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From an analysis of the effective potentials and the surface region behavior of quantum

mechanical radial wave functions, we find that the most interesting physical phenomena

taking place in ' 0+ Si scattering at E~,b ——55 MeV is the orbiting mechanism for i =24,
25, 26. We find that the orbital amplitude Ao(8) generated by these partial waves acts
coherently at large angles with the background amplitude Ab(8) describing the remainder of
the full amplitude. The enhanced large angle oscillations are caused by the almost, but not

complete, destructive interference between Ao(8) and Ab(8). Using appropriate mathemati-

cal techniques, we show that at large angles 8&180, both Ao(8) and Ab(8) are dominated

essentially by the same Legendre polynomial. This explains the observation of Takemasa
and Tamura that the cross sections generated by exact Regge pole terms behave quite simi-

larly to that generated by the corresponding Regge background terms. Furthermore, our

analysis clarifies the underlying reason for the success of the purely parametric Regge pole
model at large angles. We also compare the infinite sequence of Regge poles generated by
the barrier term in the Wentzel-Kramers-Brillouin formula for the "nuclear" S matrix and

the exact quantum mechanical orbiting Regge pole. The oscillatory behavior of the reflec-

tion function gI of the ' 0+ 'Si system at Ei,b ——55 MeV as a function of l for l below the
orbiting region is also explained.

NUCLEAR REACTIONS ' 0-2 Si scattering at E~ab ——55 MeV.
Analysis of orbiting phenomena. Regge poles related to orbiting.

I. INTRODUCTION

The experimental results of Braun-Munzinger
et al. ' on the scattering of ' 0 by Si at E~,b 55——
MeV is a very interesting case in heavy ion scatter-
ing (HIS}. The most dramatic feature of their data
is the rapid oscillation of the rather large differential
cross section in the back angle region. The theoreti-
cal analysis of this problem has generated several
potentials referred to as the E18, SD, GK, and LC
potentials. The E18 potential does not fit the large
angle data. Among these potentials, the LC poten-
tial is the most impressive and fits the data quite
well at all angles.

Because of the close similarity of the large angle
oscillations and the behavior of ~Pt(cose)

~

for a
suitable l = lg, the natural choice of Braun-
Munzinger et al. was to fit the data in that region
by a Regge pole term. This is essentially a
parametrization of the data and does not throw as
such much light on the underlying physical phe-

nomena occurring in the generation of large back
angle scattering. Mermaz has analyzed ' 0+ Si
data by including fluctuation terms in the
parametrized S matrix. The success of the LC po-
tential is very impressive and one is inclined to be-
lieve that this potential implicitly incorporates the
essential physical process occurring in ' O+ Si
scattering at E~,b ——55 MeV. In order to establish
the role of exact Regge poles in the analysis of this
problem, Takemasa and Tamura have computed
the cross sections generated by the exact Regge poles
and the corresponding background term for a num-
ber of potentials including the LC potential. One
curious finding of their work is the close similarity
between the cross sections generated by pole terms
on one hand and by the background terms on the
other. It is desirable to determine if this is more a
coincidence or a manifestation of some interesting
physical phenomena, and this forms one of the ob-
jectives of the present paper.

The main objective of this paper is to explore the
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key physical process that is occurring in the
' 0+ Si scattering under consideration. We find
that this phenomenon is the orbiting mechanism
occurring predominantly in three partial waves in
the vicinity of the barrier. We consider all partial
waves other than these three as belonging to the
background. We show that the back angle scatter-
ing features are the result of a very interesting kind
of almost destructive interference between the orbit-
ing partial waves and the background partial waves.
With our approach it is possible to explain why the
exact Regge background term generates a behavior
similar to that of the pole term. We can also under-
stand the correlation between exact Regge poles and
the orbiting phenomena and how a parametric
Regge pole is able to incorporate the effect of both
the Regge background amplitude plus the amplitude
from the exact Regge poles. We further study the
poles occurring in the WKB formula for phase shift
and exact Regge poles.

The plan of the paper is as follows. In Sec. II we
examine the features pertaining to orbiting in quan-
tum scattering and use them to analyze ' 0+ Si
scattering. In Sec. III the interplay between orbiting
partial waves and background is examined. This
section also contains the analysis of the similarity of
pole terms and background terms in a Regge-type
analysis and related aspects. In Sec. IV we further
examine the orbiting mechanism and other features
such as the relation between the poles of the
Wentzel-Kramers-Brillouin (WKB) formula for the
"nuclear" S matrix and the exact Regge poles asso-
ciated with orbiting. Section V contains concluding
remarks.

II. ORBITING PHENOMENA
IN QUANTUM SCATTERING

Let us consider the effective potential

L2
V,ff(L, r) = V(r)+ (1)

2mr
which describes the motion of a particle of mass m,
energy E, and angular momentum L in classical
dynamics. While approaching the potential center,
the particle can get trapped in a circular orbit of ra-
dius rp if E= V,ff(L, rp) &0, and rp is the Position of
maxima of V,ff(L, r). This is because at r=rp, radi-
al kinetic energy E,=0, and L /2mr accounts for
the rotational kinetic energy. If V,ff(L, r) is reason-
ably flat around r =rp, then the particle having en-

ergy slightly different from V,ff(L, rp) will also
spend a considerable length of time in the region
r -r p undergoing mostly rotational motion or orbit-
ing. Thus, what characterizes orbiting or almost or-
biting phenomena in classical mechanics is the
motion with E,=0 or E,=O in the neighborhood of
the barrier of V,ff(L, r ). To carry out the analysis of
orbiting phenomena in a completely quantum
mechanical HIS formalism, we express the effective
potential as

V,ff(l, r) = V„(r)+iW„(r)+V,(r)+l(l+. 1)/r . . (2)

Here we have adopted Pi= 2p = 1 unit.
( V„(r)+iW„(r)) is the nuclear optical potential
VN(r), V, (r) is the electrostatic potential, and
l(l+1)/r is the centrifugal term. Now we observe
that in the case of HIS and in the neighborhood of
r =Rs corresponding to the maxima of
Re( V,ff(l, r)),

vff(l, r)
I

=
I
v ff(l+ l, r) —v ff(l, r)

I
&&

I
v ff(l, r) (3)

For example, one finds Rev, ff(O, R&)=20.3 fm
and Rs-9.74 fm in the case of the HIS potential
describing ' 0+ Ni scattering at E&,b

——60 MeV,
whereas

gfVf(l, r )=(21+ 1 )/Rff

This is only -0.53 fm even for a large, partially
absorbed surface region partial wave l =25. Hence,
if k =Re fVf(el, R&) for a surface region partial
wave l=ip, k =Rev, ff(I,Rs) even for neighboring
partial waves like l =lp+1. In addition, if
ReV,ff(l, r) is reasonably flat around r =Rs l lp,
then it is reasonable to expect that several partial
waves, and in particular those with l =lp lp+1, will

undergo orbiting phenomena around the barrier.
This gives rise to the possibility of these partial
waves acting in coherence to generate a characteris-

d l(l+ 1)
P(l, k, r )+ k —V(r) —P(l, k, r ) =0 .

dT r

The operator

(4)

I

tic feature in the scattering data. From these con-
siderations we find that in order to make a clear
analysis of orbiting phenomena in HIS one should
examine whether V,ff(l, r ) is reasonably flat for a set
of a few partial waves which are not fully absorbed
and for which ,V(flf, R )s= k. If this criterion is
satisfied, an appropriate signature in the behavior of
the quantal wave function correlated with orbiting
should be identified.

For this purpose we consider the (modified) radial
Schrodinger equation in R=2p =1 unit:
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is clearly associated with the radial kinetic energy
II„. If

~P"(i,k, r}
~

&&
~
P(l, k, r)

~

and is close to zero in the region
R~ —h&r &R~+5, that implies that the average
radial kinetic energy E, around r =Rz is small and
most of the mechanism is owing to orbiting. If this
feature manifests only in one partial wave and b is
too small, it may not be able to generate a measur-
able effect in HIS data since a large number of other
partial waves are also contributing. Therefore it is
important to see if it happens to a set of partial
waves over a fairly wide range. Then it can be ex-
pected to give rise to measurable effects. We
demonstrate that this is the phenomenon occurring
in the ' 0+ Si scattering under investigation.

The remarkable success of the LC potential in fit-
ting the ' 0+ Si data at Ebb ——55 MeV makes it
our natural choice for the analysis of orbiting. That
our results pertain primarily to the physical process
occurring in the ' 0+ Si system and not a special
feature of the LC potential will be made clear at a
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FIG. 1. ReV,ff(l, r) for a set of 1 corresponding to the
LC potential and the ' 0+ 'Si system at Ehb ——55 MeV.
V ff(l, r ) for 1=24,26 are too close to 1=25 and hence not
shown.

later stage by reproducing the essential features with
the SD potential. Figure 1 shows ReV,ff(l, r) for
several 1 as a function of r for the ' 0+ Si system
at the E~,b ——55 MeV with the I.C potential describ-
ing the nuclear interaction. The form of the LC po-
tential is different from the usual Woods-Saxon
form and is given by

r —R r —RV(r) =(286.5+ 19.7i ) 1.+0.99exp +exp3.7
MeV,

R=1.122(Ai'~ +Hi'~ ) and r, =1.2 fm .

V ff(l, r) for 1=24,26 are too close to that of 1=25
and hence are not shown in the figure. It is clear
that orbiting phenomena are most likely to occur for
the set 1=24,25,26 and around Rs-8.4 fm. The
effective potential appears reasonably fiat in this re-
gion, but a further clarification of "reasonable flat"
is desirable. %e do this by making a comparative
study of V,ff(l, r) for ' 0+ Ni at 60 MeV and that
of ' 0+ Si given in Fig. 1. V,tt(l, r) for the former
is computed from the optical potential of Ref. 4.
' 0+ Ni scattering considered here is a typical
case of HIS and does not show back angle oscilla-
tions, and therefore is suitable for comparison pur-
pose. Figure 2 shows the V,tt(l, r) for both of these
cases in the surface region along with

Vett(l, r )
d
dr

for appropriate partial waves. The latter gives fur-
ther clarification of the notion of flatness of
Vett(l, r) and shows that the ' 0+ Si effective po-

tential is significantly fiatter around the barrier, fur-
ther indicating the possibility of the occurrence of
quantal orbiting phenomena for 1=24,25,26. The
partial waves 1 &24 are highly absorptive and for
1~26 barrier reflection can be expected to be the
major physical process. In the ' 0+ Ni case
V ff(l, r ) falls rather steeply on either side of the bar-
rier (Rii -9.5 fm), making significant and stable or-
biting unlikely for a consecutive set of partial waves.

In Figs. 3—5 the variations of P(l, k, r ) and
P"(1,k, r ) in the barrier region are shown for
1=24,25,26. P(l, k, r } is the regular solution of Eq.
(4) behaving like r +' near the origin and is comput-
ed by integrating in steps of h =0.01 fm. The con-
stants Ct are such that $(l,k, ho) = 10 with
ho ——(1+1)h. It is well known that P(l, k, r) for a
complex potential builds up very rapidly, resulting
in large values of Ct, However, it is the relative
behavior of P(l, k, r) and P"(I,k, r ) in the surface re-
gion which is of crucial significance for our pur-
poses. Figures 3(a), 4(a), and 5(a) indicate the rapid
buildup of P(l, k, r) in the barrier region around
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Here g is the Coulomb parameter, o.i is the
Coulomb phase shift, and S~(l,k) is the nuclear S
matrix. Now we define the amplitudes Ap(8} and
Ab(8) associated with the orbiting partial waves and
the background partial waves:

I=E~

Ap(8}= . g (2l+1)e
)k I

X [Sz(l,k) —1]P~(cos8), (8)
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Ab(8) =A(8) A—p(8) .

1; & I & If defines the range of orbiting partial waves.
In our case 1; =24, and lf ——26. 0(8), oo(8), os(8),
and 0~(8) are the differential cross sections associ-

l00

ated with ampltiudes A(8), Ao(8), Aq(8), and A, (8),
respectively. Figures 6(a)—6(c) show 0'(8)/oa(8),
oq(8)/oa(8), and 0'o(8)/az(8), respectively. All
cross sections are computed at 0',2.5', 5', . . . , and
figures are drawn by making smooth curves over
these points. The very close and almost identical
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FIG. 6. (a) o(8)/aq(8) for ' 0+ Si at E&,b
——55 MeV generated by the LC potential. (b) o'&(8)/oq(8) for ' O+2SSi at

Et,b ——55 MeV generated by the LC potential. (c) cro(0)/0. z(8) for ' 0+ Si at E&,b ——55 MeV generated by the LC poten-
tial.
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FIQ. 7. (a) Variation of ReAo(8) and ReAb(8) as a function of 8 for the ' 0+ Si system at E~,b ——55 MeV for the LC
potential. (b) Variation of Imago(8) and ImAb(8) as a function of 8 for the system specified in Fig. 7(a).

behavior of ob(8)/oz(8) and o'o(8)/os(8) for
8 & 100' is striking. Moreover, these are much larger
than 0(8)/os(8) at large angles.

The obvious explanation of this is the more or
less, but not complete, destructive interference be-
tween Ab(8) and Ao(8). In Figs. 7(a) and (b) we
show the behavior of these amplitudes as a function
of angle, which makes it very clear that orbital am-
plitude Ao(8) is almost out of phase with Ab(8).
Both a'o(8)/0'g (8) and ob (8)/os (8) generate
enhanced large angle oscillations. It is the subtle,
but not complete, cancellations between Ab(8) and
Ao(8) which are responsible for comparatively re-
duced, but still significant and enhanced, back angle
osci11ations; it appears that the orbital amplitude be-
comes almost out of phase with Ab(8) in the process
of orbiting. A heuristic mathematical and physical
analysis of the origin of this phase difference will be
described later.

Before concluding this stx:tion we show that the
interesting features described above are not a special
characteristic of the LC potential; any potential
which can fit the ' 0+ Si data manifests essential-
ly the same features. For this purpose we consider
the SD potential which has a Woods-Saxon radial
form for both real and imaginary parts, and in the
standard notation the potential parameters are the
following: Vo ——27.456 MeV, ro = 1.31 fm,
ao=0 485 fm, Wc=4 865 MeV, rr= 1 277 fm,
ai ——0.323 fm, and r, =1.0 fm. In Fig. 8 we show
the behavior of P"(l,k, r ) for typical l =26, which is
also on the barrier region and builds up rapidly
afterwards. Similarly Figs. 9(a)—(c) show the varia-
tion of o'(8)/os(8), ob(8)/crt(8), and tro(8)/try(8),
respectively, and generated by the SD potential. The
patterns of the back angle oscillations of
orb(8)/o'z (8) and oo(8)/os (8) are very similar. It is
true that in this case the results are slightly less im-
pressive as compared to those obtained using the LC

16 280+ Si

a.o- Ft g =55M
SO POTF

L= 26

l.O
N

0.0

RE, AL--- fNAG

- I.O

- 2.0
7.5
r (fm)

FIG. 8. Variation of P"(I,k, r) on the surface region
for I=26 using the SD potential.

potential. This should not be surprising because the
SD potential does not provide as good a fit to
' 0+ Si data as the LC potential does. However,
both potentials retain the feature that both Ao(8)
and Ab(8) generate rapid and large back angle oscil-
lations and they are more or less out of phase gen-

erating reduced large angle oscillations in
cr(8)/olt (8). This indicates that subtle, and almost
destructive, interference between Ao(8) and Ab(8)
represents a characteristic feature of the 'sO+~sSi
collision at EI„——55 MeV.

Just for thoroughness and for the purposes of
comparison, in Fig. 10 we give P"(I,k, r) generated
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FIG. 9. Same as Fig. 6 with the SD potential.

for '60+ Si for the l =24,25,26 system at 55 MeV
for the LC potential without the imaginary part. In
this case, one also finds the reduced values of
P"(1,k, r) around the barrier region. It is, however,
worth noting that the physical characteristics gen-

crated by a real potential will be different from the
HIS case because of the absence of more or less
complete absorption of lower partial waves. We will
not discuss further the case of real potential orbit-
ing.
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III. ORBITAL WAVE AND
BACKGROUND %'AVE INTERFERENCE

In order to further elucidate the nature and origin
of the interference between Ao(8) and Ab(8) we
write

Ab(8) =A;„,(8)+A,„,(8),
where

I; —I

A;„,(8)= g (2l+1)e 'Sb(l, k)Pt(cos8)
1=0

(10)

and A,„,(8) then gets defined by (10). Highly ab-
sorbed partial waves, for most of which

!Sz(l,k)!=0, contribute to A;„,(8), and therefore
we expect A,„,(8}to give a dominant contribution to
Ab(8) and hence to the interference betweeen Ao(8}
and Ab(8). This is demonstrated by Figs. 11 and 12.
In Fig. 11 we show the variation of Ao(8) and
A«, (8) in the large angle region 120'&8&180'.
Figure 12 shows the variation of A;„,(8) in the same
region. Comparison of Figs. 7 and 11 makes it clear
that the A,„,(8) plays the major role in the dramatic
interference between Ao(8) and Ab(8). That is, the
primary physical phenomenon which occurs at large
angles is the interference between the orbiting partial
waves and the external, Coulomb dominated partial
waves.

Now, since Ao(8) has only three orbiting partial
waves, it is reasonable to expect that they can be
reproduced by the Regge-type representations of
the nuclear partial wave amplitudes in terms of the
exact poles in the orbiting region of l. This will be
discussed in Sec. IV. The dominant poles will take
into account a substantial part of the Ao(8). Simi-
larly Ab(8), and to a little lesser extent A,„,(8),
should account for most of the Regge background.
Now we will demonstrate mathematically that the
large angle variation of both Ao(8) and A,„,(8) is
dominated by the same Legendre polynomial. In a
somewhat more approximate sense, A;„,(8) is also
dominated by the same Legendre polynomial at
large angles. Identifying Ao(8) with the pole dom-
inated part of the amplitude, and Ab(8) or A,„,(8)
with the Regge background dominated part of the
amplitude, we immediately obtain a heuristic
mathematical explanation for the similarity in the
cross sections generated by pole terms and Regge
background terms observed in Ref. 2.

In order to do this we first examine the variation
of the reflection function

I

't6 28 E ss MIy!0+ Si «b
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l.o I---Re Aext (.8)
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---- ~e Alkxt (e)

- l.O

lao too )6o
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l
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l

I oo l60
e

l80

FIG. 11. Variation of Ao(0) and A,„,(8) with 8 for the
system specified in Fig. 7(a),

v)1=!Sb(l, k)!
as a function of l in the caes of (i) ' 0+ Si at
Ehq ——55 MeV and (ii) ' 0+ Ni at E~,&

——60 MeV
(Fig. 13). The latter does not show back angle
enhanced oscillations. In Table I we also list S-
matrix elements for 23 & l &29. The transition from
almost complete absorption (rh-0) to almost pure
Coulomb scattering (g~-I) is more rapid in the
' 0+ Si case and the most important partially ab-
sorbed (0&pi &1) partial waves are the orbiting
waves. In the ' 0+ Ni case this transition is rath-
er slow. We notice that in the absorption region of
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LC POTENTlAL o~ ——argr(1+ I+i') .

Sut6

r (x)
argl (x+iy)= y

(13)

Now we note that 1; is large. In our particular case
1 =L =24. In order to determine the dominant
behavior of A,„,(8) we proceed as follows.

0.0

y —arctan
x+n

(14)

-9.0
120 140 160 180

We can further simplify this to obtain

I"(x)
argI (x+iy ) = y

oo ] y

o 3 x+n
1

5 x+n

5

FIG. 12. Variation of A;„t(8) with 8 for the system
specified in Fig. 7(a). + ~ ~ ~ (15)

' 0+ Si, even though gI-O, it shows l-dependent
structure which is absent in the ' 0+ Ni case. The
reasonson for this will be examined later. In view of

fthe former observation and also for the purpose o
demonstrating the results analytically, we approxi-
mate SN(A, ,k) 1 for 1&lf in the case of 0+ Si16 28

and write

A,„,(8)~,„,(8)

(21+ 1)e 'Pi(cos8) .
2ik I

1.0

16 2
0 +

&tab =

0.5

Similarly,

r/ —=lnx — +0(x ) .
I (x) 2x

Since x is large (x &L+1=25 in our case), and y
( =g=9.51) is much smaller compared to x, we ob-
tain to the leading order and for large 1 & L,

cr~=ri ln(1+ 1) .

Therefore we approximate

(8)= . g (21+1)(1+1)'"PI(cos8) .
2ik L

(17)

Now we evaluate (17) using the Poisson summation
method. We write

~...(8)= . g f (21+1)(1+I)"v

Xe2Imlmp (cos8)di

I I I

0 10 20 30 40

FIG. 13. Variation of the reflection function qI as a
function of I for (i) ' Q+ Si at E~,b ——55 MeV and (ii)
' 0+' Ni at Ebb ——60 MeV. Potential for the latter is
specified under Fig. 2. 6/ is the change in I when g~
grows from gl ——0.1 to g~=0.9.

For large angles m =0 is the most dominant temp.
Also we approximate

(21+1}(1+1}"~=2k,"v+',

Then one gets
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But for large A, we have

A =L+ , . —(19)

Pq, &2(cosg) = [(n./2)A, sing]

A,„,(8)=—f diL A, '~+'P~ ~&2(cosg),
ik

1/2 ' —1/2
( g)

2 (8' Slllg)
ext

(Ag /4)
cos(A8 —77/4)

+2k'g
APt, &&&(cosg')

iko

X cos[A,8—m/4) .

Substituting (20) in (19) and integrating we get

A„„,(8)= —. (m. sing) '~ 8
l,k

X [ C(A8, 2iri+ —, )

+S(A8, 2i ri+ , )],—

where C and S are Fresnel integrals

(20)

(21)

1——P~,~, (cosg), 8&m. , (24)

where 8'=8+m/2A 8, and for large A, 8&m..
Therefore, the leading term analysis shows

A,„,(8)= 1

2ik

lf
Ao(8)= g (2l+1)e '[S~(l,k) —1]

2A '&
(A —1/8) PL, (cosg), g&~.

(25)

Equation (25) clearly shows that for large angle

A,„,(8) is dominated by a single Legendre polynomi-
al which explains the mathematical origin of the
similarity of behavior of the Regge background term
and the Regge pole amplitudes.

Now let us consider the Ao(8) for the ' 0+ Si
case:

C(x,a) = f t 'cost dt, (22}

S(x,a) = f t~ sint dt . (23)

Using the leading terms in the asymptotic expan-

sions for C(x,a) and S(x,a) (Ref. 8, p. 150) one ob-

tains

(26)XPt(cosg) .
We recall that l; =L =24, lt =26, and set

L =(l;+lf)/2=L+1 .
Using (20) it is easy to see that for large angles
160'&8&180' we can have the following approxi-
mations with errors of -10%%uo.

Pi (cosg) = PI(cos8) = —Pt (, cosg) . —
l f

Therefore, for large angles 8 & n, .

t lf
Ao(8}= . ', Q(2l+I)e '[Stt(l, k) 1](—1)~ ~ P-—(cosg) .

2ik
(27)

In order to stress our point we computed the quantities in the curly brackets in (25) and (27) at 8=~ They
have magnitudes of approximately 16.03 and 34.88, respectively. More important, their respective phases,
—70' and —75', are approximately the same; that is, they are approximately in phase. From (20) it is clear
that in the neighborhood of 8= 180', PL (cosg) and P~ (cosg} will be almost out of phase because L =L+ 1, and
8&m. This clearly demonstrates that one can expect Ao(8) and A,„,(8) to be approximately out of phase for
large angles. It is as though the partial waves which are undergoing orbiting gain an extra phase due to orbit-
ing. A possible physical explanation for this will be given in Sec. V.

Equation (27) further demonstrates why a phenomenological single pole Regge representation should be able
to account for the Ao(8) and the similarity of the behavior of the pole term amplitude and background ampli-
tude in a Regge analysis in the ' 0+ Si scattering. Furthermore, we note that if one approximates for 8 & n.

A(8)~0(8)+A,„,(8) .

Using (25) and (27) one can write

(28)
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I
2l cTI

A(8)= (A —I/O) —g (2l+1)e '[Stv(l, k) —1](—1) .Pt. (cos8) .
2ik 8

L —1

A;„,(8)= . g (21+1)Pt(cos8),
21k

(30)

where e is the average value of S(i{,,k) ( =0} in the
absorption region 0 & I &L —1.

Using the integral representation

1 ~ IPt(cos8) =— (cos8+i sin8cost) dt, (31}

we can write

L —1

A; ~(8)= .„ I dt g (2l+1}x', (32}

where

x =(cos8+ i sin8 cost )

=—&+i (m 8)cost+— (33)

for 8 & m. It is straightforward to carry out the sum
in (32). One readily gets

L —1 1+x 2x +'
g (2l+1)x'=

(1—x) (1—x)2

2L+1 x
1 —x

Since x=—1 for 0 (m, and L is large, we get

g (2l+1)x =—(2L + 1)
2

x — x2
0

(34)

(35)

For 0 close to ~ the quantity in the curly bracket in
(29) is almost independent of 8, and hence A(8)
given by (29) is dominated by a single Legendre poly
nomial at large angles. This analysis neatly eluci-
dates the origin of large angle oscillations in
' 0+ Si scattering and explains the mathematical
and physical reason for the success of a phenomeno
logical Regge pole representation (without back-
ground} in the analysis of large angle data. The or-

biting phenomena taking place in a few partial
waves are in a sort of coherence and their almost
destructive interference with the amplitude generat-
ed by peripheral partial waves results in the domi-
nance of a single Legendre polynomial in the large
angle region. This conclusion is not affected even if
one incorporates A;„,(8), as seen from the numerical
results of Sec. II. Moreover, it is possible to exam-
ine in an approximate way how A;„,(8} is likely to
behave for large angles. In order to do this we write

Using this we get for 8 & m.

A;„,(8)= . 1 [(2L+ l)x +x~+']dt

[ (2L+ 1)Pt (cos8)
4ik

+Pt. + &(cos8)], 8 & n. (36)

—eL
Pt, (cos8), 8 & n .

2rk

This heuristic estimate of the large angle behavior of
A;„,(8) and the fact that ~S&(l,,k)

~

=0 for 1&l;
shows that Ab(8) will be dominated by the behavior
of the Legendre polynomial Pt (cos8) for 8 &n..

Our above analysis leads to the following deduc-
tions applicable to the ' 0+ 'Si system at E],g =55
MeV:

(a) Orbiting phenomena is predominantly taking
place for three important large consecutive partial
waves l =24,25, and 26, and the asymptotic analysis
of the Legendre polynomials indicates that Ap(8)
behavior is dominated by P~(cos8), L=25. This
also indicates that Ap(8} can be reasonably well
reproduced by quantum mechanical Regge poles in
the neighborhood of L.

(b) Mathematical analysis of A,„,(8) and A;„,(8)
and hence Ab(8) indicates that the behavior of Ab(8)
will be dominated by Pt (cos8) for 8 & m and hence it
can be expected to be almost out of phase with
Ap(8). Ab(8} essentially represents the background
in an exact Regge pole analysis. This explains the
similarity in cross sections generated by exact pole
terms and background terms.

(c) Since at 8 & n, Ap(8) is dom. inated by Pz (cos8)
and Ab(8) by Pt (cos8) with L =L+1, one essential-

ly gets a single Legendre polynomial dominance
[Pt(cos8) or P~(cos8)] in the back angle region
This provides an explanation of the back angle oscil-
lation and the success of parametric Regge represen-
tation in that region.

Thus we have traced the origin of the large angle
entrance oscillations to the presence of orbiting
occurring in a few (three) large l partial waves, sin-
gle Legendre polynomial dominance in both Ap(8)
and Ab(8), and the almost destructive interference
between Ap(8) and Ab(8). Since in other typical
HIS the number of important partial waves for
which S~(l,k) is neither close to zero nor unity is
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considerably large (Fig. 13), the present analysis will
not be applicable. In these cases the dominance of a
single Legendre polynomial is unlikely, thereby
causing cancellation between different partial waves
in the back angle region resulting in high damping
of cross sections.

construction of different types of Regge representa-
tions. ' In Table I we list the (SN(l, k ) —1) generated
by the representation

IV. OTHER RELATED FEATURES

In this section we describe several other aspects of
' 0+ Si scattering related to orbiting. A, =l+ —,, A,„=a„+—„)=0.21,

(37)

A. Nuclear molecular resonance

The Ti composite system obtained by
' 0+ Si

elastic scattering shows interesting resonance
features. ' " Of particular interest to us are the res-
onances at J=24 observed at E~,b ——55 MeV, i.e.,
E, =35 MeV. The interpretation of this reso-
nance as being due to orbiting clusters" is consistent
with our analysis. V, f(f24, r) is maximum at r =8.4
fm, is flat in the neighborhood, and takes into ac-
count almost the entire E, . From Figs. 1 and 2,
and the fact that the radial wave function builds up
very rapidly in this region (Figs. 3—5, we can con-
clude that the resonance at E, =35 MeV is an or-
biting resonance localized around the barrier and not
in the interior well. However, our calculations using
the LC potential indicate that the l =25 partial wave
is an equally good candidate for this resonance, and
for i=26 the maximum of V,ff(l, r) is about 1.2
MeV larger than E, . We believe that since

~

P~(cos8) ~, 8&180', with 1=24,25 will oscillate
similarly, the resonance structure at E, =35 MeV
may be due to an orbiting resonance at both i =24
and 25 and perhaps at l =26 also.

B. Exact quantum mechanical

Regge poles and orbiting

Takemasa and Tamura have listed a number of
exact Regge poles for LC and other potentials. The
most interesting among these for our discussion is
the pole at a2 ——25. 14+1.33i in the l plane corre-
sponding to the LC potential. Two other poles of
interest in the immediate vicinity are
a~ ——26.81+1.34i and a3 ——23.5+1.72i. Similarly
the leading pole in the SD potential is

ao ——24. 80+1.17i. From these and from the fact
that SD and GK potentials fit large angle data quite
well, we find that the Regge poles a2 of the LC po-
tential or ao of the SD potential can be associated
with the i=25 resonance associated with orbiting.
The considerably large Ima& also indicates that the
pole is unlikely to be associated with a sharp reso-
nance generated inside the potential well.

The Regge formalism gives a wide choice for the

C. Quantal and semiclassical Regge poles

The application of the WKB method for the
analysis of HIS is rather extensive. We will in par-
ticular consider here the approach of Brink and
Takigawa. ' We assume that there are only three
important WKB turning points r~, r2, and r3 in the
vicinity of real axis in the complex r plane. This as-
sumption is valid for the LC potential. Further-
more, we assume Rer& gRer2~Rer3. The range
(Rerz, Rer ~ ) corresponds to the barrier domain. The
three turning point WKB expression for SN(l, k ) is'

exp(2i5~)
S~(l,k) = Ete'

exp(2153)

N(i e)[gati(i e)+exp(2iS32)]
(38)

where

using the poles a2 and a3 and residues Pz and Ps of
S~(l,k) for the LC potential. The results show
that the important orbiting partial wave amplitudes
are fairly well reproduced by the Regge representa-
tion using the poles in the barrier region. However,
in view of the extremely subtle cancellations in-
volved between Ao(8) and Ab(8) in generating the
observed back angle data, for quantitative calcula-
tions Ao(8) generated by the exact pole parameters
in the orbiting region without the inclusion of the
corresponding background terms will not be ade-
quate. Evaluation of exact quantum mechanical
Regge poles is of interest for a better understanding
of the physical phenomena associated with reso-
nance structures. However, for the purpose of fit-
ting the data at the back angle region, perhaps a
purely parametric Regge pole is suitable since it can
be made to take into account both Ao(8) and Ab(8)
as explained in Sec. III. Naturally the real part of
such a parametric Regge pole will be close to the or-
biting partial wave.
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I

5i l—i—mR~ao ~ f [k —V~(r) V—,(r) A—, /r ]'~ dr —f [k —V, (r) A, —/r ]'~ dr
1 C

(39)

5& 5——i+i me+. Si2,
r&

S; = f [k —Vz(r) V, (—r) A, /—r ]'~ dr,
r,

le=—S12 ~

(40}

(41)

(42)

N(ie) = {43}

It is clear from (38) that information regarding the
barrier region is contained in N(ie) and therefore
can be associated with the orbiting region. Brink'
relates the poles of S~(l,k) in the l plane generated

by N{ie)=0 with the orbiting phenomenon. Due to
the presence of I'( , +if)—in (43) one expects N(if)
to generate an infinite number of poles in the I plane

even though only those close to the real axis in the l

plane can be expected to be important. Our exam-

ination of exact Regge poles for the LC potential
shows that the pole ai specified earlier can be inter-

preted as the dominant, exact, quantal Regge pole
associated with orbiting. Therefore it is of interest

to see the correlation between the exact, quantal or-

biting Regge pole and the sequence of poles generat-

ed by N(is) in the WKB expression (38}.
We computed the Regge poles A,

wKB in the A,

plane generated by setting N(ie}=0 in the case of
the LC potential at E, =35 MeV corresponding

to Ei,b ——55 MeV for the ' 0+ Si system. These

are given by

TABLE I. Comparison of exact S~(l,k }—1 and those

generated by Regge representation (37). The LC potential
is used. Pole parameters are from Ref. 2.

23
24
25
26
27
28
29

Exact

—0.817+0.145i
—0.693+0.291i
—0.480+0.380i

0.244+0.349i
—0.082+0.225i
—0.028+0.123i
—0.011+0.061i

SN(l, k) —1

Regge representation

—0.646—0.021i
—0.673+0.216i
—0.517+0.364i
—0.273+0.350i
—0.135+0.244i
—0.076+0.127i
—0.045+0.068i

Here r, is the Coulomb turning point. If
V, (r) =2gk/r

r, =[ i}+(A,'+g')'~'] /k .

——a2+0.5=25.64+1.33i . (46)

This shows that the exact quantal orbiting pole is
correlated with a sequence of infinitely many poles
of the corresponding WKB expression for Sz(l,k)
such that ReA,„=ReA,z~ . However, the nuclear
potential in our case is smooth and short range and
therefore exact S~(l,k) cannot have an infinite
number of poles in the right half plane. But the
WKB expression for SN(l, k ) has a different analyti-
cal structure than that in the exact S~(l,k}. This
should not be surprising because the WKB method
does not conserve all the analytical properties of the
S matrix. However, in view of the correlations
shown above, Brink's idea' of correlating the !-
plane zeros of N(ie} with orbiting is correct within
the WKB formalism and the real part of these poles
is close to the orbiting l.

D. Structure of gI in the absorption region

One of the interesting and apparently puzzling
features in ' 0+ Si scattering at E»b ——55 MeV is
the oscillatory structures displayed by the reflection
function in the absorption region close to the orbit-
ing partial waves. Typical cases of HIS which do
not manifest large angle oscillations do not show
such structures in i}i. Figure 13 clarifies this point.
We offer the following explanation for this contrast-
ing behavior of qi as a function of l.

First we consider i}i for typical HIS, like the g7
for ' 0+ 'Ni at Ei,b ——60 MeV (Fig. 13). In a typi-
cal heavy ion collision, it is reasonable to assume
that the amount of absorption generated by a given
region will depend on the ratio

W„(r)
y(l, k, r) =

k —V„(r) V, (r) l(1+1)/r— —(47)

=25.52+0. 187i +(0.041n }i,
n =0, 1,2, . . . . (45)

The corresponding exact quantal Regge pole is
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since W„(») is responsible for absorption and the
denominator corresponds to pure scattering in the
absence of IV„(»). But in typical HIS one has
r/~-const=0 for /&/, . Therefore one can say that
r/~ is independent of / for /&/, . This implies only
that domain of » is important for full absorption in
which y(/, k, ») or V,ff(/, ») is more or less indepen
dent of /. It is reasonable to expect that due to the
reduced kinetic energy and hence the increased time
spent by the colliding system around the barrier,
maximum absorption is taking place in that region.
It is found that if energy is not close to the Coulomb
barrier, y(/, k, ») for typical HIS systems is indepen-
dent of / in the neighborhood of the position of
» =Rz of the Coulomb barrier for / &/, . This is be-
cause

Ik' —V. (»)'—V, (»)
~

»~'/»', /&/„»-R, . (4g)

For example, for the ' 0+ Ni system at E~,b ——60
MeV shown in Fig. 13, Rs -9.74 fm,

~

k —V„(»)—V, (»)
~

-9.75 fm

at »=Rs. Hence the inequality (48) is quite valid
for /, =16. In fact, in this case /&20 are more or
less fully absorbed. Thus we find an interesting
correlation between full absorption for l &l, and
surface dominance of typical HIS.

But in the ' 0+ Si case under study the situa-
tion is different. In this case

k —V„(») V, (»)=-/(/+1)

/; &/ &/f, »=Rs (49)

Therefore for /&/; (but not /« /;} the inequality
(48) will not hold and hence we cannot assume
y(/, k, ») to be more or less independent of / for / & /;
in the vicinity of /=/;. This means r/~ in this region
can be expected to show considerable variation as a
function of /. Figure 13 makes this amply clear.
We can conclude that if for a set of important par-
tially absorbed partial waves in the barrier region
ReV,ff(/, »)-k, »-Rs, then g~ can be expected to
show some significant / dependence even for the
strongly absorbed partial waves. This condition is
fulfilled by the orbiting partial waves in the case of
' 0+ Si at El,b

——55 MeV.

V. CONCLUDING REMARKS

From our extensive analysis of ' 0+2 Si scatter-
ing at E~,b ——55 MeV we find that a set of three or-
biting partial waves contributing to orbital ampli-
tude Ao(8) play a crucial role in the back angle
enhanced oscillations of the scattering cross section.
It is found that Ao(8} and the background amplitude
Ab(8) act almost coherently at large angles 8& 180'

and the interference between them is almost, but not
completely, destructive. It is tempting to interpret
the almost n. phase difference between Ao(8) and
Ab(8) at large angles as due to the "thin film effect"
generated by the barrier. Let us maintain 0= 180' in
order to clarify this point. Outside the barrier,

k.ff = lk' —Veff(/ »)1'"
is quite large as compared to keff on the barrier.
Furthermore the "thickness" of the barrier (say
about 0.5 fm around»=8 5fm. ) is small compared
to the de Broglie wavelength A, =2m/k in that region
for the orbiting partial waves. For example,
jeff 19.8 fm for / =25 at » =8 4fm. . Even in the
region just outside the barrier, A,,ff is fairly large
compared to the barrier width. Therefore the "re-
fractive index" of the "thin" barrier region is large
in comparison with the outside region. Now, using
the analogy of wave optics we can conclude that
Ao(8) reflected from the interior region of the bar-
rier will be out of phase with A,„,(8}describing the
scattering from the outside region. Thus we obtain
a simple qualitative and interesting explanation of
the origin of the almost destructive interference. We
will not attempt rather involved detailed wave optic
analysis of the general problem in view of the com-
plete quantum mechanical analysis described earlier.

We find from our mathematical analysis that at
large angles 8 & 180', both A o(8) and A&(8) are dom-
inated by the same Legendre polynomial. This au-
tomatically explains the similarity of the cross sec-
tions generated by the exact Regge pole amplitude
and the corresponding Regge background ampli-
tude. Similarly, the same Legendre polynomial
dominance in Eq. (29) explains the success of a pure-
ly parametric Regge pole model in explaining the
back angle enhanced oscillations. Furthermore, in
our calculations using the LC potential we find that
the sequence of infinitely many Regge poles generat-
ed by the barrier region in the WKB formula for the
S matrix can be correlated with the exact quantal
Regge pole associated with orbiting. Similarly, the
physical origin of the oscillatory structure of g~ in
the absorption region is found to be correlated with
the fact that ,V(ffR/z}=k for the set of orbiting
partial waves.
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