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Induced nuclear fission viewed as a diffusion process: Transients
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Induced nuclear fission is viewed as a diffusion process of the fission degree of freedom

over the fission barrier. We describe this process in terms of a Fokker-Planck equation

which contains the fission variable and its canonically conjugate momentum. We solve this

equation numerically for several energies (temperatures) of the fissioning nucleus neglecting

changes of the fission barrier due to the temperature dependence of nuclear shell effects.

, We pay particular attention to the time ~ needed for the system to build up the quasistation-

ary probability flow over the fission barrier. The rate of the latter is approximated in terms

of the Bohr-Wheeler formula or Kramers's transition state expression; the precise value of
the quasistationary current depends on the nuclear friction constant Ii. Our results for r are

consistent with those obtained earlier in the framework of a simplified model: As long as

P &$0, the time r is proportional to P . This relationship exhibits the fact that with in-

creasing friction P, the diffusion process is accelerated, so that it takes the system increas-

ingly less time to attain the quasistationary distribution. The constant Po is roughly given

by 2coi, where ~~ is the frequency of a harmonic oscillator potential which osculates the po-

tential at the minimum corresponding to the initial configuration of the fissioning nucleus.

The condition P &Pp is roughly equivalent with the motion in that minimum being under-

damped. The converse relationship —r increases with P—is found for P)PO. We ascribe

this to the fact that now the fission variable executes an overdamped motion. Generalizing

Kramers's original derivation, we obtain an analytical expression for the time dependence of
the probability current over the fission barrier. For P &Po, this expression agrees well with

our numerical results. We use it to calculate the energy dependence of the fission probabili-

ty Pf and find that Pf grows much less rapidly with increasing excitation energy than would

be predicted by the Bohr-Wheeler formula. This is in qualitative agreement with recent ex-

perimental findings and suggests that the energy dependence of Pf deserves further investi-

gation and can be used to determine P experimentally. Our analysis does not yet include the

additional time delay incurred by the system on its way from the saddle to the scission

point: Clearly the time needed to establish the quasistationary situation at the scission point

will be larger than v. This would probably lead to additional modifications of the energy

dependence of Pf.

NUCLEAR REACTIONS, FISSION Diffusion over a potential bar-

rier; transients; deviation from Bohr-Wheeler formula.

I. INTRODUCTION

Among a11 nuclear phenomena, nuclear 6ssion is
one of the earliest and most thoroughly studied pro-
cesses. Over the years, the complexity of fission has
become more and more evident. It is a remarkable
fact that most major advances in our understanding

of the atomic nucleus have had significant repercus-
sions in the domain of fission. One fairly recent ex-
ample is given by the impact of nuclear shell struc-
ture on the properties of the fission barrier, and the
experimental developments following it. ' Another
example is provided by the evolution of transport
theories to describe salient features of deeply inelas-
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tic heavy-ion collisions which suggested the appli-
cation of a diffusion mechanism also to the case of
induced fission, thereby reviving an old sugges-
tion of Kramers. It is this line of approach which
we follow in the present paper. We calculate the en-

ergy dependence of the probability Py for induced
fission from a diffusion inodel. This function de-
pends on the nuclear friction constant P in a way
which hopefully may eventually allow the experi-
mental determination of P.

The crucial parameters in a diffusion model for
fission are the nuclear friction constant P [in units
of (time) '] (which gives the strength of the cou-
pling between the fission degree of freedom and the
rest of the system which is considered as a heat
bath) and the diffusion constant. The latter is relat-
ed to P via the nuclear temperature T (in MeV) and
the Einstein relation. (We disregard here questions
of strong coupling that would modify this relation. )

A diffusion model is applicable whenever the inter-
nal equilibration time t,q„of the heat bath is short
in comparison to the characteristic time of the dif-
fusion process itself (related to P '), and to iiirrt
and R/I'„, where I'I (I'„) are the fission (neutron)
widths at the excitation energy under consideration.
Simple estimates ' of these time scales (leading to
t, „=q3)&10 sec) suggest that a diffusion model is
applicable for P&3X10 ' sec ', and for excitation
energies up to 100 MeV or more. In the sequel, we
take the applicability of a diffusion tnodel for grant-
ed although we occasionally study the results of
such a model also outside the domain of parameter
values just indicated.

The standard analysis of induced nuclear fission is
based on the Bohr-Wheeler formula, 9 an expression
involving the height Ey of the fission barrier and the
nuclear temperature T as essential parameters, but
independent of the nuclear friction constant P.

A competing formula for the tiuasistationary dif-
fusive current which fiows over the fission barrier
was derived by Kramers in the limits of small and
large values of P. These results show that this
current increases linearly with P for very small P,
and that the current decreases essentially as P ' for
very large values of P, this latter behavior being a
direct consequence of the overdamping of the
motion of the fission variable. Extrapolating
Kramers's expression for large P [our Eq. {7}below]
to P=O, one obtains the value one ohen refers to as
being given by the transition state method. This ex-
pression is in essential agreement with the Bohr-
Wheeler formula, ' differences between the two ex-
pressions have been attributed to the presence of col-
lective vibrations'; in practical applications, the
differences are not very significant.

Accepting Kramers's diffusion model as physical-

ly meaningful, and disregarding corrections due to
the temperature dependence of either the fission bar-
rier or the nuclear friction constant, we investigate
in this paper the manner in which the quasistation-
ary fiow of probability over the barrier is attained.
More specifically, we ask for the time r it takes to
build up this quasistationary flow, for the depen-
dence of r on P, and for the possibility of measuring

P experimentally through the effect exerted via r on
the entire diffusion process. Qualitatively speaking,
the time r which elapses between the start of the in-
duced fission process and the (approximate) attain-
ment of the stationarity condition is governed by the
nuclear friction constant P, which describes the cou-
pling of the fission degree of freedom with the rest
of the system. The larger r, the more intensely will
neutron decay compete with the fission process.
This will lead to an effective fission probability
smaller than predicted by the Bohr-Wheeler formu-
la. Since the neutron decay width increases very
strongly with increasing excitation energy of the fis-
sioning nucleus, we expect that the fission probabili-
ty, plotted versus excitation energy, will at some
point fall significantly below the value obtained
from the Bohr-Wheeler formula. This is the effect
we wish to study quantitatively in the present paper.
Our study has partially been motivated by recent ex-
periinental findings" which seem inconsistent with
the Bohr-Wheeler prediction in showing an excess of
evaporated neutrons.

The present study continues and considerably ex-
tends an earlier work in which we used a simple
one-dimensional diffusion model {for the energy
variable} for the fission process, identifying dif-
fusion in energy with a value given by the height of
the fission barrier with a fission event. As pointed
out in Ref. 5, this simple model is expected to be
reasonably accurate for sufficiently small values of
P. In this case, all points of phase space having the
same energy are expected to be filled uniformly, and
the two-dimensional diffusion process in the fission
variable and its canonically conjugate momentum is
expected to be modeled properly by a diffusion
model in the energy variable only. This expectation
is indeed borne out by the present study in which the
fully two-dimensional problem is solved numerical-
ly. We also find that as P increases, the one-
dimensional model no longer refimts the situation
correctly. This is due to the fact that the equilibra-
tion in momentum becomes very rapid, while the
position variable of the fission process undergoes a
strongly damped diffusion process, this leading to a
strong increase of r with P.

Our simulation of the fission process in terms of a
diffusion model employs but a single collective vari-
able and its canonically conjugate momentum.
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Several such variables (which take a fuller account
of the collective potential surface) can be identified
and have, in fact, been used in a realistic treatment
of the fission process. However, in the spirit of the
transition state method referred to above, the fission
width is solely determined by the probability current
across the fission barrier in the direction of steepest
descent; hence our simplification.

We solve the two-dimensional diffusion equation
numerically for a rather general shape of a potential
having a fission barrier. The fission width (as a
function of time} is obtained by calculating the
probability current through the saddle point. (See
Sec. II.) We find (see Sec. III) that the fission width
approaches the quasistationary value as given by the
method of Kramers over a characteristic time r
which we extract from the data, and interpret. We
observe that the approach to the quasistationary
value is not monotonic but displays characteristic
oscillations. Generalizing the quasistationary ap-
proach by Kramers to a time-dependent one, we
derive (see Sec. IV} a simple analytical formula for
the time dependence of the fission width which
displays both the quasistationary limit and the oscil-
lations during the approach phase. This formula
does not correctly reproduce our numerical findings
in the case of strongly overdamped motion, which
we do not believe applies in realistic cases, and
which can be dealt with anyhow in a completely an-
alytic fashion. Using this formula, we evaluate in
Sec. V the fission probability (i.e., the probability of
first-chance fission} as a function of excitation ener-

gy (temperature). For the nucleus A =226 studied
in our earlier paper, we find good agreement with
our earlier results, and a strong reduction of the fis-
sion probability as compared to the value predicted
on the basis of the Bohr-Wheeler formula at higher
energies, which suggests that in heavy nuclei and at
several tens of MeV's of excitation energy, the fi-
niteness of r might significantly influence the ratio
of emitted neutrons versus fission events. Section
VI contains the conclusions.

We emphasize that the question of transients is
not answered completely by the present study.
Indeed, our investigation focuses on the way the
quasistationary condition is approached at the sad-
dle point F.or the dynamics of the fission process
and competition against neutron decay, the quantity
of interest is probably the time 7. it takes to attain
quasistationarity at the scission point. Clearly, 7& z,
so that the effects observed in this paper are expect-
ed to be enhanced when the calculations are per-
formed at the scission point. Roughly speaking, we
have observed that

~

7.—r
~

is of the same order as r
itself. We have not yet carried out a more precise
investigation of the fate of transients between saddle
and scission points, for two reasons: (i) the shape of
the potential is probably rather more crucial in this
domain than in the one we have investigated; and (ii)
the time and accuracy required to perform the nu-
merical calculations are considerably greater. We
hope that we can tackle this problem in a future
communication. It would be of interest to compare
numerical results with simple analytical estimates,
the latter combining our results for ~ with an esti-
mate of the time it takes the system to pass from
saddle point to scission point.

II. THE DIFFUSION MODEL:
NUMERICAL PROCEDURE

A. Basic definitions

As done in Refs. 3-7, we consider the fission vari-
able x as a classical variable, with canonically conju-
gate momentum p and time variable t. We consider
the time evolution of the distribution function
P(x,p;t) in the two-dimensional phase space (x,p ).
This function is assumed to obey a Fokker-Planck
equation (FPE). Assuming that the reduced mass p
of the fissioning system is independent of x, and in-
troducing the velocity p =p/p, we write this equa-
tion as a FPE for the distribution function P (x,p;t},

8 8 8
P(x,p;t)+p—P(x,p;t) K—(x) P(x,p;t—) =13 IpP(x,p;t) I +e P(x,p;t) .

Here, e=PT/p, , (2)

E(x)= —p ' U(x)
C)X

relates to the potential U(x) of the fissioning sys-
tem, and P is the friction constant which describes
the coupling of the fission degree of freedom to the
remainder of the system. The diffusion constant e is
given by

where T =(E~/a)'~ is the nuclear temperature (in
units of energy) as given by the excitation energy E~
and the level density parameter a. The phenomena
studied in this paper occur at excitation energies of
several tens of MeV's; we therefore neglect the
change of E*, and of T, with x due to the fission
barrier. We likewise assume a to be independent of
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x, which is probably an oversimplification.
Let xp denote the saddle point (the local max-

imum of the potential U(x)]. The diffusion current
across xo is given by

J(xp, t)= J dppP(xp, p;t) . (3)

(xp;t)= f dx J dpP(x, p;t) (4)

be the probability that the system is to the left of the
saddle point. Assuming P(x,p;t) to be normalized

l

I f(t) =Ref (t) = +ALT(xp;t)/II(xp', t) (6)

For sufficiently large t, and for values of P which
are not unreasonably small, 1 y attains the quasista-
tionary value given by Kramers

to unity, and using Eq. (1) and the vanishing of
probability and current for p~+ao, x~ —00, we
obtain the conservation law

J(xp', t) = ——II(xp, t) .
d
dt

We define the time-dependent fission width I f(t) by

I'k =i'&k=4' [[cop +(p/2) ] —(p/2) J exp( Ef/T—) .
27Tcop

(7)

8. Choice of the potential U(x)

We choose a fourth-order polynomial,

U(x) =pgx (x —c)(x+b), (10)

with g &0, c &0, b &0. This function goes to + op

for ~x
~
~oo, and has two minima and a central

peak located at x=0. We identify this peak with
the saddle point, the minimum at xi g0 with the in-
itial configuration of the fissioning nucleus, and the

Here, Ef is the height of the fission barrier, and pip

and cubi are the oscillator frequencies of the two para-
bolas osculating the potential U(x) in the first
minimum at x =x& and at the saddle point x =xo,
respectively.

Let j. „be the neutron decay width. Then,

rl(t) =(I „/iri)exp( —I „t/irt)

is the probability that a neutron is emitted at time t.
Since

[1—II(xp, t)]

is the probability that fission has occurred in the in-
terval (O, t), the total fission probability Pf (i.e., the
probability for first-chance fission) is given by

Pf(E', p) =I dt q(t)[1 II(x„t)] . — (9)

In the limit in which Af is independent of time and
equal to A,», Eq. (9) yields

~rc
Pg ——

~ac+ ~w

as it should. Deviations from this value are expect-
ed to occur whenever the time v it takes Af to as-
sume the value X» is of the order of or larger than
I/I „. Since I „ increases steeply with E, while ~ is
almost independent of E~, this happens at high
values of E*(typically several tens of MeV's).

cop (2gcb)'~2=1——.65&( 10 ' sec

toi g'~ [12xi
——6x i (c b) —2cb]'~— —

=1.83)&10 ' sec

(12)

respectively. The main features of U(x) are quite
similar to those of the potential used in Ref. 6.

The set of parameters (11) was used throughout
unless indicated otherwise. To convert excitation
energy into temperature and vice versa, we used a
level density parameter

p/m
10 40

I

(much deeper) minimum at x2 )0 with the complet-
ed fission process. Our choice of U(x) is obviously
only semirealistic; in reality, there is no barrier at
large positive values of x. This choice was dictated
by the desire to keep the domain of integration of
the differential Eq. (1) effectively bounded in x.

Most of the calculations in this paper were carried
out using the following parameters, where m is the
nucleon mass:

1
c =19.688 fm, b =5 fm; —p =—A =62;

m 4

(11)
g =0.013287X 10 fm sec

This choice yields the shallow minimum of 4 MeV
depth (this is then the height of the fission barrier)
at xi ———3.41 fm. It will become apparent later
that the precise form of U(x) is not very important
for the questions raised in this paper. What really
matters besides xi and Ef——4 MeV is the depth of
the second minimum, —199.2 MeV at x2 ——14.43
fm, to ensure that at the temperature considered
here, no backflow into the shallow minimum at x i is
possible, and the frequencies tpi and cop of the har-
monic oscillator potentials osculating U(x) at the
points x =xi and x =0, respectively. These fre-
quencies are given by
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We use the FPE (1) for all values of x, although
we should obviously set P=O for x &x„. This sim-
plification may affect the probability flow from the
saddle point to the scission point. However, the
analysis of Kramers suggests that it does not affect
the rate of escape over the barrier. This is intuitive-

ly obvious if one recalls the values of U(xi) and
U(x„), and is borne out by the results of our calcu-
lations.

C. Numerical procedure

It is our aim to integrate Eq. (1) for several values
of the parameters P and T, with the purpose of
eventually using the resulting function Pf(E~,P) de-
fined in Eq. (9) to determine P from a comparison
with experimental data. We begin at time t =0 with
a Gaussian type of distribution located entirely in
the minimum at xi. We solve Eq. (1) by taking ad-
vantage of the fact that this equation contains only
first order derivatives with respect to x and use a
suitable variant of the alternate difference implicit
(ADI) method. '~ Equation (1) is integrated alternat-
ingly in the p direction and in the x direction, keep-
ing the other variable fixed. For the p integration
we used the method of Ref 5, wh. ich leads to an er-
ror of order (hp) where hp is the step size in the p
direction. The ADI method works well even for not
too small increments hx and hp and thus leads to a
grid in the (x,p) plane which is of manageable size.
(We used about 150 grid points for x and about 70
grid points for p.} The integration in the x direction,
executed in the subsequent time step ht/2, is simply
accomplished by interpolation of P(x,p;t) generated
in the prev&ous time step. Indeed, the equation

——+p I' =01 a a
2 Bt Bx

is solved by any function which has the argument
(x Zpt). The in—itial condition being given by
P(x,p;t), we see that the solution has the form
P(x pht, p;t). We ha—ve used a fifth order Aitken
interpolation to construct P(x pht, p;t} in terms of—
P(x,p;t). When compared with standard ADI tech-
niques used in a different context, ' the gain in pre-
cision in both the x and p directions resulting from
our method yields a mesh size that can be handled
by a computer of standard capacity, while the accu-
racy in time increases as (ht), i.e., as in any ADI
technique.

We have tested our program by comparing with
analytical results for two cases: (i) diffusion in a
harmonic oscillator potential and (ii) diffusion start-
ing at the top of an inverted harmonic oscillator.
Since we are interested in calculating the flux over
the saddle point (a point of mechanical instability),

the test of the latter situation is quite important. In
both cases we found very satisfactory agreement.
(We reproduced the analytical values for the vari-
ances to the fourth significant figure. )

In all cases investigated, we started with an initial
distribution function P (x,p;0) given by
To 'expI E/—TOI, where

E= —,p[p +coi (x —xi) ]

is the classical oscillator energy and coi is the fre-
quency of the parabolic potential osculating U(x) in
the minimum at x~. Throughout the calculations,
we have chosen To ——0.3 MeV. This is slightly less

1
than the value of —,fico&-0.50 MeV which would

correspond to the zero point energy of the lowest
quantum state of a harmonic oscillator osculating
U(x) at x =xi. The difference in the root mean
square value of (x —xi) is, however, only about 0.25
fm, and thus small compared to the distance

~ xi ~

=3.41 fm between minimum and saddle. The
time r it takes to build up the quasistationary flow
over the saddle is not seriously (less than 10%) af-
fected by this difference between maui and To. We
remark that for the choice of parameters just given,
we have Ef &&To. This is obviously an essential
condition for the applicability of the classical dif-
fusion equation.

III. DIFFUSION OVER THE BARRIER:
NUMERICAL RESULTS

The examples given in the present section have all
been obtained for the potential parameters specified
in Sec. IIB. The reduced mass p, =(A/4)tii with m
the nucleon mass, A =248 was that of the sym-
metric fission configuration. The calculations were
carried through for a range of P values (henceforth
always expressed in units of 10 ' sec '} suggested
both from the study of deeply inelastic collisions'
and by earlier investigations of the fission pro-
cess.

Figure 1 shows the projection of a three-
dimensional plot of the probability density, calculat-
ed for P=0.5 and T =1.0 MeV, for x values larger
than zero (we recall that x =0 denotes the location
of the saddle point} and for a range of k values, with
k =pp/fi expressed in units of fm '. The figure
shows I' evaluated at a time t =9.8)(10 ' sec, i.e.,
after the quasistationary flow over the saddle point
is established. We note how strongly the distribu-
tion is tilted towards higher momenta haik away from
the saddle point. This tilting is a direct consequence
of the steepness of the minimum at x2, and is much
more pronounced than the widening of the distribu-
tion in the k direction caused by diffusion. The
type of pattern shown in Fig. 1 prevails for the en-
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~ 20 P =0.5x10' s
T=1MeV

9.8x/O 2~S

C)

X

CL

X

CL

FIG. 1. The phase-space distribution beyond the saddle

point. In this and Figs. 2—5, the potential parameters are
those specified in Sec. II B.

tire range of P values and temperatures considered
in this paper. It justifies our not setting P=O
beyond the scission point.

Figure 2 shows the variances cr of x and p as
functions of time t for two values of P and T each.
The right-hand scales refer to o„ in units of fm+2,
and the left-hand scales to oz in units of fm X 10
sec . The dashed curves are the result of our nu-

merical calculations, while the solid curves give the
analytical results obtained' for a diffusion process
in a harmonic oscillator potential which osculates
U(x) at x~. We observe that the numerical results
for o~ very closely follow the analytical formulae
and reach a plateau corresponding to equilibration
in the momentum variable. In contrast to this
behavior, the numerical values for o„show an in-
crease beyond the plateau predicted by the analytical
results. This increase is caused by diffusion over the
barrier, and by the tendency of the entire distribu-
tion to shift to the right (x & x ~) of the initial center
at x~. Calculations extending in time beyond the
values displayed on the abscissae show that the vari-
ance O„do attain a quasistationary plateau. This

Q 2
p

P= 0.5
(T 2

T = 1MeV
(3

2
P

Q 2

~x2

Q 2
X

2

4 MeV

p
O' 2

6 t(10 "s)

Q' 2

2
OP

1 2 4 5 6 t(10 s)

FIG. 2. Variances crz (left ordinate) and o.„(right ordinate) of velocity and position, respectively, versus time, t (in

10 ' sec). The continuous curves correspond to analytical results for the harmonic-oscillator potential osculating U(x) at
x ~, the dashed curves are obtained for the full potential U(x) for various values of P and T as indicated.
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-3.4

I 1
I

&x) (fm)

P =5.0—P=0.5 T=1.0 MeV

P= 1.0

0 MeV

P=5,0
P =0.5
P=1.0

plateau is reached when the quasistationary proba-
bility current over the barrier is established.

The mean value of p, equal to zero at t =0,
remains very close to zero throughout the diffusion
process and is therefore not displayed. In Fig. 3 we
show the mean value (x ) of x as a function of time
for various values of P and T. Note that
(x)=—3.41 fm for t =0, and that (x) increases
with time. The results for T =1.0 MeV (E~ =24.8
MeV) in the upper part of the figure show that the
center shifts towards larger x values, and that a
quasistationary situation is reached on about the
same time scale as is characteristic for equilibration
in the first well. The situation is very different for
T =4 MeV (E~=400 MeV), a temperature equal to
the height of the fission barrier. Now equilibration
in the momentum variable is again governed by the
dynamics in the first well, as was the case before.
However, in the position variable, the mean value
(x) moves with almost constant velocity. Closer
inspection of the full probability distribution not
shown in the figures reveals that for T =1 MeV, the
shape of the distribution in the first well and up to
the saddle point relaxes towards an equilibrium
form. This form remains nearly constant but is re-
duced in size as more and more probability leaks out

I I I I I I I

1 2 3 4 5 6 7
t (10-2"s)

Flo. 3. The mean value (x) (in fm) versus time (in

10 i' sec) for various values of P and T as indicated.

over the barrier. For T =4 MeV, on the other hand,
the shape of the distribution also relaxes towards an
equilibrium form in the first minimum at x&, but
the entire distribution moves towards the barrier.
We ascribe this to the large temperature which is al-
most equal ta the height of the barrier. We expect
that, once the equilibrium shape is attained, this
motion should affect the current over the saddle
point, and that the additional contribution due to
this motion cannot be accounted for in terms of the
quasistationary ansatz of Kramers. Figure 3 shows
how this motion depends upon P. We notice that
the slope of (x ) first increases and then again de-
creases as p increases. We attribute this dependence
to the fact that increasing p first enhances the mo-
bility af the system by speeding up the diffusion
process. As P increases beyond 2.0 or so, the overall
motion in the x direction becomes damped more and
more effectively, which in turn reduces the mobility
of the system. This interpretation is borne out by
the following figures. We conclude that increasing
T enhances the flux over the barrier, and that for
fixed T, there is a value of P which yields maximum
flux. Our result is, of course, completely in keeping
with Kramers's early analytical results, in the
domain of applicability of the quasistationary re-
gime.

In Figs. 4 and 5 we show the escape rate Af (t) cal-
culated via Eq. (6) as a function of time. We display
Af for a series of p values and the same two tem-
peratures shown before. The time and Af(t) are
given in units of 10 ' sec and 10 ' sec ', respec-
tively. The dashed curves are the results of our cal-
culations. The full curves correspond to the model
of Ref. 5, with an asymptotic decay rate determined
from the Bohr-Wheeler formula. This does not give
the correct asymptotic value for all values of p; the
upper solid curve in Fig. 4 for p=0.5 gives the re-
sult of the madel of Ref. 5 if Eq (7) rath. er than the
Bohr-Wheeler formula is used to define the asymp-
totic rate.

We note that the present numerical calculations
yield an oscillatory time dependence rather than the
monotonic increase predicted by our earlier model.
These time oscillations are less pronounced for
T =4 MeV than for T =1 MeV. They can be un-

derstood and simulated analytically; this is done in
the next section and yields the dashed-dotted curves.

We see that for T =1 MeV, the model of Ref. 5

gives a good overall approximation to our numerical
results for the escape rate so long as p&1.0. The
reduction of the Fokker-Planck equation in (x,p) to
a diffusion equation in only one variable leads to a
smoothing of the escape rate. The one-dimensional
model obviously breaks dawn completely at p=5.0.
This is not surprising and was anticipated in Ref. 5:
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nificant amount of angular momentum is brought
into the fissioning nucleus, and the fission barrier is
therefore lowered. Figure 6 displays results calcu-
lated for such a case, with the following parameters:

@=42 u, b =7 fm, c =10.7 fm, g =0.00465X10"z
fm sec. The height of the fission barrier is now

1.6 MeV,
~ xi ~

=4.89 fm, the level density parame-
ter has been chosen equal to A/8=21, and the oscil-
lator energies are fico& 0.70 MeV a——nd ficoo ——0.54
MeV, respectively. The friction constant is P= 1.0
in all cases shown in Fig. 6. The constant

Po ——2coi ——2.12 so that the motion in the potential
minimum at x& is yet underdamped. The dashed
curves again display the numerical results, and the
dashed-dotted curves give the results of the analyti-
cal formula of Sec. IV. The dashed horizontal lines

give the prediction of Kramers's formula (7). The
full curves shown for T =2, 3, and 4 MeV give the
value of J(t) as defined in Eq. (5), i.e., the current
without the normalization factor. We note that con-
siderable overshooting happens whenever T&Ef.
For T =4 MeV, we have A,k ——0.062&10 ' sec ' or
(A,k )

' = 16X 10 ' sec, which shows that
overshooting happens during a substantial fraction
(one third) of the total decay time: We are now

close to the situation that the entire fission process is

a "transient. "

We summarize our findings. For P&PO ——2coi
(=3.7X10 ' sec '), i.e., for the case when the
motion in the first minimum is underdamped, and
for Ef » —,fico&, we find approximately rccP
The diffusion process is governed by the feeding
mechanism, and the transient time increases with
decreasing P. This relation can even be understood
semiquantitatively in terms of an approximate
analytical solution of the diffusion equation. The
resulting formula for r is given in Eq. (24) in the
following section. For P&PO, r increases with P;
this increase is due to the overdamping of the
motion in the first minimum. When Ef =2irtcoi and
T & Ef, the pattern changes; the fission rate
overshoots the quasistationary value; the overshoot
already occurs at fairly small times r=P

IV. ANALYTICAL EXPRESSION
FOR THE TIME DEPENDENCE

OF THE ESCAPE RATE;
EXCITATION ENERGY DEPENDENCE

OF THE FISSION PROBABILITY

We attempt to find an analytical, if approximate,
expression for the time dependence of Af(t). This
would help in understanding the qualitative features
of Af (t) including the oscillations displayed in Figs.
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give the numerical results, the full curves the current calculated from Eq. (5), and the dotted-dashed curves the prediction
of Eq. (23).

3 and 4, and would, moreover, yield a useful starting
point for analytically calculating the energy depen-
dence of the fission probability P/ via Eqs. (9} and
(6). For a cascade type of calculation allowing for
the emission of several neutrons and the associated
cooling of the compound nucleus, an analytical for-
mula for A~(t) is obviously indispensable.

From the outset we emphasize that our approach
is heuristic and, although apparently successful, not
of a stringency comparable to Kramers's derivation
of the decay rate given in Eq. (7). Our approach is
modeled after Kramers's procedure, and it is there-
fore useful to recall the latter. Kramers observes
that the stationary equilibrium distribution which
solves the FPE is given by

Pp(x,p) =Cpexp I H(x,p) lT )I, —

where H(x,p) is the Hamiltonian of the system. For
a potential like the one given by Eq. (10), this solu-
tion does not describe diffusion over the barrier
since the overwhelming part of Pp would be located
in the deep minimum at x =xz. Therefore, the solu-
tion of the stationary FPE (1) [with (8/Bt)P =0] is

I

written as

P (x,p) =CF (x,p)exp t H(x,p) /T J},—

and F(x,p) is subject to the boundary conditions that
F(x»p}=1, F(xz,p}=0. The FPE is then con-
sidered in a neighborhood of the saddle point, x =0,
and a quadratic approximation in x is used for the
potential near this point. Inserting the ansatz (13)
into the stationary FPE, one obtains a partial dif-
ferential for F(x,p) which, together with the boun-

dary conditions just mentioned, determines I
uniquely. Equation (13) is then used to calculate
both the probability current over the saddle, and the
normalization in the first minimum. The ratio of
the two yields expression (7).

We apply basically the same procedure to the
time dependen-t FPE (1). This, however, involves
further approximations, as we now demonstrate.

If we approximate the potential near the
minimum at x =x& by the osculating harmonic os-
cillator V(x) with frequency to~, then the solution to
the FPE (1) for this problem is known' and given
by

P„,(x,p; t) =C„,exp p /o~ (t)+2V(x)/(o„(t)ptpi ) p(t)p V(x)/—(o~(t)o„(t)carpi )
2(1—p ) Bx

(14)
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Here, cr~(t) and o„(t) are the time-dependent variances given explicitly in Ref. 14, p(t) is the correlation func-
tion, ' and C, is a normalization constant.

The findings displayed in Figs. 2 and 3—that for T «Ff and P&1.0 the variances oz and cr~ of the full
problem are reasonably close to those of the oscillator problem of Eq. (14), and that (x) and (p) remain
reasonably close to their starting values —encourage us to make for the time dependence of the full problem an
ansatz patterned after Eq. (14):

r

Po(x,p;t) =Coexp ~— p /cd (t)+2U(x)/(o isc0i ) p(—t)p (cd(t)cr„(t)pcoi )
2(1 —p2) Bx

P (x,p;t) =CF (x,p; t)Pp(x,p; t) . (16)

We now determine F(x,p;t) by inserting P(x,p;t)
into the FPE (1) and by assuming that Po(x,p;t) is a

Here, cd(t), o„(t), and p(t) are the expressions de-
rived in the context of Eq. (14), while U(x) is the
full potential (10). We view Po(x,p;t) as being
analogous to the stationary solution Po(x,p) used by
Kramers and defined above. Our ansatz (15) has the
same drawback as Kramers's Po(x,p): As soon as
the variances cr~, cr„are finite, the enormous depth
of U(x) at x =x2 yields an unrealistically large
probability density near this point. %e accordingly
write, in analogy to Eq. (13), the full solution in the
orm

I

solution to this equation. This is the decisive as-
sumption for which we can offer no analytical argu-
ment, only the numerical findings of Figs. 2 and 3.
We stress, however, that Po(x,p;t) should (approxi-
mately) solve the FPE (1) only in a range of x values
x &0+5 up to and including the saddle, with 5
sinall and positive, since we determine F(x,p;t)
again from a linearization procedure near x =0. We
are confident that this (weaker) condition is suffi-
ciently realistic to yield meaningful results.

Inserting the ansatz (16) into Eq. (1), using the as-
sumption just stated, and confining our attention to
a small neighborhood of x =0 where we replace
U(x) by the locally osculating harmonic oscillator
with frequency c00, we find for F the equation

(17)
BF BF BF BF 2e BF BiF

+p +coo x =Pp —
2 [p/cd +xpNO /(0zcT&coi ] '+E

Bt Bx Bp Bp 1 —p c)p c}p

We look for a solution which for x-+ —ao (+ oo) tends towards 1 (0). We construct this solution in the
manner of Refs. 7 and 14 by writing F as a function of the variable g=p —a (t)x only. This ansatz is con-
sistent with Eq. (17) if a (t) fulfills the differential equation

da +a a+P— 2E'

dt cr~ (1—p')

22' o
crscr, (1—p ) coi

(18)

and yields for F(g) the differential equation

2e c}F c)

o '(1 — ) c)g Bg'

Equation (19) has the formal solution

F(x,p;t)=Fo[(a+P)/E 2/(cd (—1 p))]'~—I dgexp[ ——,g ((a+P)/e 2/cr~ (1——p ))}, (20)

where Fo is a constant. It is shown below that
a (t) & 0. Then, with Fo ——(2m )

'~ we obviously
have F—++1 for x —+ —00, and F—+0 for x —++ ao,
which shows that F fulfills the boundary conditions
formulated above. These statements hold if

a (t)+P—2e/[(I p)cd ]&0, —
which we presently show follows from a (t) & 0.

To discuss the behavior of a(t) we recall that'

cd, o„, and p have the asymptotic (t~ ao) values

I

Tlp, T/(pcoi ), and zero, respectively, and that
these values are attained at a time scale given by
P '. For times t »P ', the coefficients in the dif-
ferential equation (18) are constants, and a (t) itself
is then also constant and a solution of the quadratic
equation (p~0):

a —Pa —coo ——0 .2

This is the very same equation as used by Kramers,
and by choosing the solution with a &0 we ensure



2074 P. GRANGE, LI JUN-QING, AND H. A. WEIDENMULLER 27

that F has, for t»p ', the correct asymptotic
behavior. Solving the differential equa«on (18)
backward in time, we arrive at the desired solution
a (t) which we use henceforth.

The construction just described, together with the
fact that Po, F, and hence also P, tend towards
Kramers's solution for t»P ', automatically en-

sures that our decay rate will tend to Kramers's
value in the same limit. On the other hand, a glance
at the form (16} shows that for very small times,
P(x,p;t) is confined to a vicinity of x i, and that the
current over the barrier is exponentially small. We
can thus expect that by calculating the rate of escape
over the barrier from the approximate expressions
just discussed, we obtain reasonable results.

To discuss the function a(t) we observe that Eq.
(18}can be written in the form

+[a +a(t) —Q(t)][a +a(t)+ Q(t}]=0 .
dt

(21)

Here,

a(t)=PI2 el(o~ (—1 —p )),
Q(t) =[a2(t)+top'+2eptoo l(ohio„cubi (1 p))] . —

It is useful to discuss the solution (21) first for the
case when a and Q are independent of time. Then,
ao ———a+Q is also independent of time and equals
the solution used by Kramers If a .different initial
condition is chosen, the general solution with the
correct asymptotic behavior has the form

Q
Cexp( —2Qt)+1
C exp( —2Qt) —1

with C an arbitrary constant to obey the initial con-
dition. This form shows that a(t)+ao over a time
of order (2Q) '. A similar statement involving the
exponential

exp ~ 2f Q(t—')dt' .

can be obtained in the case where both a and 0 do
depend on time by assuming that a (t) differs from
—a(t)+Q(t) by terms which are small of first or-
der. These arguments together with our numerical
findings suggest that a (t) tends towards
—a(t)+Q(t) over times of order

~

2Q(t)
~

'. Since
Q(t) & coo, the time involved is less than
(2c00) '=3 X 10 sec. This time is much smaller
than the time needed for the onset of the rise of
Af(t) in all cases studied. Hence, a = —a+Q(t) is
sufficiently accurate for our purposes, and the prop-
erties of a (t) claimed above follow.

We evaluate Af(t) as the ratio of the current J(t)

at the saddle point,

J(t)=f dp pP(0,p;t)

to the normalization

N(t)= f dp f dxP(x,p;t) .

We evaluate J(t) by using a harmonic approxima-
tion to U(x) near x =0, and N(t) by using a har-
monic approximation to U(x) near x =xi. This
yields in a straightforward fashion

&f(t)=[(2m)' (1—p')' o.„o~] 'o~ (1—p')

(P+a)o& (1—p )—2e
X

(P+a)a~ (1—p }—e2 2

Xexp{ Efl((1 p—)cr„—tj, equi ) I .

It is easy to check that for t»p ', gf(t)~gk as
given by Eq. (7). The last factor on the rhs of Eq.
(23} is exponentially small at t =0, where
(1—p )o'„ptoi is typically 0.3 MeV or so; as o„2 in-
creases with time, this factor approaches the asymp-
totic value exp( —Ef/T) typical of the Kramers ex-
pression. The other factors in Eq. (23) approach
their asymptotic values oscillatingly or monotonical-
ly depending on whether the motion in the first
minimum is underdamped (P&2co,) or overdamped
(P& 2a~i).

Values of Xf(t) calculated from Eq. (23) are
shown as dashed-dotted lines in Figs. 4 and 5. We
first observe that there is a close agreement between
these and the dotted curves for both temperatures
and P & 1.0. While the overshooting seen for P=1.0
and T=1.0 MeV is naturally not reproduced, we
observe that the oscillatory structure or lack of the
same is reproduced at least qualitatively in all cases.
We now understand the origin of these oscillations
as being due to the underdamping of the motion
near x =x~. Upon closer inspection, the agreement
for P&1.0 is surprisingly good: The behavior of
Af(t) is governed by the exponential, the last factor
on the rhs of Eq. (23). It contains cr„ in the denom-
inator, which is approximated by the analytical ex-
pression that applies to diffusion in a harmonic os-
cillator. ' Figure 2 shows that this approximation
underestimates the correct value of o.„.Hence, we
should expect Eq. (23) to yield a curve which rises
more slowly than the numerically calculated one.
That this is not the case must be attributed to a
slowing down of the real diffusion process as it
reaches the saddle point, to the correction embodied
in the factors multiplying the exponential in Eq.
(23), or to both. The situation is even more striking
for P=5.0, where our formula leads to an underes-
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f r rather than to the converse situation.timation o r, ra er
We nevertheless conclude that Eq. (2 ) is cap
re roducing f t wi

'
or aA, ( ) ith sufficient accuracy or a

1 f main physical interest,range of P va ues o
0.1 & P & 2.0 or so, and 0.5 MeV & T &T E.

E nation (23) also yields the following semiquan-
te of the time r between initiation o'ta '

e 1 Usih d'ff 'on process and the attainmen o q
e rhs is the ex-tionarity. eThe governing factor on t e

settin1. We simplify the exponent by s gponentia. e s'

=0, and by omitting the oscillatory functions in

o . This yields for the exponent the approximateX

expression

—Efl[T(1—exp( —Pt))] .

A, (t) will be approximately equal to 90 o
11 boof the equilibrium value if at tiine t =r

als E /T ——0.1. Thismentioned exponent equa s
yields

-3
I

log n
TT
p= 0.5
P=1
P=1

p=5
p=5
P= 0.1

r=P 'ln(10Ef /T) . (24)

Equation (24) accounts qualitatively for the weak
tempera ure et dependence (for equal values o an
Ef} displayed in Figs. 4 and 5. For Ef/ = w
have ln(10Ef /T) =3.7, which agrees with our ear-

—1

Our derivation of expression (23) for Af(t) lac s
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'
1
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~ ~'
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numerically and analytically, emphasizing the study
of transients, i.e., of those processes which occur be-
fore the quasistationary probability flow over the
barrier is attained. We have calculated the "time-
dependent fission width" iris'~(t) in terms of the
current passing the saddle point. For large times

f1Ãf ( t ) approaches the value predicted by Kra-
mers, unless P, the friction coefficient, is unrealisti-
cally small, or if the temperature is comparable with
the fission barrier, or larger.

For the time r between initiation of the diffusion
process and the attainment of the quasistationary
situation, we have found that for P & Po, r decreases
with increasing P [see Eq. (24)], while for P&PO, r
increases with increasing P. Here, Po is given by
2coi, with coi the frequency of the oscillator potential
which osculates the true potential in the first
minimum. The condition P & Po (P & Po) is
equivalent to the underdamping (overdamping) of
the motion in the first well; the dependence of r on

P can qualitatively be understood along these terms.
For times t & r, the function AJ(t) is an oscillatory

(monotonic) function of t depending on whether

P &Pp (P)Po). This behavior again follows from
the underdamping (overdamping) of the motion in
the first minimum. We have given an analytical ex-
pression for A~(t) which describes the numerical re-
sults with sufficient accuracy in a wide range of
temperatures and P values to be practically useful.
Although our numerical results were obtained for a
restricted choice of potential parameters, we believe
that the discussion of these results as well as the
analytical approximation for A~(t) shows that their
main features are generic and of general validity.
We have also found that for P & Po, our results coin-
cide with those of an earlier model. This domain of
validity for the model of Ref. 5—the underdamped
motion —was qualitatively expected.

Folding the probability for neutron emission with
the time-dependent fission probability leads to the
expression for the probability for first-chance fis-
sion, in our model a function of excitation energy
and friction constant. We found that P~ is
modified —compared to the value calculated on the
basis of the Bohr-Wheeler formula —in two ways:
(i) P~ suffers an overall reduction due to the nonzero
value of P when transients are not included; (ii) tran-
sients change the energy dependence of PI at excita-
tion energies of several tens of MeV's (depending on
P); P~ tends to be significantly smaller than predict-
ed without the inclusion of transients in this

omain.
A significant reduction of the probability of first-

chance fission should clearly also lead to an increase
of the ratio of neutron over fission decays; a quanti-
tative analysis of this ratio must utilize a cascade
program together with our formula for A~(t); this
we have not yet attempted to carry out. It is
nonetheless encouraging that our results tend in the
direction of accounting for the experimentally ob-
served discrepancies. Another problem derives from
the situation encountered in some experiments in-
ducing fission with projectiles heavier than ' C or
so: The large available angular momentum reduces
the depth of the first minimum in such a way that
E&-T 2ficoi. In this case, fission may altogether
be governed by the transients, since ~ is not substan-
tially smaller than iii/I y. Examples for this type of
behavior were also studied.

The estimates for AI(t) and r obtained in this pa-
per relate to the attainment of quasistationarity at
the saddle point. We have not yet investigated the
analogous problem at the scission point, where it is
physically more meaningful. At this latter point,
the approximation leading to Eq. (23) does not ap-

ply. One could hope, however, that the form of
Ay(t) should apply equally at the scission point, with
an additional time delay reflecting the path of the
system from saddle to scission. This delay could
perhaps be estimated as in Ref. 16. Work on this
problem is under way.

Our work contains simplifications. We have
neglected the temperature dependence of P and of
the fission barrier; we have paid no attention to the
possibility of a double-humped fission barrier; we
have considered only a single degree of frizx:dom in-

stead of a multidimensional potential landscape
which could account for shape deformation effects;
we have paid no attention to the possibility that the
level-density parameter (and, hence, the nuclear tem-
perature) might change with x as a consequence of
shell effects, etc. In spite of these simplifications,
we believe we have identified in a unique way the in-
fluence of transients on the fission process. We
hope that further work on this problem will lead to
an improved understanding of the fission process,
and of the role of nuclear friction.

A CKNOWLEDGMENTS

One of us (H.A.W.) is grateful to Dr. H. C. Britt,
Dr. A. Gavron, Dr. J.R. Nix, and Dr. A. Sierk for
stimulating discussions. L.J.Q. acknowledges sup-
port of the Max-Planck-Society which enabled her
to visit Heidelberg.



27 INDUCED NUCLEAR FISSION VIEWED AS A DIFFUSION. . . 2077

~M. Brack, Fundamentals of the Fission Barrier, Lectures,
Winter Course on Nuclear Theory (ICTP, Trieste,
1979).

H. A. Weidenmuller, Progress in Particle and Nuclear
Physics (Pergamon, Oxford, 1980), Vol. 3, p. 49.

3K.T.R Davies, A.J. Sierk, and J.R. Nix, Phys. Rev. C 13,
2385 (1976);J.R. Nix and A.J. Sierk (unpublished).

P. Grange, H.C. Pauli, and H. A. Weidenmuller, Phys.
Lett. 88B, 9, (1979); P. Grange and H. A.
Weidenmuller, Z. Phys. A 296, 107 (1980).

5P. Grange and H. A. Weidenmiiller, Phys. Lett. 96B, 26
(1980).

F. Scheuter and H. Hofmann, Nucl. Phys. A394, 477
(1983).

7H. A. Kramers, Physica VII, 4, 284 (1940).
D. Agassi, H. A. Weidenmuller, and G. Mantzouranis,

Phys. Lett. 22C, 143 (1975).
N. Bohr and J. A. Wheeler, Phys. Rev. 36, 426 (1939).

' V. M. Strutinsky, Phys. Lett. B47, 121 (1973); Yad.
Fiz. 19, 259 (1974) [Sov. J. NucL Phys. 19, 127
(1974)].
A. Gavron, J.R. Beene, B. Cheynis, R. L. Ferguson,
F.E. Obenshain, F. Plasil, G.R. Young, G.A. Petitt, M.
Jaaskelainen, D.G. Sarantides, and C.F. Maguire, Phys.
Rev. Lett. 47, 1255 (1981); M. Kildir, D. Logan, M.
Kaplan, M.S. Zisman, D. Guerreau, J.M. Alexander,
and L.C. Vat, Z. Phys. A 306, 323 (1982), and earlier
work by the same group cited therein.

tzG.D. Smith, Numerical Solutions of Partial Differential
Equations (Oxford University Press, London, 1951).
U. Brosa and W. Cassing, Z. Phys. A 307, 167 (1982).
S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

5N. G. van Kampen, J. Stat. Phys. 17, 71 (1977).
' H. Hofmann and J. R. Nix, Phys. Lett. 122B, 117

(1983).


