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A procedure is derived for analyzing (p, ~ ) reactions near threshold where pions are
present in only s- and p-wave states. The pions, which decay into two gammas, have an an-

gular distribution in the center of mass which can be correlated to the angular distribution
of its decay gammas in the laboratory. Functions are calculated which give the laboratory
distribution of both gammas in terms of parameters describing the angular distribution of
pions in the center of mass. By fitting these functions to the observed gamma distribution,
the pion differential cross section is determined.

[NUCLEAR REACTIONS Analysis threshold {p,m }reactions. ]

I. INTRODUCTION

Pion production experiments allow the test of
models for pions in nuclear matter. A complete
description of pions in nuclei must include the
modification of the nuclear force by the nuclear
medium, exchange currents, absorption, isobar ef-

fects, and relativistic effects. These effects can be
studied with pion production experiments to final
states with either charged or uncharged pions. ' The
(p, n ) reaction near threshold allows the study of s-
and p-wave pion production to a final state which
has no Coulomb distortion.

The observation of (p, n)reactio. ns near threshold
requires the detection of the pion, except in reac-
tions with light nuclei in which the recoil nucleus
can be detected. Since the pion has a lifetime of
10 ' sec, it will travel only a short distance before
decaying into two gammas. Therefore the energy
and angle of the pion must be inferred from its de-

cay gammas. The gammas, which decay back to
back in the pion center of mass, have an angular dis-
tribution in the laboratory which is related to the
inomentum and angle of the pion. A measurement
of the angle and energy of each gamma allows a
reconstruction of the event.

The angular distribution of one of the gammas
from pion decay is given by Cocconi and Silverman,
who assume the pion production cross section is
given by

do =a+b cos 6I*,2

where 8* is the angle of the pion in the center of
mass. The distribution function was used to find

the differential cross section for pion photoproduc-
tion on hydrogen and deuterium.

A system has been developed which detects neu-
tral pions of 40 to 500 MeV energy with a full width
at half maximum energy resolution of 2 MeV and a
typical angular acceptance of 1 msr. This tech-
nique reconstructs the pion event from its decay
gammas by restricting the measurement to events
which have gamma pairs with nearly equal energies.
A good measurement of the opening angle of the de-

cay gammas with only a fair energy measurement of
each gamma is then sufficient to determine the pion
energy and angle.

The method used here does not require an energy
measurement because it considers only reactions
near threshold which leave the nucleus in the ground
state. In Sec. II we present the angular distribution
of the gammas assuming pions are emitted in only s
and p states. The method of fitting for the s- and
p-wave parameters is given in Sec. III. A test of the
fitting procedure is described in Sec. IV, and Sec. V
discusses the effect of a finite angular resolution in
the measurement of the gamma angles. The angular
distribution for the gammas has a singularity which
must be integrated in order to normalize the distri-
bution. A technique for the integration is described
in the Appendix.

II. ANGULAR DISTRIBUTION OF GAMMAS

For reactions near threshold, the angular distribu-
tion of the pion can be determined by measuring the
angular distribution of the gammas which are pro-
duced when the pion decays. At energies sufficient-
ly close to threshold such that the outgoing nucleus
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is not excited, an energy measurement of the gam-
mas is not needed to resolve the nuclear final state.
The experiment is analyzed by expanding the dif-
ferential cross section in terms of angle up to the p
wave while assuming the proton beam is unpolar-
ized,

GC7

dQ
=a +b cos8*+ccos28*,

where 8~ is the center-of-mass polar angle of the
pion with respect to the beam.

The angular distribution of the gammas from
pion decay can be related to the parameters a, b, and
c for the differential cross section given by Eq. (1).
By measuring the angular distribution of gammas in
the laboratory and fitting their distribution to obtain
the parameters a, b, and c, the angular distribution
of pions in the center of mass is obtained. Figure 1

indicates the relevant angles for pion production and

decay. For a typical spatial resolution, production
and decay of the pion can be considered as occurring
at the same point since the pion has a low velocity
and a very short lifetime. If it were desired to
reconstruct each event, an energy measurement
would be needed because of the two possible pion
directions associated with each pair of gamma an-

gles, as shown in Fig. 2. An energy measurement
resolves the ambiguity. Since we are not recon-
structing each event to obtain the pion distribution
in the center of mass, an energy measurement is not
required in the present procedure.

Transforming Eq. (1) for the pion distribution to
find the resulting gamma distribution in the labora-

tory, we obtain d N(8, 8',P,P'}, the number of coin-
cident gammas emitted into solid angles dQ and
dQ',

I
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FIG. 1. Definition of angles which give the pion and

gamma directions. 8~,$ ~ are the polar and azimuthal an-

gles for the pion in the center of mass with respect to the
incident proton beam. 8,$ (P is not shown) and O', P' give
the angle of the two gammas in the laboratory. g is the

opening angle between the two gammas.

d N(8, 8', P,P') =AK(8, 8', y, y')

X [a +bT)(8,8',P, P')

+cTz(8, 8',p, p')]d Ada',

(2)

where

I e(h)
K( , 88$,$')=

4rrp„y,v b(1 —cosl(}

—,(1+p, )(cos8+cos8') p, (1+cos8c—os8')
Ti (8,8',P,P') =

p (1—P, cos8)(1—P, cos8')
E (4)

Tz(8, 8', P,P') = {5(1 P,2)(cos8—cos8')2—

+E„[—,(1+p, )(cos8+cos8') —p, ( 1 +cos8 cos8') ] J /[p (1—p, cos8}(1 —p, cos8'}]

b, =(E /2y, ) ——,(1—P, cos8)(1—P, cos8')m /(1 cosl(), —

e(b, )=0 for b, (0,
=1 for 6&0.

(6)



2098 DAVID A. JENKINS AND MICHAEL MADDEN

I20

60

FIG. 2. Angle ambiguity in determining the direction
of the pion from the direction of the decay gammas. The
pions, emitted at different angles relative to the incident

proton, produce gammas in the same directions. Conse-

quently a measurement of the gamma angles cannot dis-

tinguish between the two events. An energy measurement
is required.

0
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f is the opening angle between the two gammas,

cosg =cose cose'+ sine sine' cos(P P'),—

m is the pion mass, p and E are the momentum
and total energy of the pion in the center of mass, P,
is the velocity of the center of mass,

p 2)1/2

and A is a constant which depends on target thick-
ness, beam intensity, and counter efficiencies.

The kinematically allowed region in 8,8',P,P' is
defined by Eqs. (6) and (7), the surface of which cor-
responds to 6=0. The angles for all coincident
gamma events must fall in the volume bounded by
this surface. Figure 3 illustrates the shape of the
b, =0 surface for a ' C(p, m )' N reaction producing
pions near threshold with a fixed relative azimuthal
angle 4, where 4=)—P'. As the center-of-mass
energy of the pion increases, the volume of the
kinematically allowed region increases.

As can be seen from Eq. (3), the angular distribu-
tion has a singularity when b, =0. A plot of K as a
function of 8,8' with / =90' and P'= —90' is shown
in Fig. 4 for the ' C(p, m' )' N reaction with an in-
cident proton laboratory energy of 147 MeV. Plots
of the functions Ti, K.Ti, Ti, and K T2 for fixed P
and P' are shown in Figs. 5 and 6. Most of the
events fall near the 6=0 surface.

The placement of counters for measuring the an-
gular distribution parameters a, b, and c of Eq. (l)
can be optimized by examining Figs. 5 and 6. For
example, Fig. 6 indicates that the term containing
the c parameter has maxima at 8=0', 8'=180' and
6=180', 8'=O'. Consequently counters set near ei-

I 20
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FIG. 3. Boundary for kinematically allowed m —+2y
decay events for the ' C(p, m )' N reaction. (a) 4, the rel-
ative azimuthal angle, equals 180'. The boundary is
shown for several different incident proton laboratory en-

ergies. Decay events must have polar angles 0,8' which
fall in the region between the lines for the proton labora-
tory energy producing the event. I,

'b) Boundary for events
with a proton kinetic energy of 147 MeV and different
relative azimuthal angles 4.

ther of these angle pairs would be sensitive to a mea-
surement of the c parameter.

III. PARAMETER FITTING

The probability of a single event j with one gam-
ma at angles 8, P and the second gamma at O', P' is

(9)
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FIG. 4. Angular distribution function K given in Eq.
(3). The relative azimuthal angle 4 equals 180'.

00

where NJ is the un-normalized distribution function
given by Eq. (2) and

Ns JNdQdQ' .—— (1O)

The integral extends over the region S bounded by
the kinematic constraint and the solid angle sub-
tended by the gamma counters. The probability of
77i events is proportional to the product of the proba-
bilities of each event,

180'

—(0

FIG. 5. (a) Angular distribution function T~ given in
Eq. (4). (b) Angular distribution of the product K.T&

which appears in the distribution function of Eq. (2). The
relative polar angle 4 equals 180'.

The parameters a, b, and c are determined by find-
ing the set which maximize L, the likelihood func-
tion, while holding Ns constant.

The search for the parameters which maximize L
is simplified by defining a function X2,

X = —21nL

m N=—2 g ln (12)
Ns

The function L is then maximized by minimizing X2

with standard fitting techniques. The error in the
parameters is the change in the parameters which
increases 7 by one.

The gamma angles fall in the small region allowed

by reaction kinematics and the gamma counter solid
angles. Since a fit to the data in this small region

can lead to unphysical (negative) cross sections out-
side the region of fit, a new parametrization is intro-
duced which constrains the cross section to be posi-
tive for all angles. We let

de
dQ

=1u+Pe'"cos8~1 +y sin 8*

=(a +y )+2upcosil cos8~

+(P —y ) cosi8~, (13)

where a is the s-wave amplitude, P the p-wave am-
plitude, g the phase between the s- and p-wave am-
plitudes, and y the p-wave, spin-flip amplitude.
Since the procedure determines only three parame-
ters, the four new parameters are not determined
uniquely. Comparing Eq, (13) to Eq. (1), we find
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observed number of events.
The fitting analysis proceeds by integrating the

distribution function,

N, = f NdQdQ

=A f E'(a+bTi+cT2)dQdQ'

=A [(a +y )Ci+2apC2cosi)+(p —y )C&],

0'

f80'

where

Ci ——f EdQdQ',

C, = f ET,dQdQ',

C, = f KT2dQdQ',

and the integration extends over the surface S of the
gamma counters. Solving for y,

&s
2—a Ci —2aPCq cosi) —P C&

C) —C3
(17)

04
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FIG. 6. (a) Angular distribution function T2 given in
Eq. (5). (b) Angular distribution of the product K T2
which appears in the gamma angular distribution of Eq.
(2). The relative polar angle 4 equals 180'.

Since the distribution is un-normalized, we can
choose Ns/A =1 and designate the corresponding
parameters as ao, po, and yo. The fitting procedure
uses a gradient search technique to minimize X by
varying ao and po. i) is held fixed because only two
parameters are needed to fit the data when the nor-
malization is not specified. The X fitting process
yields values of ao, po, and yo with associated errors
and correlation coefficients computed from elements
of the inverse of the second derivative matrix of X .
Parameters a, b, and c with associated errors can
then be calculated.

The parameters obtained from the fitting pro-
cedure can be used to find the total cross section 0.,

a=a. +
U =2aP cosrl,

c =p'—
(14)

ny0'=
It

where nT is the total number of pions produced by a
beam intensity I of protons on a target with t atoms
per unit area. nT is given by

By varying a, p, y, and g to fit the data, we guaran-
tee that the parameters a, b, and c will produce a
positive cross section for all values of 8*.

The distribution function N depends linearly on
the parameters a, b, and c which are determined to
an arbitrary constant by maximizing .the likelihood
function as described above. Once the relative angu-
lar distribution is known, the absolute distribution
can be found by scaling the parameters so that,
when integrated over the solid angle of the counters
and corrected for counter efficiency, they give the

NT f N dQdQ'——

=~ l(a'+r')CTi+(p' r')CT3]—
where

(20)

n N
nT=

e)e2 NS

where n is the total number of observed events, e&

and e2 are the efficiencies of the two gamma
counters, and
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Cr, ——f KdQdQ',
(21)

Cz.3= f KTzd Q d Q',

and the integration extends over all angles. Because
of symmetry, Cr2 ——0. Then

&s

«0'+ yo')Cr i+(Po' —yo')Cr3

(ao +yo )C&+2a0130C2cosg+(Po —yo )C3

(22)

Once o is known, the normalization factors for the
parameters a, b, and c can be found from the rela-
tion

1=a+ 3C (23)

and a and c given by Eq. (14).

IV. MONTE CARLO TEST

To check the fitting process and the assignment
of errors, a Monte Carlo calculation was used to
generate a set of gamma events to which the fitting
procedure could be applied. As a test case, the
(p, m ) reaction on ' C at 147 MeV was chosen with
a gamma-counter array which placed two arrays op-
posite each other with respect to the target and on a
line perpendicular to the beam. The arrays mea-
sured 10 cm by 10 cm and were 15 cm from the tar-
get. The calculation assumed that the array would
allow a precise measurement of the angle of any
gamma falling within the array.

The angular distribution of pions in the center of
mass was randomly generated by utilizing Eq. (1)
with the following parameters:

a=0.75, P=O. SO, y=0. 10, cosy=0. 5.
The decay-gamma angles were calculated by gen-
erating angles in the pion rest frame, assuming a
uniform angular distribution, and then transforming
the gamma angles into the laboratory system. The
event was accepted if each of the gamma counters
was intersected by a gamma trajectory. The pro-
cedure was repeated 154830 times to generate 5000
acceptable events.

The C; coefficients of Eq. (16) were calculated for
the gamma counter geometry,

C] =0.1066 C2 = —0.0100 C3 =0.0335

The parameter cosy =0.5 was held constant while
parameters a and P were varied to minimize X2.
The values of the parameters which minimized 7
are

C
Cr&+ —Cz 3an

ny =
E'~E2 b cC)+—Cp+ —C3

a a

(24)

with e& 1, ez ————1, and n =5000, the number of
events which satisfied the gamma counter geometry
requirement. There is good agreement between the
parameters used to generate the data and those from
the fitting analysis.

The results presented in Table I are for a fixed
value of cosy since only two parameters can be
determined from the angular distribution. As a re-
sult cosy is a free parameter subject to a constraint
derived from Eq. (14),

8
i

cosvy
i

& A+C
If the fitting procedure used a value of cosy that did
not satisfy this constraint, results are obtained for
b/a and c/a which are different from those present-
ed in Table I but with a larger value of g2. All
values of cosy satisfying the constraint produce the
same results for b/a, c/a, and X .

TABLE I. Results from test of fitting procedures
which derive angular distribution parameters for pions in
the center of mass from the angular distribution of the de-

cay gammas in the laboratory. The input parameters
were used to generate a set of data to which the fitting
program was applied to give the fitted parameters.

Parameters

b/a
c/a
)le

Input

0.75
0.50
0.65
0.42

154 830

Fitted

2.13+0.19
2.8220. 16
0.68+0.03
0.42+0.06

155 658

a~ =2.13+0.19, P~ =2.82+0. 16 .

These parameters differ from those used to generate
the events because of the arbitrary normalization in
the maximum-likelihood-fitting procedure. Howev-
er, the ratios b/a and c/a are independent of the
normalization and can be used to compare the two
sets of parameters. The comparison is shown in
Table I. n~ was determined from the fitted parame-
ters by using Eqs. (19) and (21)
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V. EFFECT OF FINITE
ANGULAR RESOLUTION

The gamma distribution given by Eq. (2) with
separate terms shown in Figs. 4—6 has a maximum
at the boundary defining the region of 8,8', P,P' al-
lowed by kinematics. Therefore most of the events
will fall on the kinematic boundary. Because of the
finite angular resolution of the gamma counters, a
point near the boundary can be detected as falling
outside the boundary. These events must be exclud-
ed from the analysis since the angular distribution is
not defined outside the kinematic region. However,
the remaining events may have a different angular
distribution which could distort the fitting analysis
for the pion angle parameters.

The measured angular distribution can be correct-
ed by making use of the distributions singularity,
which places most of the events near the boundary.
To make the correction, one can define a length l,

the distance between the event point outside the
kinematic boundary and the boundary. The value of
8,8', P,P' on the boundary which minimizes l is then

used as the corrected coordinate for the excluded
event.

VI. CONCLUSIONS

I I f(8,8',P,P')d Q d Q',

where f is one of the basis functions K, K.Ti, or
K Tz in Eq. (2) which describe the gamma distribu-
tion; dQ=d cos8dg; and Qi and Q2 are the solid
angles subtended by the gamma counters. The
Monte Carlo integration technique described by
Lepage was used to evaluate the integral.

The region of integration for the variables 8,8' for
fixed P,P' is shown in Fig. 7. To improve the effi-
ciency of the Monte Carlo generation of points in
8,8', the 8,8' variables are transformed to 8i, 8z

8i ———,(8—8'),

82 ———,(8+8' —ir) .

The range in 8i and 82 can be constrained to fall in a
rectangle which includes the boundaries shown in
Fig. 7, thereby minimizing the points generated in
8,8' space which fall outside the bounds defined by
4=0. The bounds on 0~ and 82 are determined by a
numerical investigation of the b, =o surface in 8i,
8z, P, and P'.

The integration in P, P can be simplified by using
the invariance of the reaction with respect to a rota-
tion about the z axis. A new variable 4 is defined:

A method of analysis has been described and test-
ed which allows the determination of the (p, ir ) dif-
ferential cross section from a measurement of the
angular distribution of the pion's decay gammas.
The method is restricted to pion production reac-
tions very near threshold which cannot excite the
nucleus and which can be represented by an s- and
p-wave parametrization.

The region of integration can be further confined by
transforming the variable 4 to 6*, where
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APPENDIX: NORMALIZATION INTEGRAL

The gamma distribution function given by Eq. (2)
was integrated numerically to obtain a normaliza-
tion for the distribution. The integral has a singu-
larity at 6=0. This appendix presents a description
of the numerical techniques which were used to
evaluate the integral

FIG. 7. Definition of the angles 8~ and 82 for the nor-
malization integral.
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E
2Vcmn

(1—P, cos8)(1—P, cosg')

2( 1 —cosg cosg' —sing sing' cos4)

and 6 is defined in Eq. (6). The constraint on h~ is

(1—P,2)/4& h~ & 2' m

The integral is now

J „

f(8»82, b, ~,g') d cosg&d cos82dh*dg',
1 2

where t)4/t)h~ is the Jacobian for the transformation

=[(1—P, cosg)(1 —P, cosg')](h~) /I (25~ sing sing'}2

—[2b, ~(1—cosgcosg') —(1—P, cosg)(1 —P, cosg')] ]'i

The integration can now be performed with
Monte Carlo techniques by evaluating the integrand
in the following steps:

(1}Generate gt, 82, b, , P' in the intervals

—1.57 & H) & 1.57 ~

0.21 & 82 &0.16,
0.24& h~ &0.26,

0 & P' & 1.287,

where the bounds on H&, H2 have been determined nu-
merically for the (p, tr ) reaction on ' C at 147 Mev.

(2} Calculate 8, O', P, and P' to check constraints
imposed by kinematics and by the solid angle of the
gamma counters.

(3} Evaluate the integrand function and the Jaco-
bian.
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