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Classification of exchange currents
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After expansion of the vector and axial vector currents in powers of (v/c), a heretofore

unremarked regularity results. Meson exchange currents can be classified into types I and

II, according to the way they satisfy the constraints of special relativity. The archetypes of
these two categories are the impulse approximation to the vector and axial vector currents.

After a brief discussion of these constraints, the (pm y) and (coo y) exchange currents are con-

structed and classified, and used to illustrate a number of important points which are often

overlooked.

NUCLEAR REACTIONS Meson exchange currents, classification
scheme.

I. INTRODUCTION

Classification schemes in physics serve two useful
purposes. By dividing a complicated system into
separate components, the body of knowledge of that
system is more easily assimilated. In addition, the
separate classified components of the system may
have distinct important physical characteristics
which obtain simply by belonging to those classifi-
cations. The classification scheme for meson ex-

change currents that we introduce below illustrates
both points.

Meson exchange currents in nuclear physics were
introduced many years ago' in order to satisfy an
important physical principle: current conservation.
As time passed the name "meson exchange
currents" was adopted by other fields in nuclear
physics to signify processes where mesons explicitly
infiuence the physics, even when no conservation
principle obtains. These processes have become an
important topic of study.

The importance of such currents is quantitative,
as well as qualitative. Because a nucleus is a weakly
bound many-body system, we expect potential- and
kinetic- (energy) dependent quantities to be roughly
the same order of magnitude. Thus, meson-
exchange (potential-dependent) and impulse approxi-
mation (kinetic or potential-independent) contribu-
tions to an observable of the same order (to be dis-
cussed below) should be roughly equal in magnitude
in most cases. ' This rough argument appears to be
be borne out in practice. An example is the contri-
bution of meson exchange cuI rents to isovector mag-
netic moments. Although the relative contributions
are approximately 10—20%%uo, the impulse approxi-

mation result contains a dimensionless parameter
(the nucleon isovector magnetic moment): 4.7 pz.
Were it not for this factor, the exchange currents
would be roughly comparable to the impulse ap-
proximation.

One important conceptual element of these
"currents" which has not been emphasized is their
role in maintaining Lorentz invariance. Since it
is conventional to treat nuclei as weakly bound sys-
tems of nucleons, which are slowly moving on the

auerage, we will assume henceforth that we have ex-

panded all the operators pertinent to the nucleus as a
power series in (U/c), where U is a typical nuclear
velocity. Since the scale of nucleon velocities is set

by (p/M), where M is the nucleon mass and p is a
typical nucleon momentum, an attractive alternative
is to count relative powers of (1/M) instead of
(1/c). In doing so, two caveats must be borne in
mind:

(1) The nuclear potential should be treated as or-
der (1/M) for a weakly bound system such as a nu-

cleus, since ( T) ——( V) and T-1/M.
(2) For specific processes it is possible4 for

leading-order terms to be order (1/c ) without any
explicit powers of (1/M).

Caveat (1) is physically important because it shows
that ordinary static meson exchange currents [no ex
plicit powers of (1/M)] should be comparable to the
usual convection and spin magnetization currents as
argued previously; both are the same order in (1/c ).

This expansion is best illustrated by the nuclear
electromagnetic current J&=(p, J ). In what follows
the subscript "0" indicates no potential dependence
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(i.e., it does not depend on meson-nucleon coupling
constants), while "ex" signifies such a dependence.
The charge operator of nonrelativistic order (u/c)
is po, while relativistic corrections are of order

I

(u/c) and higher: bpo and bp,„. The leading order
(v/c) nonrelativistic current operators are Jo and

J~, while corrections are of order (u/c): b, J v and

kJ,„. Thus wehave

& =(pa+~pa+&p, .+,Jp+ J..+&Jo+&J„+ ) .

The same type of decomposition applies to the axial vector current (J'P'=(p', J ), except that J o is of or-
der (1), there is no J,„,while po and p,„~ are of order (v/c), etc. Thus

(I )"=(po'+p,„+&ps'+bp,„'+,Jo'+b Jv +b, J,„+ ) .

Both of the decompositions are illustrated in the
tableaux of Fig. 1 with the electromagnetic (vector)
and axial vector currents depicted on the left- and
right-hand sides, respectively. Indeed, these ta-
bleaux are the essence of our extremely simple clas-
sification scheme. The electromagnetic current is
the archetype of type I nuclear four-vectors: The
nonrelativistic time component is dominant, while
the nonrelativistic current operator is a "factor" of
(u/c) smaller. The axial current is the archetype of
type II four-vectors: The nonrelativistic space com-
ponent is dominant, while the nonrelativistic time
component is a factor of (u/c) smaller. We will
show below that the structure of Fig. 1 follows from
the constraints of special relativity.

What utility does such a classification have? One
is usually interested in a specific physical process
such as electron scattering via its interaction with
the nuclear charge or current operator. Classifica-
tion of meson exchange currents according to our
scheme immediately tells us whether the leading-
order meson exchange contribution is the charge or
current density and which operator has nonstatic
elements (i.e., momentum dependence).

Let us examine the electromagnetic current in
some detail. The ordinary potential-independent
parts of the current are type I, by fiat The one-.
boson-exchange currents, such as m exchange, p ex-
change, etc., are of type II if the mesons are isovec-
tor, and generally of type I if the mesons are isoscal-
ar. In the former case charged meson exchange dic-
tates a static meson exchange current, which estab-
lishes the primacy of the space component of the
four-vector; the exchange current is therefore of
type II. In the latter case, the absence of a net ex-
change of charge requires the currents to be nonstat-
ic [i.e., they have the form (bp,„,b, J,„)]. In such
cases we expand our scheme slightly by denoting
such currents type I' or type II', the prime denoting
no static limit for any component of the four-vector.
Thus the usual types of vector exchange currents are
either type II or type I'.

It is clear, therefore, that if one is calculating
magnetic moments, one should concentrate on type
II exchange currents. Are there any exchange

I

currents of type I'? We will exphcitly calculate such
a current in Sec. III.

The primed (nonstatic) categories are special be-
cause of a serious technical problem associated with
their calculation and implementation. Nonstatic
current or charge operators of order (u/c) beyond
the nonrelativistic limit generate contributions to
matrix elements of the same order. Wave functions
will also have corrections of order (u/c) and affect
matrix elements in that order. A consistent treat-
ment of matrix elements requires that both operators
and wave functions be consistently calculated to the
same order. It has been found that different calcula-
tional techniques in general will lead to different
charge, current, and potential operators which are
nevertheless part of a unitarily equivalent fami-
ly. ' In order to preserve the invariance of the
unitarily transformed matrix elements, it is absolute-
ly essential that the Hamiltonian be a part of the un-

itary family. If this is not so, and currently popular
"realistic" potential models are not members of any
such family, the numerical values of such matrix
elements will be ambiguous. Regrettably, many
such calculations have been performed. These re-
marks apply to the calculation of all operators in
Fig. 1 preceded by a h. It is also possible to exploit
this ambiguity. The isoscalar one-pion-exchange
current is generally type I'. By a judicious choice of
unitary representation this can be converted to type
II'. By means of this trick the relativistic correc-
tions to the isoscalar part of this 4p,„can be con-
verted from order (u/c) to (u/c) .

In what follows we briefiy illustrate in Sec. II the
role relativity plays in our classification scheme, and
work out in Sec. III two simple examples: the (pay)
and (cooy) exchange currents. The results of this
calculation are not new, but exemplify many of our
points.

II. RELATIVITY

Our goal is to illustrate the degree to which spe-
cial relativity determines the basic structure of
charge and current operators, and not to display the
panoply of transformations of the Poincare group.
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A

Jo(x}=g e;,5 (x —x;) .
i=1

+ "spin terms" ~ ~,pc(x) +
2M,

'

(lb)

Jo (x)= g 0;5 (x —x;)~;, (2a)

Consequently, we will adopt a primitive viewpoint
whose utility is simplicity. "

Consider a classical charge configuration at rest
in a particular inertial reference frame: p(x). , In
another such frame, slowly moving with velocity
—V with respect to the first, the charge density
develops a current component: p(x)V/c, the con-
vection current. Similar considerations apply to a
static current configurations J(x) in the first frame
with no net charge (e.g., a wire loop with a current
inside). From the viewpoint of the second frame of
reference, there is a nontrivial charge density:
V J(x)/c. Our considerations have applied to slow-

ly moving systems only; Lorentz contraction, the
Thomas precession, and other phenomena will also
affect ' the basic densities p and J in order
(V/c) .

Precisely the same structure obtains for the ma-
trix elements of the charge and current operators in
a quantum mechanical many-body system. The
wave functions contribute terms of order (V/c),
which we may ignore. Thus the operators them-
selves must contain the terms discussed above. Ex-
amples are provided by the impulse approximation
to the vector and axial vector currents:

po(x)= $ e;5 (x —x;}, (la)

K=M,R+ g I p;2, r;)/2M;

—$ t7;Xp;/4M;+RVo+ w
i

=Ko+hK+ (3c)

where the first term is given by Ko ——M~R in terms
of the usual center-of-mass coordinate R of the sys-
tem, Vo is the nonrelativistic potential appropriate
to the system, and w depends on the potential
parameters. Note that Ko is of order M, while b,K
is of order 1/M, both explicitly and implicitly
through Vo and w, while the unwritten higher-order
terms indicated by the ellipsis are of order (1/M )

and higher. Examples of the potential-dependent
boost w can be inferred from the results of Refs.
8—10 for several physical models. The import of

is the total mass of the A particles.
These two examples illustrate the two ways a

slowly moving system which is "essentially" non-
relativistic can accommodate relativity: type I and
type II. The order of the first two "rungs" of the
ladder structure in Fig. 1 is determined by which
member of the pair (p, J ) for a slowly moving sys-
tem is given in terms of the other by a proportion
involving V/c. This ladder structure continues to
all orders in (1/M) or

(vie�).

The more formal way
of describing this is to write the conditions which
guarantee that (p, J ) transform as a four-
vector

[K,p(0)]=i J(0), (3a)

[E,J~(0)]=i5 ~p(0) . (3b)

The "boost" operator, K, can be expanded' in a
series in 1/M also:

po (x)=+,5 (x —x;)
2Mi

p Jo(x)
2M,

(2b)
e

Matrix elements of the total nuclear momentum P
generate the expected forms with

V=—(Pf + P;)/2M, ,

6p, 5p

AJ, AJ'
( / )e AP, AP

(v/c)'

J,J 5 5
o' ex (V/C) po 'pex

QJ,AJ

the average velocity of a nucleus undergoing a tran-
sition. In the above expressions, x;, p;, o.;, r;, M;,
and e; are the coordinate, momentum, (Pauli) spin,
isospin, mass, and charge of the ith particle while

A

M, = gM;

p (v/c)'

TYPE I TYPE II
FIG. 1. Tableaux illustrating expansion of type I and

type II currents in powers of {v/c). Quantities preceded
by a 5 are relativistic corrections of relative order (v/c)'.
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p(x)= —V D(x),
J(x)= V X p(x)+i[Ho, D(x)],
D=VXp, /c+ or p=V J/c+
p = —VXD/c+ . or J =Vp/c+

(4a)

(4b)

(4c)

(4d)

The two forms given in each of Eqs. (4c) and (4d)
are equivalent. Type I currents will satisfy Eq. (4d)
in lowest order, while type II currents will satisfy
Eq. (4c). The current defined in Eqs. (4) is obviously
conserved for any p and D.

III. MODEL CALCULATION

The model calculation we perform is for a class of
meson exchange processes which involve virtual
meson electromagnetic decays. Such a process is in-
dicated in Fig. 2 where the nucleus (double lines) in-
teracts with m and p mesons, which in turn interact
with an external electromagnetic field (vertical wig-

gly line). This can be viewed as a p meson, which is
being exchanged between nucleons, electromagneti-
cally decaying into a photon and a pion which is
later absorbed (or vice versa) by a different nucleon.
We will restrict ourselves to (VPy) and (VSy) pro-
cesses involving a vector meson ( V) and a scalar (S)
or pseudoscalar (P) meson. These processes have
had a long and controversial history, ' which is
intertwined with that of the deuteron magnetic mo-
ment problem. It was realized rather early that or-
dinary one-boson-exchange currents of the true ex-

this discussion is that E-M+ I/M+1/M +
[i.e., an expansion in powers of (1/c) ] and this both
determines and preserves the ladder structure. An
example of this is provided by Eq. (3b). The com-
mutation of Ko with the P/M, part of Jo generates

po, while commutators of hK with Jo and Ko with
b, J generate bp, the latter terms clearly being of or-
der 1/Mz, as they must be. Since Eqs. (3) apply to
any four-vector, it is only because we have expanded
in powers of (1/c) that any differentiation between
types I and II arises. This differentiation may be
appropriate to a nucleus, but hardly relevant to a
strongly bound relativistic system where such expan-
sions would be a priori nonsensical. It is because of
this restriction that our classification scheme is not
fundamental or especially profound. As we will
show below, it has some practical utility for corn-
paring and discussing exchange currents.

For systems having a strong interaction Hamil-
tonian Ho, which are more appropriately described
by an electric dipole moment density D(x) than by
p(x), and by a magnetic dipole moment density

p ( x ) than by J ( x ), the appropriate transformations
are given by

change type could not contribute to the deuteron.

By true exchange we mean processes exemplified by
Fig. 2, where the photon lands on a meson and not
on a nucleon. Since a photon has charge conjuga-
tion —1, and the deuteron has isospin 0, it is rather
easy to prove that the incoming photon can only
"dissociate" into mesons having a total G parity of
—1. Since G=( —1)" for a system of n pions, only
an odd number of pions can contribute; this is exem-
plified by the p-m system. The co-m. exchange
currents with G=+1 contribute to the S]- So
deuteron transition, for example, but not to the
deuteron ground state. Much of the controversy
concerning calculations has dealt with the sizes of
coupling constants and form factors.

The two types of electromagnetic vertices we re-

quire are described by the following interaction La-
grangians:

and

~P yamL~——er e~»&F p2m' Bxg
(Sa)

gaoy
L ~~y —ep

m
F~P Bo'

CO~ p
o

Bx
(Sb)

In Fq. (5a) the isospin labels on the p and n field
have been suppressed, and should have the form

p n. . The similar (cony) process is structurally iden-

tical, with meson fields appearing in the form com3.

In these equations e»~ is the totally antisymmetric
tensor and F ~ is the electromagnetic field tensor.
The masses of the p and o are mz and m, while the
coupling constants are g~y and g~~y. We have
chosen to extract a factor of the proton charge ez
from ge~, which is dimensionless. Because we are
only interested in the lowest-order charge and
current operators, the effects of retardation (finite
meson propagation speed) can be ignored and the
meson equations of motion become static and easy
to deal with.

—ez fp(x) B(x)d x .

We note that the space components of the vector
meson fields are order (1/M) with respect to the
scalar component, and time derivatives of the meson
fields are retardation corrections which we can ig-
nore. We find

The elements of the electromagnetic field tensor
are determined by the external electric and magnetic
fields E and B. We therefore write the energy in the
form

H = L= —ez JD(x)—E(x)d x
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D(x)= — (p(x)X Vm(x))~—
7tlP

rJ.V;[o; V;h (x —x;)]
m p

r

X ', o(x —xj) '+ oJXVJho(x —x )

and

(6a)

p(x) = — poV n~ g rg rj V; [0; V;ho(x x;)]h—o(x xj )—
P

s

for the (pay) case, while obtaining

(6b)

and

CO Ctl f+J
(7a)

p(x)= — "
a) X Vo~

01~ N /+j

+ [~; X V ho(x —x )]XVjho(x —xj) (7b}

for the (cooy) case. We have written the static
meson propagators as

ho(z) =e '/4~z

for a meson with mass m. In Eq. (6) the primed ho

~ ~

7T

I

refers to the p, and in Eq. (7) it refers to the a. The
coupling constants g, g, and g couple the 0, co,
and m mesons to the nucleons of mass M, and

f =IJ,~~/2M is the effective m-nucleon coupling
constant for the pion of mass p~. The quantity P is
the magnetic moment coupling parameter of p
mesons to nucleons; in the vector dominance model
its numerical value is pz —p„, the isovector nucleon
magnetic moment.

In order to verify Eq. (4},we need to substitute

p; = r7;+MP/M,

for each p;. This is extremely easy to do and we
find that the (pmy) case in Eqs. (6) and (7) satisfies
(4c), while the (cocry) case satisfies Eq. (4d). Thus
(cooy) exchange currents are type I, while (pmy) ex-
change currents are type II.

IV. DISCUSSION AND CONCLUSIONS

FIG. 2. Feynman diagram for (pry) exchange
currents. The double line depicts a nucleus, the dashed
line a pion, and the heavy (lower) and light (upper) wiggly
lines show the p meson and photon, respectively.

The preceding exercise illustrates a number of
points: (1) The requirements of special relativity
for the charge and current operators guarantee the
existence of certain nonlocal terms which classify
the charge-current operators as type I or type II;
that is, their type predicts the location of the onset
of nonlocahty. (2) Nonlocal terms are usually con-
sidered to be a nuisance which can be ignored; we
emphasize their fundamentality. (3} The original
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Lagrangian was manifestly gauge and Lorentz in-
variant. The mapping of a four-dimensional form
to an effective three-dimensional form maintains the
Lorentz and gauge invariances, but it is no longer
manifest. The requirements of special relativity be-
come particularly complicated in form when one
goes beyond ' the (u/c) treatment we have made
here. (4} The current is model dependent; no ad hoc
argument or "minimal" substitution can guarantee
the form of the magnetic interaction. (5) Our treat-
ment of the charge and current operator in the
model problems emphasized p and D, because
this simplified the formulae. If we had calculated j
and p directly we would have found that the time

derivative in E( —VP —A) generated the i [HO, D]
term. This essential time dependence in the problem
is the simplest example of retardation, and illus-

trates the mapping of a complicated time-dependent
many-body (i.e., mesons) problem onto the purely
nuclear Hilbert space. Moreover, the p /2M, part
of the kinetic energy in Ho is essential in proving
Eq. (4}. (6} The potential part of Ho in that commu-
tator generates three-nucleon exchange currents,
since V is a sum of two-body operators; they are
essential for current conservation and illustrate how
retardation naturally brings rnultinucleon exchange
currents into any discussion of two-nucleon ex-

change currents. (7} Because meson propagators de-

pend on A/rnc, the meson Compton wavelength, it is
not entirely trivial to ascertain the order in 1/c of a
particular multimeson exchange current. Neverthe-

less, following the rules advocated in Ref. 4, the
charge density of the (cooy) model is order (1/c ) in

spite of the fact that this model is static in the nu-

clear parameters (no explicit factors of I/M) and of
type I. It should be correspondingly small. (8) Most
importantly, the classification into types I and II
immediately shows which of p or j is the larger in

powers of u/c.
As our last example we discuss the axial vector

current. If one assumes a naive (and incomplete)

y&y5 model of coupling the pion field to the nucleon
and thereby to the axial current via the pair terms in
that model, the latter are sufficiently weak that the
pion exchange currents are of type I'. Thus they—+5
would be (u/c)z corrections to both p and b, J and

TABLE I. Resolution of impulse approximation and
common exchange current contributions to the vector and
axial vector currents into types. The subscripts "s" and
"U" refer to isoscalar and isovector contributions to the
vector current, while "A" refers to a contribution to the
axial vector current. The notation (M~, M2) refers to con-
tributions of the true exchange currents of the type
(M~M2y) to the vector current, while ' I" refers to the im-
pulse approximation. The prime on the last ~q entry
refers to the unphysical (pure) y„y5 model of the axial ex-
change current. The (mw) entry refers to the two-~ ex-
change current calculated in Ref. 29, while "y" refers to
the photon-exchange current of atomic physics.

Type I:
Type II:
Type I':
Type II':

I„ I„, (a), 0.), m.g, (mw)„

Iar (pre)r (corm)r (pry)r m'vrpu
I

sr &sr Osr kg

y

consequently negligible. Chiral symmetry dictates
that in addition there should exist a seagull-type of
coupling between axial current, nucleon, and
pion. ' This term generates p,„and the axial ex-
change current becomes type I (p,„' and b, J,„).
This has the consequence that the axial charge
operator has exchange current contributions of the
same order of magnitude as the impulse approxima-
tion, which may have important consequences in
some applications. The same result is obtained in a
different way in the o model, via the strong pair
terms of that model.

In atomic physics the same procedure can be ap-
plied to photon exchange as the genesis of the
electron-electron force. ' In that case it can be
shown that the traditional method of calculating in
Coulomb gauge leads to a nonstatic "photon ex-
change" charge operator of order (u/c) and a corre-
sponding current operator of order (u/c)3. The
photon-exchange currents are therefore of type II'.
Finally, Table I classifies the impulse approximation
and common exchange currents for the vector and
axial vector currents.
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