eq.
(43), as is done in the main part of this work.

We begin our analysis of the PF by expanding
U(r) U(R) in m—ultipoles:

U(r) U(R)=4m hagi(R, —p)Yi„(R)Yq&(p) .
Ap

(46)

By inversion
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+1
gi (R,p) = —, f d (R p)[U(r) U—(R)]Px(R p) .

(47)

To obtain numerical estimates of the P~ we now as-

sume a Gaussian form for the binding potential, i.e.,

U(R) = Uoe

with U, =—50.0 MeV and a= —,
'

fm. This poten-
I

tial has an s wave bound state with energy e= —14.1
MeV. Then from (47) we get

gi (R,p) = U(R) i ji ( —2ia vpR) 5i—o.i. U(vp) .
Up

(48)

where ji is the spherical Bessel function of order A,.
Substituting (46} in (45) we get

Pp(E, E,JL,1 = 1,p) =[G,L, i (p) ]

X4n'g g f dE'dRdp O',I, & (R,p)gi„(R,p)Yi&(R) Yi&(p)9', L, i.(R,P)G,.+.i.(p) .
Ap, L'I'

From (49) and (48) we see that the higher order multipole terms in the PF are small. For example, the quadru-
pole (A, =2) term connects L=O with L'=2, hence the factor Pz(R)g~r, (R) in the R integral is small, because
centrifugal repulsion suppresses gqL 2(R) at small R, where U(R) is appreciable. This effect becomes more
pronounced as the multipole order increases. Furthermore, we see from (48) that in the important region
R « I/a and vp « 1/a

.i U(vp) ( Zia vp—R)
Uo (»+1)" (50)

Therefore, except for A, =O, all other gi (R,p) are reduced within the range of U(R), this reduction being more
pronounced as A, increases. Thus for large A, , gi (R,p) and f",I (R)Q~J„(R) in the R integral of the PF [Eq. (49)]
are small inside the range of U(R), making this integral and hence the frame potential small. These remarks
resemble the arguments of Garcilazo and Gibbs, who discarded the frame potential as an effect of order p/M.

We therefore expect the monopole term in the PF to be dominant, with perhaps the dipole term next in im-
portance. We can give a perturbative argument to show that even the dipole term is smaller than the monopole
term: Equation (43) for G,L,i i(p) includes as its source terms both the strong mN potential v and the frame
potential. The dipole term (A, = 1) of the frame potential couples G,Li i(p) with GgL, p —o(p) and GqL, p 2(p).
However, the source terms in the differential equations for GgL, p o(p) and G, L r 2(p) involve only the frame
potential. Therefore, the effect of the dipole term is in second order. On the other hand, the monopole term
Q, =O) of the frame potential couples G,Li i(p) with G, L, p i(p}, and so the effect of the monopole term is in
first order. The monopole frame potential, therefore, is expected to be the only strong term.

In what follows, we shall consider only the monopole frame potential, PMpF With A, =O. in (49) we have

PMpF(E, e,JL,l =l,p)=[G,L, i(p)] ' f de' f R dR tel(R)go(R, p)P~L, (R)G, L, i(p) . (51)

Now from (48)

go(R,p) = f(R,p) U(R), —

where

U(vp) sinh2a2vpRf Rp=l-
Uo 2a vpR

To simplify calculations of the PMpF and to verify that its effects are small, we approximate go(R p) as

go(R,p) = —C(vp) U(R),

where

C(vp) =1- U(vp)
Up

(52)

(53)

(54)

(55)

Because this simple approximation overestimates go(R,p}, it does not prejudice our eventual conclusion that
the PMpF can be neglected. Indeed, Eq. (54) is of reasonable accuracy in the most interesting ranges of R and
p. With the approximate expression (54) for go(R,p) inserted in (51) the monopole frame potential becomes
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PMpp(E e JL l = 1 p) = [G~L ] (p)] {—C(vp) ) I de' f R dR $L(R)U(R)g, l (R)Gg~l t (p)

It is helpful to define an overlap function

fi k'"" I dRR'y„(R)V(R)y„(R),

(56)

(57)

so that

PMpF(E, E,J,L, l = I,p) =[G,L ) (p)] 'C(vp) I dk'D, l (k, k')G, l, (p) .

The nucleonlike wave functions Q,L, (R) in (57) are real and are normalized so that
1/2

P,l.(R) ~ —
z

sin(kR —L~I2+&L, ) .1 2M
m6'k

(58)

(59)

Hence D,L has the dimensions energyg length. For
convenience the signs of Q,L, (R) and P, l, (R) are ad-
justed so that D,L, (k, k') is a positive function for all
k and k'. This does not affect the overall expression
for PMpF since Q,I.(R) also occurs in G,l. &(p). Now

D,L(k,k') can be easily calculated from the numeri-

cally obtained functions f,z(R). Figure 1 shows
plots of exact D, (1k,k') for L=0 and e=0 01, 4..5,
19.9, 49.1, and 99.7 MeV. Figures 2 and 3 show

D,L (k, k') for L= 1 and L=2, respectively
For L=l (Fig. 2) the overlaps D,L{k,k') are con-

siderably larger at small k' and e than the corre-
sponding overlaps for L=0 and L =2. Also there is
a peak in D,L ~(k, k') at k =0.2 fm, the peak being
more pronounced for smaller e. This is due to a res-
onance in the nucleonlike wave functions Q,I. ~(R),
corresponding to a barely unbound p state at k=0.2

32

l

We now turn to the energy integral (i.e., the k' in-
tegral} in expression (58) for the PMpp. In this in-
tegral we need the relative wave function G~L, ~(p).
In first approximation this wave function is the
solution of (43) with the frame potential set to zero

Ggz ~(p} [I+A ((I')]Biz|

X I dp'g~+ (q';p, p')p'U(p') . (60)

The integral in Eq. (60) simplifies because U(p') has
short range, and because the PMpF primarily re-
quires Gql t(p) at larger. We also obtain con-
venient expressions for B&L, &

from the factorization
approximation (Sec. IV A}. Under these approxima-
tions the k' integral in Eq. (58) is easily evaluated
numerically and the PMpF is evaluated. It is in-
teresting that the PMPF is independent of J, since the
J dependence of G~&L

& only appears in a coefficient,
and this cancels when division is performed.

Figure 4 shows the L =0 PMpF for the typical in-
cident energy E=100 MeV, for various values of

49. I
99.7 MeV

24

O
II

-j i6

Cl

24— 49. I

0
2

k' ((m-')

FIG. 1. Exact D,I.(k, k') for L=0 and for @=0.01, 4.5,
19.9, 49.1, and 99.7 MeV obtained from Eq. (57). Note
that @=A k /2M, where M is the mass of the pion plus
the mass of the nucleon. D,l(k, k') goes into the calcula-
tion of the PMpp [Eq. (58)].

0
2

k' (f ~)

FIG. 2. Exact D,L{k,k') for L=1 and for a=4.5,
49.1, and 99.7 MeV.
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& = 99.7 MeV
4Q

20

-20

'o 2
k' (fm ')

—40

IQ 20 50
FIG. 3. Exact D,L,(k, k') for L=2 and for a=4.5, 49.1,

and 99.7 MeV.
p {fm)

FIG. 5. Real part of the PMpF for L=1, E=100 MeV

and for @=4.5, 19.9, and 49.1 MeV.

nucleon excitation energy e. Figures 5 and 6 show
the 1.=1 PMpp for E=100 and 280 MeV, respec-
tively. The PMp„ for higher l. values are similar.

A general observation from these calculations is
that in the important range of excitations (see Sec.
V) e «E, the PMpp is very weak compared to U(p);
moreover, although it extends to long range it tends
to be very smooth. Even at large e the oscillations
of the PMpp are slow. Under these circumstances
the PMpp should not have much influence on the
solutions of Eq. (43) in the important region of
small p required for the construction of the optical
potential.

Two effects reduce the magnitude of the PMpp at
low e. First is that the D,r (k,k') themselves tend to
be small at small k', because of poor penetration of
the P,L, wave functions into the region U(R)&0.
The weak l.= 1 resonance at low k' does not modify
this very much. Probably of greater importance is
that the effect of U(R) in the function D,i.(k, k') ex-
tends over a large range of k' values. Only a small
portion of this range has much overlap with the

function BqL
It

in Eq. (60), which expresses the

coupling of G, L, ~(p) to the elastic channel. (At all

bombarding energies B,L ~ is concentrated at low ex-

citations, with a narrow peak at k'=0.4 fm .}
Probably the principal reason why the I'Mpp at

low e is a smooth function of p is that B,L, is local-
ized at low e', therefore the oscillations of the
denominator in Eq. (58} tend to cancel those of the
numerator. This effect is lost as e becomes larger,
and we then obtain the oscillatory PMpF seen at
large e in Figs. 4—6. Because G,L &

in the denomi-

nator is a rapidly decreasing function of e, the PM pp

is not only oscillatory at large e, it has a large mag-
nitude. We conclude that at large e it is not satis-
factory to omit the PMp„ from Eq. (43}. Fortunately
excitations to large e are not important in the overall
calculation of the meson optical potential (Sec. V).

Another effect that tends to reduce the oscilla-
tions of the PMpp at large p is the averaging over e'

values in the numerator of Eq. (58). This averaging
reduces the strength of the PM pp at large p, with the
result that although this potential has long range, its

2Q—

I

E = l00 MeV-

20
E = 99,7 MeV

a. 0
CL

-20— -20

-40
IQ 20

p (fm)
30

I

4Q 50
-4Q

IQ 20
I

3Q

p (fm)
40 50

FIG. 4. Real part of the PM pp for L=0, E= 100 MeV
and for @=0.01, 4.5, 19.9, and 49.1 MeV.

FIG. 6. Real part of the PMPF for L=1, E=280 MeV
and for @=19.9, 49.1, and 99.7 MeV.
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range remains finite. Rough analytic approxima-
tions provide reasonable estimates of this range.
Mild oscillations of such a finite-ranged function are
of little consequence.

In summary, at low e the PMpF can be omitted
from Eq. (43), because it is too weak and too long
ranged to affect the equation in the region u (p)&0
and it is too smooth to affect the outgoing boundary
condition. Although the PMpp is not negligible at
high e, the intermediate states P,r at high E are not
physically important; therefore its omission is not
damaging.

d
k 2 J(J+1) Fg( )2+ 0

dS $

2(m +T ) f V», (s,s')F (s')ds', (61)

where T is the laboratory bombarding energy,

equation omits frame potential effects. If relativis-
tic kinematical corrections for the pion projectile are
now inserted' ' the optical equation becomes

C. Optical equation

We return to the optical model equation (42) for
the KMT auxiliary radial wave function F (s). This

I

kp' ——(T '+2m T )ic'

and

(62)

P

V~, (s,s')F~(s')ds'= s g 8;z F (s)ls+ g V„(LpL,Llp s)%(q)B„(LpL(Ll)
2lo+ 1

(63)

The quantities 8',L, V„, and S„are derived by
the factorization approximation referred to in Sec.
IV A. We note that our optical potential (63) is in-
dependent of the spin and isospin variables of the
nucleons. Therefore the sum over a =tm&, m, I in

16
(63) is replaced by a multiplicative factor —, as ex-
plained in Sec. IVA. We solve the Schrodinger
equation by expanding F (s) in a suitable set of basis
states. 5

V. RESULTS AND DISCUSSION

Using the optical potential developed in Secs.
II—IV, we solve the Schrodinger equation (61) for
the elastic scattering of pions from ' O. It should be
noted that we have included only the p wave ~Pf in-

t

I

teraction which is dominant in the resonance region.
For ease of calculation we have neglected the
Coulomb interaction between the pion and the nu-
cleons.

Most calculations of pion-nucleus scattering use
impulse approximation, in which the struck nucleon
is treated as effectively free apart from some
kinematical corrections. In the impulse approxima-
tion one therefore neglects the medium effects due
to binding and the exclusion principle.

To see the effects of binding, we compare our re-
sults obtained from the three-body model with those
obtained from an impulse approximation. Before
doing that we briefiy discuss the relation between
impulse approximation and the three-body model.

The optical potential in modified first order is

P

V», ——(A —1) 4p, u+u . v 4p
1

(64)E —E —HT —V +lE'

where E~ is the kinetic energy operator of the pion, HT is the nuclear Hamiltonian, U is the AN potential, and
4p is the target ground state. In the three-body model Eq. (64) becomes

A —1 1
V»t g Ps i U +U p 4nA T~+e» E~ E~ —U(r) ——. U +—lE (65)

where lit„are the occupied single-particle orbitals and e„are the corresponding energies.
The binding potential U(r) in the optical potential (65) makes the evaluation of Voz, difficult. In the im-

pulse approximation this potential is omitted and the pion bound-nucleon transition matrix t is replaced by the
pion free-nucleon transition matrix,

rfree(N) U +U
1

V, (66)
co —E~—E~—v +l6'

where m is some appropriate mE energy that can be adjusted to approximately represent the missing interaction
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with other nucleons. The first order optical potential in the impulse approximation is then

V,~,(to)= g g„, v+v . v P„
A —1 1

n co —E —EC~ —v + l 6'
(67)

using the same set of occupied orbitals as in Eq. (65). From Eqs. (65) and (67) we see that the essential simpli-
fication of the impulse approximation is to replace the binding potential U(r} by a constant. By this assump-
tion of free nucleon recoil in intermediate states the full effect of the binding of the nucleon on the optical po-
tential is lost.

To continue the discussion of the impulse approximation we rewrite (67) in the form

&k'I Vop~ I
k&=(A —I}I dp "p'&"' p'I tt-.(~) I" p&+(p' p} (68)

where k (k ') and p (p ') are momenta of the pion
and the nucleon in the initial (final} state, respective-
ly, and

F(p ', p)= —g f„(p ')g„(p) (69)

is the single-nucleon density function. In the sim-

plest impulse approximation co is the physical col-
lision energy of the pion and the nucleon, i.e.,

to=T +Pozl2M, (70)

where T is the incident energy of the pion in the
pion-nucleus center of mass frame and po is the ini-
tial momentum of the nucleon in the nN collision.
A choice of po can be made by assuming that the
nucleons are "frozen" in the target nucleus' so that
each nucleon has a momentum po

———ko/A in the
nA center of mass, where ko is the momentum of
the incident pion in the nA center of mass frame.
Often c0 is taken to be a free variable; for example,
Landau, ' Myhrer, ' and Julius and Rogers' choose
co to incorporate some binding effects in tt„,(co).
They use three-body kinematics for the pion, nu-
cleon, and core to arrive at a value of t0 (called the
three-body energy) which is (assuming an infinitely

heavy core)

' =T +&e, &, (7l)

where &e„& is the average total energy of a nucleon
in the nucleus. The three-body choice of energy can
be improved somewhat by replacing the average
nucleon energy &e„& by the actual energy of the nu-

cleon in the nth orbital, thereby making co depen-
dent on nucleon orbitals

I

stant value po, as in the previous frozen nucleus ap-
proximation. We obtain in this approximation
(called the factored or static approximation}

&k'~ V,p, (to)
~

k&

=(A —I)& k ' po+ q I
tt (t0)

I
k po&p(q)

(73}
where q=k —k' and

p(q)= J&(p+q, p}~p. (74)

While the factored approximaton is adequate for
large nuclei and for pion energies away from the res-

onance energy, it is inaccurate near resonance. '

The factored approximation neglects the intermedi-

ate propagation of the ~N center of mass, i.e., the

kinetic energy operator of the nNcenter .of mass is

replaced by a constant. Near resonance t is a rapidly

varying function of energy and so the imposition of
closure on the nNcenter of m. ass leads to large error

in the resonance region.
To improve the factored approximation (73} the t

matrix is often Fermi averaged. ' The Fermi

averaging procedures are intuitive prescriptions
rather than systematic corrections to a well defined

approximation.
We want to investigate the effect of nucleon bind-

ing in the scattering of pions from ' O. So we com-

pare our results from the full three-body calcula-

tions with those from the impulse approximation

(67), using for c0 the three-body choice (72) of to„.38

We note that this choice of t0 simply implies omis-

sion of U(r) in Eq. (65), leaving the remainder of
the three-body calculation of V,~, unmodified.

3B
~N =&~+&n ~ (72) A. Differential cross section

The form (67) or (68) of the optical potential in-
cludes nucleon Fermi motion and recoil correctly.
Sometimes a further approximation is made by
neglecting the dependence of the t matrix in (68} on
the nucleon momenta, i.e., the initial nucleon
momentum variable p is replaced by a suitable con-

Figures 7—10 show comparisons of the elastic dif-

ferential cross sections for m-' 0 scattering obtained

using the three-body potential (65) and using the op-

tical potential in the impulse approximation [Eq.
(67)] with the three-body choice (72) of the mN ener-

gy c0. These results (and all other results to be
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FIG. 7. Differential cross section for a-' 0 scattering
at laboratory bombarding energy T =80 MeV. Solid line

shows the differential cross section in the three-body
model and dashed line shows the differential cross section
obtained using the impulse approximation. The dots are
experimental points (Ref. 22) for n.+-' 0 scattering.

presented subsequently) employ only the p wave AN
interaction and neglect the Coulomb force. For the
sake of reference we have also shown with dots the
experimental differential cross sections for ~+-' 0
scattering, even though our results are not directly
comparable with experiment.

We see that the inclusion of the binding potential
makes the differential cross section more diffractive
for pion energies T g240 MeV, indicating an in-
crease in absorption. This may also be inferred
from Table I where we show the absolute values of
the partial wave scattering matrix gj ——exp(2i5J)
both for the three-body and the impulse approxima-
tion calculations. We find that for not too large en-

ergies, the gz are much smaller when binding is in-
cluded explicitly, i.e., there is more absorption.

The increase in absorption may be understood by
examining the nonlocal part of the optical potential.
The nonlocal optical potential is complex and it

I l I I I t I

30 60 90 120 150 180

FIG. 8. Differential cross section for m-' 0 scattering
at laboratory bombarding energy T =120 MeV. The
solid line, the dashed line, and the dots have the same

meaning as in Fig. 7.

varies rapidly with energy (because of the nN reso-
nance). We recall that the resonance structure of the
nonlocal optical potential is given by the function
9P(T +s„e) [see Eqs. (40)—(4—2)], where e„ is the
energy of the nucleon in the nth occupied orbital,
and e is the excitation energy of the nN center of
mass in the intermediate state. In Fig. 11 we plot
the real and imaginary parts of 9F as a function of
its argument. We notice that Im9F(E) attains its
maximum value at around 140 MeV, where the
Re9t(E) passes through zero. Real 9F(E) reaches its
maximum value at around 100 MeV, where lmA'(E)
is reduced to about half its peak value.

The principal difference between impulse approxi-
mation and the three-body calculation lies in the
range of intermediate state energies e that appear in

9P(T +e„—e). In the impulse approximation the
intermediate states are plane waves and the energies
e are all positive, with values determined by the free
recoil of the struck nucleon. In the three-body cal-
culation, especially at low and moderate pion ener-
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FIG. 9. Differential cross section for ~-' 0 scattering
at laboratory bombarding energy T =160 MeV. The
solid line, the dashed line, and the dots have the same
meaning as in Fig. 7.

Iob

FIG. 10. Differential cross section for m.-' 0 scattering
at laboratory bombarding energy T =240 MeV. The
solid line, the dashed line, and the dots have the same
meaning as in Fig. 7.

gies T (as we see later), most of the intermediate
excitation goes into bound states and low lying con-
tinuum states. As a result, for a given value of T
the argument of 9F is on the average larger in the
three-body calculation than in the impulse calcula-
tion. This explains the increased absorption at low
to moderate bombarding energies in the three-body
calculation, and the other effects seen in Figs. 7—10
and Table I.

It should be noted again that ideal agreement with
experiment is not possible in a calculation that omits
the Coulomb force, meson annihilation, and l=0
pion-nucleon interactions, and that uses a rather
casual spin-independent binding potential U (r).

B. Total cross sections

To investigate further the effects of the binding
potential, we plot in Fig. 12 the elastic, reaction, and

total cross sections as functions of the pion bom-
barding energy T in the laboratory frame. The
dots are experimental total cross sections, which are
taken as the mean of the total cross sections2' for
m+ andn- .

The most striking result is that at energies below
180 MeV the reaction cross section is increased
enormously when the binding potential is included.
As noted earlier, this is a consequence of the smaller
average excitation energies e in the resonance func-
tion 9P in the three-body calculation; as a result the
pion-nucleon resonance becomes effective at lower
bombarding energies.

To represent such effects in the impulse approxi-
mation major modifications are required. For ex-
ample, artificial phenomenological values for the
bound-state energies e„are sometimes used to com-
pensate for the incorrect excitation energies e. Thus,
I.andau and Thomas' used the unphysical value
(e„)= —5 MeV, whereas the average energy of a
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2i5~
TABLE I. Absolute values of the partial wave scattering matrix gJ ——e in three-body

and impulse approximation models, for laboratory pion bombarding energies T =80, 120,
160, and 240 MeV.

27

Three-body
model

0
1

2
3
4
5

6
7
8

9

80

0.529
0.541
0.549
0.944
0.996
0.999
1.0
1.0
1.0
1.0

120

0.338
0.092
0.156
0.266
0.827
0.988
0.999
1.0
1.0
1.0

160

0.244
0.136
0.135
0.269
0.479
0.814
0.968
0.995
0.999
1.0

240

0.208
0.245
0.261
0.320
0.411
0.561
0.734
0.880
0.961
0.988

Impulse
approximation
model

0.983
1.000
0.981
0.995
0.999
1.0
1.0
1.0
1.0
1.0

0.850
0.773
0.745
0.824
0.967
0.996
0.999
1.0
1.0
1.0

0.436
0.377
0.395
0.270
0.506
0.899
0.982
0.997
0.999
1.0

0.180
0.161
0.135
0.191
0.299
0.406
0.654
0.874
0.963
0.989

nucleon in the ground state of ' 0 is about —30
MeV.

C. Reaction strength

2(m„+T )
4m(2J+1)

k

&(JI' f dsIm[F (s)V,&, ,F ], (75)

To determine the importance of individual inter-
mediate states we examine the following linear ex-
pression for the reaction cross section

where F (s) is the pion wave function for the Jth
partial wave and is normalized as

F (s)-sin(ks Jm/2)+ie —sin5ze'+

(76)

Here V,„,, is the optical potential contribution from
an excited state of energy e, and )f means a sum

over the discrete states (e negative) and an integral
over the continuum excited states (e positive).

In Eq. (75) the different e values contribute al-
most independently to 0.~. Thus we may approxi-
mately identify the summand in (75) as the differen-
tial reaction cross section per unit energy, which we
call the reaction strength,

l00

E (Mev)

I

200

do~ 2(m +T )
4m'(2J + 1)A'k'

X f ds Im[F (s)V,&, P ] . (77)

FIG. 11. Real and imaginary parts of the (dimension-

less) resonant function A'(E). In Figs. 13—16 we show the approximate reaction
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FIG. 13. Contribution of the intermediate states to the
reaction strength do.q Ide for J=O, 1, and 2 and for labo-
ratory pion energy T = 160 MeV. For continuum excited
states with positive energy, the calculated points are
joined by straight lines. For the bound excited states (2s
and 1d with a mean energy of about —10 MeV) we draw
a bar 5 MeV wide around —10 MeV to represent the con-
tribution to the reaction strength of these states. Similar-

ly the contributions of the occupied bound orbitals (1s, 1p)
are shown with bars around —30 MeV. The bars for the
different partial waves overlap and their heights have to
be measured from the horizontal axis.

FIG. 12. Total, reaction, and integrated elastic cross
sections for n.-' O. The solid lines are the results obtained
in the three-body model and the dashed curves are the re-
sults obtained in the impulse approximation. Experimen-
tal points (Ref. 23) are computed by 2

(o ++0 ).

strength for J=O, 1, 2, 3, 4, and 5 at T =160 MeV
as a function of the nucleon excitation energy e.
The reaction strengths for higher partial waves are
negligible at this energy.

For easy comparison of the reaction cross sections
from the bound states with those from the continu-
um states, we plot the contributions of the bound
states as vertical bars. For the occupied bound orbi-
tals (ls and lp) with an average energy e= —30
MeV we draw a bar 5 MeV wide around e= —30
MeV. We do this for all partial waves, with ap-
propriate heights to represent the reaction cross sec-
tions. The reaction cross sections for the excited
bound orbitals 2s and ld (average e= —10 MeV) are
also shown by vertical bars. (Note that excitations
to bound states can occur for only J& 4.)

We notice that even at T =160 MeV, the major
contributions to the reaction strengths still come
from the bound intermediate states. These introduce
strong J dependent effects in the reaction strength.
Also there are sharp peaks in the reaction strengths
near a=1 MeV and @=5 MeV. These peaks arise
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FIG. 14. Reaction strength for J=3 at T =160 MeV.

from the barely unbound lf, 2p states of the
Woods-Saxon potential U(r).

For comparison we also show the reaction
strengths for impulse approximation (Fig. 17). Here
the excited intermediate states are in the continuum
and no nuclear structure effects are involved. The
reaction strengths are smooth functions of e

Apart from the bound states, low lying continuum
states are also emphasized more in the three-body
calculation. However, the importance of the bound
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states and of the continuum states of low energy de-
creases as we increase the pion bombarding energy.
This is summarized in Table II, where we show the
contribution to the reaction cross section from the
bound states, from the low energy continuum states
(» & 10 MeV}, and from the high energy continuum
states (» & 10 MeV).

From the table we see that for the three-body
model the bound states and the low energy continu-
um states account for nearly 99% of the reaction
cross section at T =80 MeV, whereas at T =240
MeV they account for about 20% of the reaction
cross section. In the impulse approximation model,
the low lying states (»&10 MeV) account for only
51% of the reaction cross section at T~=80 MeV

gO

J3
E

T~ = IGQ MeV

J= 5

C~
A

+
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FIG. 16. Reaction strength for J=5 at T =160 MeV.
Note that for J=5 there are no contributions from the

bound states. The bound states can only be excited for
J&4.

FIG. 17. Contributions of the intermediate states to
the reaction strength for J=O, 1, 2, 3, 4, and 5 in the im-

pulse approximation model. Note that in impulse approx-
imations the bound intermediate states are neglected and

so the only possible intermediate states are in the continu-

um with positive energy.

and for 1% of the reaction cross section at T =240
MeV. Therefore the binding correction to the im-
pulse approximation is substantial at low to
moderate energies. Even at T =240 MeV the bind-
ing amounts to about a 20% correction.

Finally, we note from the reaction strength graphs
(Figs. 13—16} that states with large excitation ener-
gies contribute very little to the reaction cross sec-
tion. For example, at T =160 MeV, states with ex-
citation energy e&30 MeV are relatively unimpor-
tant. Thus the energies of the intermediate states
that contribute significantly to the reaction strength
are small compared to the pion bombarding energy.
This helps justify our neglect of the frame potential
term in the optical potential (Sec. IVB). There we
found that the frame potential for low lying inter-
mediate states (» «T~) is small in magnitude com-
pared to the m.N potential and it is quite smooth;
hence it can be neglected. However, for large» the
frame potential is large and oscillatory. Since large
» values are unimportant, the neglect of the frame
potential for all » is an appropriate approximation.

D. Equivalent local potential

We have used a finite binding potential for the
nucleons, unlike other three-body calculations '

that are based on a harmonic oscillator binding po-
tential. We therefore have continuum excited states
that extend to large radii, and we must expect the
derived optical potential to extend beyond the nu-
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TABLE II. Reaction cross section (mb) contributions for ~-'60 scattering from the bound
states, the low lying continuum states (@&10MeV), and high excited (e&10 MeV) nucleon
states.

Three-body
model

«(bound)
«(a&10)
«(e)10)
«(bound)/«
«{@&10)log

80 MeV

310.46
12.01
4.26

95%%uo

3.7%

160 MeV

192.35
120.67
189.63
38.3%
24.0%

240 MeV

53.08
34.72

340.66
12.4%
8.1%

Impulse
approximation
model

«(@&10)
«(e&10)
«(~& 10)/«

6.9
6.7

51%

19.97
409.55

4.6%

3.03
457.33

0.7%

clear radius. To investigate these long range effects
we calculate the "trivially equivalent local potential"
of Percy and Buck, defined by

J V,p, (s,R)F (R)dR
V (s)= (78)F (s)

where V», (s,R ) includes both the local and the non-
local parts of the optical potential. This trivially
equivalent potential tends to have poles, because the
zeroes of the numerator are shifted from those of F
in the denominator. But these poles are not impor-
tant in the surface region.

Our calculations of V (s) show that this rather
artificial equivalent potential has appreciable
strength (-50 MeV) as much as I fm outside the
charge radius of ' O. Such long range interaction
effects do not occur in other three-body models of
meson scattering.

VI. SUMMARY AND CONCLUSIONS

We give a calculation of the elastic scattering of
mesons by

' 0 using a modified first-order KMT
multiple scattering theory, in which Pauli blocking
effects are omitted from the r operator, as explained
in the Introduction and in Sec. II. The modified r
operator is calculated in a three-body model, in
which each struck nucleon with which the meson in-
teracts is allowed to recoil in the nuclear shell model
potential exerted by the remainder of the nucleus.

The three-body model is solved by approximating
the shell model potential in excited states as a poten-
tial for the meson-nucleon center of mass. This step
requires the omission of the difference potential
U(r;) —U(R;), an approximation that is examined
at length in Sec. IVB. Matrix elements of the

difference potential are seen to cause weak modifica-
tions of the meson optical potential.

The intermediate states of the struck nucleon are
found to lie at rather low excitation energies, as one
would expect, and are strongly affected by the de-
tailed spectrum of the shell model potential. Bound
states and single-particle resonances in the shell-
model potential strongly affect the meson scattering.
In particular these details of the nuclear spectrum
complicate the spectrum of intermediate excited
states and enhance the role of low excitation ener-
gies. This enhancement of the low-energy inter-
mediate states in turn enhances the scattering at low
bombarding energies. It is also interesting that the
calculated meson optical potential extends well out-
side the nuclear surface, presumably related to our
use of a Woods-Saxon shell model potential.

Our calculation is primarily a study of the special
consequences of a three-body model of the r opera-
tor. It does not use any adjustable parameters, and
it does not attempt a detailed fit with experiment.
Among other limitations of the work reported in the
main text are omission of the Coulomb potential,
omission of meson annihilation and l=0 meson-
nucleon interactions, and the use of a rather casual
spin-independent shell model potential. Despite
these limitations the calculated cross sections resem-
ble those of experiment. As it happens, since com-
pleting this article we were able to 'repeat the scatter-
ing calculations, adding in the l=0 interaction and
the Coulomb interaction for ~+ rnesons. These
modifications produce the expected improved agree-
ment with experiment for bombarding energies
below 100 MeV. Away from the Coulomb-
dominated region the shapes of differential cross
sections are not changed very much. At 60 MeV the
cross section magnitude is reduced by about a factor
of 3; at 80 MeV it is reduced by about 2.
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