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Using a multiple scattering framework we construct a variant of the usual distorted-wave
Born approximation transition matrix for stripping and pickup reactions. An alternative to
the local energy approximation is derived which in the appropriate limit gives the common-

ly used zero range approximation for (p, d) and (d,p) reactions. Model calculations are
developed in an eikonal framework and an examination of the sensitivity and energy depen-
dence of the nuclear response function is made, using the ' C(p, d) "C(2, g.s.) process.

NUCLEAR REACTIONS (p, d), (d,p), intermediate energy, multiple
scattering formalism with direct treatment of realistic nucleon-nucleon

potential.

I. INTRODUCTION

As nuclear reactions are studied at higher energies
it has become apparent that theories developed for
low-energy applications are increasingly taxed to
yield results for comparison with data. For direct
nuclear reactions such as (p, d), (p, t), (d, t), etc., there
is the additional concern that target and projectile
correlations' play an increasingly important role as
the momentum transfer increases at higher bom-
barding energies. We address the direct reaction
problem through a multiple scattering approach
which incorporates directly a number of important
physical mechanisms which appear as corrections to
the standard DWBA formalism. The primary ad-
vantage of our formulation rests in convenience for
high-energy applications. In fact, we imagine that
an "improved" DWBA such as a coupled-channel
Born approximation (CCBA) with optical potentials
including nucleon-nucleon correlation effects could
be developed which would be equivalent to our ap-
proach.

The general problem of nucleus-nucleus interac-
tions at intermediate energies may be formulated in
a variety of ways even within a multiple scattering
framework. ' We examine one path for the (p, d)
example that begins with the full transfer amplitude

and introduce ingredients from a multiple scattering
theory that renders a calculable form. A significant
effort is devoted to developing a systematic micro-
scopic scheme and illustrative examples are provid-
ed. Approximations reminiscent of those used in
some DWBA studies such as zero range' ' and no
recoil are possible and simplify the theory accord-
ingly. We provide calculations with and without ap-
proximations to demonstrate their importance.
Similarly, we illustrate the role of target correlations
at higher energies. For simplicity all (p, d) reaction
calculations are performed for a ' C target.

The organization of our paper is as follows: Sec-
tion II presents the two-potential formula ' for the
transition amplitude suitable for transfer of a cluster
between two other clusters. Here we emphasize the
many-body nature of these reactions and obtain
specific expressions for the (p,d) example. We
present a general description of initial and final state
wave functions. Section III continues the discussion
of the specific (p, d) and (d,p) example with a general
treatment of the deuteron vertex function. Section
IV details the approximations specific to this appli-
cation of our approach. Sensitivity studies are
presented as well for the '

C(p, d) "C example at 700
MeV. In Sec. V we present our conclusions and
outlook.
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II. DIRECT REACTION AMPLITUDE

In order to delineate our approach and introduce
our notation we briefly review the two-potential '

form of the direct reaction transition amplitude. In
Appendix A, a number of operator identities are
developed which are of general utility and which fa-
cilitate the construction of the two-potential ampli-
tude given here in Sec. IIA. Some brief comments
on the properties of these identities are made. Sec-
tion IIB is concerned with the wave functions and
the nucleon-nucleon wave operators.

A. Two potential form of the transition matrix

The conventional form of the T matrix for the
transition from an initial channel (i) and state (a) to
a final channel (f) and state (p), has two equivalent
on-shell expressions,

~
P;(a) & =g;(g; ' —U')

~
X,'+'(a) &, (2.3)

and from Eq. (A10) it follows that

&~~-~(P)
~
=&y,(P) ~«- G. (2.4)

Applying Eqs. (2.3) and (2.4) to Eq. (2.1), we obtain
for the transition matrix element the expression

The total Hamiltonian H is written as

H =h, + V'=h~+ V~.

Here H, whose scattering solutions are
~

'0;y'(a) &

and Green's function is 6, describes the exact many
body nature of the system, whereas h; and hI
represent incident and exit channel Hamiltonians for
two noninteracting clusters. Thus V' and V are the
cluster interactions in the specified channel.

Consider the action of an entrance channel pertur-
bation (denoted by U') upon the eigenket

~
P;(a) &.

From the identity Eq. (All) of Appendix A, it is
evident that

~(i «fp)=&Ay(» i' 'GlV')la(a ' —U')/ IXI+'«)&

The resolvent identity Eq. (A4) applied to 6 and g; leads to

6 =g;+g; V'6 =g;+GV'g; .

Thus
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(2.6)
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and Eq. (2.5) becomes
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From the resolvent inverse Eq. (A5), note that G ' is g;
' —V' and this implies that
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Applying Eq. (2.6) this becomes
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Equation (2.12) is the form alluded to in the litera-
ture as the two-potential formula. ' If the interac-
tion U' is an optical potential connecting only elastic
and inelastic scattered states of the incident channel,
then Lippmann's identity obtains and the second
term is zero. However, for a general many-body
scattering interaction this may not be the case and
this term can connect breakup states of the incident

1

channel with the two-cluster exit channel.
Nevertheless, the frequently made assumptions in
distorted wave approximations actually force the
second term to zero. Insofar as these assumptions
are valid the first terin of Eq. (2.12) is dominant.

Suppose we consider that class of direct reactions
described as two-cluster rearrangement collisions.

Schematically such processes may be represented by
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A + (BC)—+(AC)+B, (2.13) The total Hamiltonian H may be described as

hp ——hA+hB+hc (2.14)

The interactions which form the bound states (BC)
and (AC) are VBc and VAc. The total interaction be-
tween the clusters A, B, and C is

where (BC) and (AC) are bound states of the clusters
B, C and A, C, respectively.

The Hamiltonians for A, B, and C are hA, hB, and
h~. The total noninteracting Hamiltonian hp is de-
fined

H=h, +V', a =(0, i, or f) . (2.20)

+&Nf(&) I gf g VAB IX

The corresponding propagators g„G are construct-
ed as before.

Consider the two-potential formula letting
U'= Vzz', this becomes

T(i.~fp)=&qf '(P)
I VAc IxI"(~)&

VAB + VBC + VA C (2.15)
(2.21)

and

h;=hp+ Vgg ——hp+ V; (2.16)

hf =hp+ VAC =hp+ Vj' ~

The channel interactions become

V'= V' —V = VAB+ VAc

and

Vf= V —Vf = VAB+ VBC .

(2.17)

(2.18)

(2.19)

The channel Hamiltonians for the reaction in Eq.
(2.13) are

The contributions from the second term of Eq.
(2.21) depend upon the exact nature of the rear-
rangement channel and energy regime of interest.

Consider specifically the p+A ~d+B or
A (p, d)B rearrangement process and the contribution
of the first term in Eq. (2.21) to the transition am-
plitude. We write

T(i ~fp)=&(pf '(p)
I VB„ IXI+'(a)) . (2.22)

Physically
I

X';+'(a) ) denotes a distorted wave gen-
erated from the unperturbed initial state

I
P;(a))

through the perturbation of the potential VBB.
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The final scattering state & %f '(P)
I

can be obtained from Eq. (2.4) after some manipulations to be

(2.23)

(2.24)
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Thus

T(i ~fp)=&pf(p) IQf 'V„Q';+'Ip;(a)) . (2.26)

B. Wave function treatment

(2.27)

and

The wave functions 4( and 4f represent channel solutions of the entrance and exit channel eigenequations.
As bombarding energy increases we expect to be able to neglect antisymmetrization between the two clusters in
both incoming and outgoing states. Therefore, we take the unsymmetrized wave functions as a product of
plane waves for the two clusters with the intrinsic wave functions for each. That is,

3
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Here X is the spin function, U is the space wave function, and (
~
) is the conventional Clebsch-Gordan cou-

pling constant.
The wave functions %f '(P) and X,'+'(a) are those evolved from @f(P) and 4;(a) according to Eqs. (2.25)

and (2.24), respectively, and can be written

I'+'=e " P (~) (2.29a)

a =I(r, o, r); j, ie(p, n, 1,2, . . .,8) .
(2.29b)

Alternatively, we could interpret these forms in the momentum representation. The operators Pr+s(a) and

(4s(a) defined by

'~pa[4~ ~ —1e ~ =1+[E i' h——V—s] Vs,
—i/&(4) —1e = 1+[Ef+i ri hf Vd—s ] —Vee,

(2.30a)

(2.30b)

generate the many-body distorted waves.
In order to simplify the problem further, we assume that [ V~„,e xp(iP es( a) )]=0 Th.is amounts to approxi-

mating some of the intermediate excitations of the deuteron and target. Since all possible channels of the
scattering system are contained in (4f ' i, we have replaced these couplings by approximate global effects. At
higher energies and higher momentum transfer this should be a reasonable assumption.

The amplitude for the neutron pickup reaction is written as T~ T(J&M&—S—rpr i
J&M&JeMe),

T= g (J~Mq ~L~m~Sqp~)(JsMs ~LsmsSsps)(JdMe ~LdmeSdpd)
sum over
repeated
indices

X (SepdSsijs
~
T(L&mq,'LsmsLdmd )

i Szp&S&p~ ), (2.31)

where the quantity T(Lqmz', LsmsLemd) is defined by
'3

LBmB
T(L&m&,LsmsLdmd)= fd rzd r„e r ~ " "dl„(rz —r„)NL„(r&,r„) (2.32)

(2.34)

NI ~ (r~, r„)=fd r, d r&UI ~ (r&, r2 rs)W(rr, r„,r&, r2 rs)UL, ~ (r„,r&, r2 rs)

(2.35)

when we neglect spin-flip contributions, and, where

Qq
——kq ——,kd, (2.33)

1
Q =——kd ——kll 2 g P

In Eq. (2.32) the quantities dL, ~ are the deuteron vertex functions defined in Appendix 8 and contain the
pm'

information about the deuteron wave function and the proton-neutron interaction. For convenience, we present
in Tables I and II a simple expansion for the main ingredients of the vertex functions. Consult Appendix 8 for
necessary definitions. The function N contains the neutron overlap wave function between the incident A-

particle nucleus and the residual 8-particle nucleus as well as the distortion factors arising from the interaction
of the 8 spectators in both the entrance and exit channels. In terms of the wave function U and U, this
function is

and 8', the distortion operator, is

8'(rr, r„.rs)=exp[i/de(a)]

Xexp[iPr+s(a)] . (2.36)

The more conventional DW8A approach to (p, d)
reactions may be obtained by recognizing that the
operator 8' plays the same role as do the optical po-
tentials typically used for generating the partial
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TABLE I. Gaussian fit coefficients of deuteron D-state
vertex function generated from the Reid soft core poten-
tial.

M

Form: UD (r)=r g CJ exp( aj r —) .
)=1

M=25. E+ n denotes 10+"

TABLE II. Gaussian fit coefficients of deuteron S-
state vertex function generated from the Reid soft core
potential.

M

Form: Ug~ =r g Cj exp( ajr 2—) .
j=1

M=25. E+ n denotes 10+".

1

2
3

4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

gD
1

0.202401389E +05
—0.109807802E +05
—0.928291412E+05
—0.508055445E +01

0.245980712E +05
0.755105860E +05

—0.150645649E +05
0.383771269E+04

—0.743267863E +03
0.495399774E +01

—0.361225251E+02
—0.292575389E +01

0.744244322E +00
—0.835869562E +00

0.591109352E+00
—0.410052537E +00

0.397091629E+01
0.295198160E+00
0.215205079E +01
0.452251513E +01
0.137762997E—01
0.128568372E +00

—0.123987356E—02
—0.152474263E +01
—0.630612858E —01

D
J

0.6684000E +01
0.4856000E +01
0.2025500E +02
0.6063700E —01
0.2668785E +02
0.1846687E +02
0.8345700E +01
0.3812730E+01
0.2346205E +01
0.6438500E +00
0.8784360E +00
0.4166280E +00
0.2770020E +00
0.2190330E+00
0.1690240E +00
0.1398840E+00
0.5520000E —01
0.9918500E—01
0.7357200E —01
0.6751000E —01
0.3280000E —01
0.4050000E —01
0.2940000E —01
0.5124000E —01
0.3650000E —01

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

gS
J

0.610843938E+04
—0.493661552E +04
—0.510669294E +03
—0.464254205E +02
—0.836547450E +02

0.324647985E +03
—0.352815065E +04

0.331105825E+04
—0.607184429E +03
—0.755349402E +02

0.967643543E +01
—0.702864658E +01

0.351786070E +01
—0.447701126E +01

0.401673683E +01
—0.309415610E+01

0.365288268E +02
0.250157011E +01

—0.193038190E+02
0.409315843E+02
0.129979375E+00
0.120128136E+01

—0.117946403E—01
—0.140895297E +02
—0.591960040E+00

s

0.6684000E +01
0.4856000E +01
0.2025500E +02
0.6063700E —01
0.2668700E +02
0.1846687E +02
0.8324570E +01
0.3812730E +01
0.2346205E +01
0.8784360E +00
0.6438500E +00
0.4166280E +00
0.2770020E +00
0.2190330E+00
0.1690240E +00
0.1398840E+00
0.5520000E —01
0.9918500E—01
0.7357200E —01
0.675 1000E —01
0.3280000E —01
0.4050000E —01
0.2940000E —01
0.5124000E —01
0.3650000E —01

wave expansions for the scattering of protons and
deuterons from a target.

By inserting a complete set of wave functions of
the residual target 8, the function N of Eq. (2.35)
may be written as the product of the pickup neutron
wave function U(r) and the integrated distortion
factor F( rr, r„). That is,

L~m~
NL&m& (r&, rn)= g UL&m& (rn )Fg&v (r&, rn ) t

kg vg

(2.37)

From these expressions it is evident how specific
multistep processes may be included. Intermediate
states may be included in the incident channel as
well. We consider a direct nuclear reaction to be one
which is dominated by at most a few states coupled
significantly to the initial and final states.

III. MODEL FEATURES
FOR (p, d) APPLICATION

A. The deuteron vertex function and sensitivities

and

Ui„' '„(r.)= J d'ri d"aUx...Ui„m„

(2.38)

At low energies (less than -100 MeV) the tradi-
tional approach to calculating the transition ampli-
tude Eq. (2.32) has been to replace the vertex func-
tions dLM(r) by point vertex functions of the form

Fx „(rz, r n ) =J d r
&

. d r& UI m 8'U~,

(2.39)

dL~(rz rN)=dL, sr5(rr ——r„) . (3.1)

A variety of approaches25, 26 have been used to
correct this feature. Studies of corrections to zero
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range have typically found significant effects27 at
modes and energies & 160 MeV. Extensive finite
range and zero range calculations (notably by the
Colorado group) using the standard DWBA at in-
termediate energies have generally provided limited
success in explaining cross sections ' and analyz-
ing powers. Although it is common to retain
only the S-state vertex at low energies ( &40 MeV),
since this term typically dominates the (p, d) reac-
tion, some investigators ' have considered the ef-
fect of S and D contributions to the vector and ten-
sor analyzing powers (&10 MeV}. These investiga-
tions displayed large sensitivity to the presence of
the deuteron D state only in the tensor analyzing
powers. In addition, Delic and Robson considered
the effect of a finite range treatment on the (d,p)
cross sections (8 MeV); they found that the primary
result was to change the overall normalization of the
resulting cross sections. In order to demonstrate the
relative contributions of the S-state and D-state
deuteron vertex function, we examine the Fourier
transform as it varies with momentum mismatch q.
The Fourier transform of the deuteron vertex func-
tion is defined by

d.M(Q) =fe"'d.M(r)d3r (3.2)

or

dlM(Q) =(i) YLM(Q)DL (Q),

where

(3.3)

DL(g)=4m f rji. (gr)U& (r)dr . (3.4)

The momentum mismatch q =kz —k~/2 is a func-
tion of the incident proton kinetic energy and the
mass of the target. Figure 1 plots the vertex func-

I

400—
S state

1400

D state300—

100

E

0

-100

-200

1200

800 uj
Z.'
LIJ

400 I-
LIJ

z
O

K

-300

tion Dl(q) vs q, and the incident kinetic energy
against q for forward scattering. As can be seen at
low momentum mismatch, the S state dominates,
whereas between 1.3 and 3.4 fm ' the D state dom-
inates. At about 500 MeV proton kinetic energy the
S-state contribution is virtually zero. The forward
cross section for 700 MeV kinetic energy is largely
D state, with a significant admixture of S state as
well.

In order to address the questions about sensitivi-
ties in a systematic fashion, we rewrite Eq. (2.32}for
the transition amplitude with the Fourier transforms
of the vertex functions. Thus

-400
I I I I

0 0.4 0.8 1.2 1.6 2Q 24 2.8 X2 3 6 4.0
q( fm )

FIG. 1. Momentum dependence of the deuteron vertex
functions. The solid (dotted-dashed) curve shows the
behavior of the 5-state {D-state) deuteron vertex function
DL(q) (calculated from the Reid soft core parametriza-
tion) as a function of q {momentum transfer). The dashed
curve shows the q value (q =k~ ——k~) at 0' for ' C(p, d) as

a function of proton laboratory kinetic energy.

T(Lg mg,'LsmsLnm p ) =
'6

277 Lg)mg p n p Lm~ r& r„

and

Q=Qp+Q. . (3.6)

The zero-range apyroximation is obtained by examining the Taylor series expansion of the vertex func-
tions dL ~ (Qz —k) about k=0. We write as

( —k Vk)"
dIM(Qp —k}=X dLM(k}

I g = qno nt P

=i YLM(QP) g ,
I

Dr. (k}
I k=g

( —kB/Bk)"

n=0

(3.7)

(3.8)

Substitution of Eq. (3.7) into Eq. (3.5) yields for the transition amplitude the expression

T=QT„,
n=0

(3.9)
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where the nth term is defined as

T„=
6 fd kd rzd r„

(2m. )

The n =0 zero term is

I. m„rp~rn (3.10)

To ——dL, ~ (Qz) d re' '"NI ~ (r, r) . (3.11)

We refer to this term as the zero-range truncation (ZRT). The ZRT has the advantage over the conventional
zero-range approximation in that the strength of the vertex constants are specified rather than adjusted from a
phenomenological basis. Furthermore, it includes both the S-state and D-state strengths. The general term for
arbitrary n may be simplified by repeated use of the divergence theorem and the chain rule for differentiation.
Under these manipulations Eq. (3.10) becomes

(iV, .V )"
(3.12)

A simple examination reveals that Eq. (3.12) reduces to Eq. (3.11) for n =0, as it should. From the form of
Eq. (3.12) it is clear that unless the series Eq. (3.9) converges very rapidly in the energy regime of interest, the
"simplification" introduced [Eq. (3.12)] would not present any advantage over an exact finite range calculation,
since the gradient mixing terms may be difficult to evaluate. However, it is evident from Fig. 1 that the vertex
functions are slowly varying and smoothly behaved; thus if the matrix elements are evaluated at the momen-
tum transfer of interest, the leading correction term should be Ti.

3

Ti —— fd r„d r&5(rz —r„)e "(i V, Vti )NL„~„(rz,r„)dl ~ (Qz), (3.13)

'3

=i fd r„d r&5(rz —r„)e "IV„NL„~„(rz,r„)J t V& dL (Qz)I . (3.14)

8. The distortion function

The evaluation of the distortion factor F which
accommodates the perturbations of the nuclear
media on the incident and exiting waves depends in
detail upon the distortion function 8', Eq. (2.36).
As can be seen from Eqs. (2.30a), (2.30b), and (2.36)
this ultimately requires some knowledge of the dis-
tortion operators P~z and Pds.

For intermediate energies the eikonal (or high en-

ergy approximation ) has been used with some
success in elastic and inelastic scattering. '

Tekou has applied it to a formulation of the pick-
up reaction, although his approach is considerably
different from ours in emphasis and detail.

In an eikonal framework these operators are de-
fined in terms of the nucleon-nucleon eikonal phase
shift functions X+-by the expressions

The eikonal phase shifts X+-are defined by

7+i(r) = — Vi(r)dz'
hv jl

and

(3.17)

g i ( r )= — f Vji( r )dz',
Avjl

(3.18)

where vjl is the relative velocity of nucleons j and l
and Vji ( r ) is the nucleon-nucleon interaction.
Furthermore, nucleon-nucleon distortion functions
w+-are defined by

+ +
wji =—1 exp(i'—i) . (3.19)

The phase shift functions are then related to the ele-
mentary, nucleon-nucleon scattering amplitude
A (q ) through the integral expression

6~= X p'J

jEB
(3.15) A ( q )= p/2n fdr e' q —' ' Ve+'z+, (3.20)

and

NdB —g l~pj +~I!j)
jEB

(3.16)

where p is the reduced nucleon-nucleon mass. Note
that in expression (3.20), the spin and isospin depen-
dence of the potential and scattering amplitude
A (q ) is left implicit. For our model calculations we



1974 L. D. LUDEKING AND J. P. VARY 27

assume A(q) to be the spin-isospin averaged elastic
scattering amplitude. In the remaining development
we explicitly include only the r dependence.

In order to demonstrate the connection between
the scattering amplitude A(q) and the distortion
functions w+-(r), note that Eqs. (3.19) can be written
in integral form as

w+( r )=i /A' uf V(b, z')e' ( b,z')dz' (3.21)

and

tives 5'"'(z) are defined by

5("'(z)=(d ldz)"5(z) . (3.32)

1, zp0
(I)p (z) =8+(z)= —,, z =0,1

0, z&0

(3.33a)

The properties of the functions (I)n-(z) are summa-
rized below.

w (r) =i/flu f V(b,z')e'z (b,z')dz' . (3.22)

Taking the Fourier transform of A(q) then yields
for w-(r) the expressions

w+(r)= fd qA(q„q, )e
(2m) ik

0, z&0
4p (z) =0 (z) = ~ —,, z =0,

1, z&0

4p (z)+(pp (z)=1,

(3.33b)

(3.34)

x f' e "*"dz' (3.23) C„(z)=(—)"4„+(—z); n =0, 1,2, . . . . (3.35)

and

w (r)=
2 fd qA(q„q, )e

(2m )ik.

Equation (3.35) is the reflection identity for 4„.
Consider a typical representation of the spin-

isospin averaged nucleon-nucleon scattering ampli-
tude to be the parametrization

x f"e ""dz, (3.24)
A (q) = o."'(1—ia)elk «t . z 2'

4m
(3.36)

" (q, )"
A(q)= g A'"'(q 0)

n 0 n

where

A'"'(q„0) =(8/Bq, )"A (q) i ~

(3.25)

(3.26)

Substitution of Eq. (3.25) into Eqs. (3.23) and (3.24)
yields the relations

~ n

w +(r) = g-, 4„(z)A '"'(b)-
2&lk „0n! (3.27)

where q, and q, are the transverse and longitudinal
momentum transfers, respectively, and k is the rela-
tive momentum.

Expanding the amplitude A ( q ) in a Taylor series
about q, =0, we obtain the expression

In Eq. (3.36), k is the relative momentum, (r"' is to-
tal nucleon-nucleon cross section at the interaction
energy, a is the ratio of real to imaginary strengths
of the forward elastic amplitude, and P is a measure
of the nucleon-nucleon range. Although, in general,
k, cr"', a, and P are different for the incoming and
outgoing waves, we average over these variations as
well.

The parametrization Eq. (3.36) when inserted in
Eqs. (3.27) and (3.28) for the w„-(r) yields

+i n

w„(r)= y(b)(I)„(z)(—P/2)"H, (0),n!

(3.37)

where

w„-+(r),
n=0

(3.28) y(b) = o'"(1 ia)e—1 —' 2

2~ 2
(3.38)

where

e+(z) =f 5'"'(z')dz',

e„(z)=f 5'"'(z')dz',

(3.29)

(3.30) Hn+z(0)=( —2)(n+1)H„(0) . (3.39)

and the H„(0) are the Hermite polynomials evaluat-
ed at zero. The H„(0) satisfy the recurrence equa-
tion

and

A (n)(b) fd2 A(n)(q 0)e (3.31)

The initial values Ho ——1 and Hi ——0 then imply that
in w+-(r) all n=odd integer terms vanish, and fur-
thermore that

Here 5(z) is the Dirac delta function, and the deriva- wp (r ) =I (b)&+-(z), (3.40)



27 MICROSCOPIC FORMALISM FOR INTERMEDIATE ENERGY. . . 1975

2 n

w„+-(r) =+y(b)5'" "(z) [(n —1)!!]
n!

which is parametrized by a normalized Gaussian
distribution of the form

(3.41)
—p2/go~

3 3nRo
(3.44)

n =2,4, 6, . . . .

Define now the quantities g+-(z), such that

w+-(r)=y(b)g+-(z) .

We immediately write for g+-(z) the expression

=8 (z)

(3.42)

Here the rms radius is v'3/2Rp and Rp is a measure
of the nuclear size.

Define a function T(r ) by

T+( r ) =fd r'p(r')w+( r r')—, (3.45)

or alternatively by

+ y 8'"-"(.)(P/~2)" ", -
n!

n =2 (even integers)

(3.43)
The nucleon-nucleon distortion function w -( r ) is

usually truncated at the first term. The effect of
such a truncation on a simple radial density function
p(r) is investigated in the next section. The familiar
Glauber multiple scattering approximations' ' '

are the result of such a truncation in the application
of the eikonal procedure to elastic and inelastic
scattering.

C. Convergence of the nucleon-nucleon
distortion functions

T+(r)= g T„+(r),
n=0

(3.46)

T+(r) =fd3r'p(r')w+(r r') . — (3.47)

Substitution of Eqs. (3.40) and (3.41) into Eq.
(3.47) then gives

1 —I ( —,,z /R )/2n' z &0

/R )/2m' (0

where by using Eq. (3.28), the T„+(r) can be shown
to equal

The nucleon-nucleon distortion functions w+-(r)
appear only in integrals over nuclear density func-
tions. Consider a model density function p(r),

I

and

(3.48)

T„+(r)=t(b) — "(P/v 2Rp)"h„ i(z/Rp)
(n —1)!!

nI

for n =2,4, 6, . . ., and

t(b) =o"'[(1 t'a)/2m(P —Rp )]exP( —b /(P +R p )) —.
f

coordinate. We writeThe functions h„(x) are the Gaussian weighted Her-
mite polynomials T+(r)=t(b)g+(z) .

T„+(r)=0, for n =1,3,5, . . .;

the function I'( —,,x ) is the incomplete gamma function defined by the equation

r( , ,xp )=—2f e 'dt, xp&0,
Xo

and the transverse function t( b ) is defined by

(3.49)

(3.50)

(3.51)

(3.52)

(3.55)
h„(x)=H„(x)e

and satisfy the recursion equation

h„+i(x) =2xh„(x) 2nh„ i(x);—

(3.53)

(3.54)

The function g+(z) is defined for z &0 as

g+(z) =1—r(-,',z'/R, ')

the initial values of H„(x) are Hp 1 and Hi ——2x.——
From the results of Eqs. (3A8)—(3.50) it is evident

that in this model, T+(r) is factorable into a func-
tion of z, and the function t(b) of the transverse

(2n —1)!! P
(2n)! 2Rp'

Xh z„ i(z/Rp ), (3.56a)
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l.O

f(Z) Note that

fS„i &S„',

where

(3.60)

0.5

for some finite value a.
By comparing the geometric series Ig

(3.61)

(P2/R 2)ll

S„—= — e " ~ [1+a /(2n ——,)]
n n

0.0
I

-l5 -IO 10
I

l5
Fs = g r"& ae, for

~

r
~

& 1,
n=0

(3.62)

z (frn)

FIG. 2. The z dependence of the transparency function

g(z) is displayed for parameters P=1.4 fm and Ro ——6.0
fm.

with the series FM defined by

FM= g S„.
m=M

(3.63)

and for z &0 as
It is clear that for some M & ac, Fsr converges abso-
lutely for all x provided

g+(z) =r(-,',z'/R, ') iP/Rp i
&1 . (3.64)

(2n —1)!! P
(2n)! 2Ro'

Xh2„ t(z/Rp) . (3.56b)

2 „(2n —1)!!S„=(P /2Rp )","hz„ i(x) .
2n!

The asymptotic behavior of h„(x) (Ref. 44) is
' 1/2

Xh„(x)= 2"e " 2I. n +1
2

(3.57)

A careful examination shows that the function
(g+(z) ——,) is antisymmetric about z =0. Figure 2
shows the characteristic behavior of g+ (z) for
P=1.4 and Ro ——6.0.

We investigate the convergence of g+(z) by exam-
ining the asymptotic behavior of the nth term of the
series for fixed x =z/Ro,

Since the terms S„dominate S„, the function g+(z)
converges absolutely for

~

P/Ro
~

& 1. Physically
this restriction is roughly equivalent to a statement
about the relative ranges of the nucleon-nucleon in-
teraction and the size of the nuclear bound system.

At intermediate energies Vary and Dover have
found for the parametrization [Eq. (3.36)] of the
scattering amplitude A(q) that the range P of the
nucleon-nucleon interaction is 1.2 —1.6 fm. Nuclear
radii from helium through lead range from 1.9—5.5
fm. Thus the function g+(z) is well behaved even
for small nuclear systems.

In Fig. 3 the behavior of g+(z) as a function of
Ro is displayed. Note the smooth transition from
the average value of g+(0)=0.5 to the maximum of
1.0. At z =Ro the function g+(z) appears to attain
approximately 90% of the asymptotic value g+( ao )

I I I I I I I I I ! I I I I I I I I I I

Xcos[x(1+2n )' —nn/2]

X[1+d'(
~

n+ —,
~

' ')] . (3.58)

I.O

0.9

Substitution of Eq. (3.58) into Eq. (3.57) yields after
simplification

(13'/ o')" x
n 7r

Xsin[x(4n —1)' ][I+&(
~

2n ——,
~

' ')] .

(3.59)

0.8

0,7

0.6

0.5 I I I I

0 2 4 6 8 10 12 14 16 18 20

z ( frn )

FIG. 3. Behavior of the transparency g(z) for fixed
@=1.4 fm as the nuclear size parameter Ro varies.
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I.O—

0.9

On7

0.6

f (z)0
———gz(z)

gc(z)

p =1.4 fm

RO=2.0 fm

suit. From Fig. 5 we can see that the maximum
discrepancy in the zeroth order case is -S%%uo,

whereas for the second order case it is -3% for
Rp ——2 fm. Furthermore, as Rp increases to 4 fm
the maximum discrepancy is of the order of —1.6%
and even smaller for Ro ——6 fm. We conclude that
within the accuracy of the parametrization, the
function g+(z) is adequately described by retaining
only the first term. This is equivalent to approxi-
mating the distortion functions w+-(r) by the first
term alone, i.e.,

w-+(r )=y(b)8+-(z) . (3.65)
0.5

0 2 3 4
z (fm)

FIG. 4. Convergence of the transparency function g(z).
The dashed curve gives the zeroth order results, the
dotted-dashed curve displays the second order effects, and

the solid curve shows the converged result. Parameters
are P= 1.4 fm and Ro ——2.0 fm.

for Ra~2. fm.
A question of considerable importance for realis-

tic densities is the rate of convergence of the series
for g+(z) as a function of the nuclear size. In Fig. 4
we compare the results of using w o+ (z),
(wo+(z)+wz+(z)), and w+(z) to obtain the function
gt(z). Notice in Fig. 4 that for the worst possible
rate of convergence of g(z) (i.e., Re small), the
difference between the zeroth order result and the
second order result is quite small. A better way of
viewing the difference is to consider the ratio of
zeroth and second order terms to the converged re-

Except for the very smallest nuclear systems, the ap-
proximation of Eq. (3.65) should be satisfactory.
This conclusion is reinforced by noting that real nu-

clear densities may be expected to be considerably
softer than are Gaussian densities. The equivalent

Rp values are larger and the convergence enhanced.

W= g(1+w ),
jGB

where

(3.66)

D. Study of the zero range truncation

In the preceding subsection we discussed the can-
vergence of the nucleon distortion functions when
folded with the nuclear density. This subsection
compares the total finite range calculation and the
zero range trunction. General features and behavior
af the differential cross section are discussed within
a simplified model calculation.

We begin by noting the approximations made for
the distortion operator $V. Using Eqs. (2.46), (3.15),
(3.16), and (3.19) the operator W becomes

I
1.04—

I
I

I.05—
I

I

I.02 —I
I

I.OI

1.00 I

2

0.99 —: /

0.98 — i.
,

o/(c ( o 2 )

o/~c (Ro 4 f

o/fc (Ro=Q fm)

/&c ~R, = 2 fm)

I

4 5 6 7 8 9 IO

z(fm)

wJ =(1 w~, )(1—w—„J )(1—w~~) ) —1 . (3.67)

Upon using the approximation Eq. (3.65) and the
properties of 8-+ functions the nucleon factor wJ be-
comes

wJ(rJ, rz, r„)= yz~(bJ —bz)—
—8 (z„—zJ )y„J( b„—bJ )

+8 (z„z,)y„,(b„—b—;)y~J(b~ —b, ) .

(3.68)

0.97—

FIG. 5. Comparison of the ratio of the unconverged

transparency to the converged result as a function of nu-

clear size Ro. The dashed curve gives the ratio go/g, for
Ra=2 fm. Similarly the solid curve is for go/g, at Ro ——4
fm and the dotted-dashed curve is for go/g, at Ro ——6 fm.
Finally, the dashed-dotted-dotted curve is for gz/g, at
Ro ——2 fm. The parameter P=1.4 fm.

J yPJ( JPJ 2 ynJ "J )

1+ z ynJ(bnJ)ypJ(bpJ) . (3.69)

The function y(b) is of the form given by Eq. (3.38);

We further simplify Eq. (3.68) by replacing 8 by
1

its average value —,; thus



1978 L. D. LUDEKING AND J. P. VARY 27

Incident
kinetic energy o.'"(+ )

(MeV) (fm2)

+tot(

(fm ) a(+ ) a( —)

50
100
300
500
700
800

1050

5.00
5.00
3.50
3.46
4.23
4.32
4.39

5.00
5.00
4.00
4.30
3.00
3.50
3.46

1.87 1.87
1.87 1.87
0.60 1.00
0.55 0.800
0.20 0.600
0.144 0.600

—0.073 0.550

the values for o'", a, and p are taken as the ap-
propriate average values for protons and neutrons of
specified kinetic energy. From the study of Vary
and Dover the range parameter p was found to be
comparatively insensitive for wide variations in en-

ergy. In the model calculation, p=1.24 fm is used.
Values for o'" and a are listed in Table III.

The total distortion function 8' can be written as
a series in the number of target nucleons participat-
ing in the scattering:

TABLE III. The nucleon-nucleon cross sections o"'
and a values used for energy dependent comparison of
finite range vertex functions and the zero-range trunca-
tion. The values listed in this table correspond to the
values used in tests of finite range vertex function versus

zero-range truncation computed through first order in

density. They represent average values of these quantities
at these energies. Some variation from accepted values

may be expected.

and

f„(r~,r„)=(—)"f p'"'w(w2 . . w„

Xd r~ . d r„, (3.73)

Fo 1(plan——e wave),

F) ——1+f) (1st order),

(3.74)

(3.75)

F2 1+f(+——f2 (2nd order, no correlations) .

(3.76)

If the many body density is factorable, i.e.,

then

( ) g (()()
i=1

(3.77)

FT (1+f()—— (3.78)

We parametrize the correlated two body density in
the form

where p'"' is the n-body density of the residual tar-
get. This density expansion introduces ground state
nucleon correlations. The scattering of the entrance
proton or the final deuteron from one target nucleon
to another may be modulated by strong short range
correlations existing between the spectators of the
residual target.

Further simplifications are possible for the distor-
tion factor I'. We list the ones used for demonstrat-
ing the properties and behavior of the cross section

8'= I —g WJ+ g Wjwk
j68 j+k

wjwkw) + ' ' '

j~k~l
(3.70)

Recall that the function W appears in the integrated
distortion factor

I.~ m~
Fx „(r,r„),

TABLE IV. Gaussian fit coefficients of a 1@3/2 neu-

tron wave function generated from a density dependent
Hartree-Fock calculation for ' C.

M

Form: U(r) =r ' g Cgexp( aj"r ') . —
j=l

M=13. E+n denotes 10+".

Eq. (2.39). Consider only diagonal scattering, i.e.,

( Ls ms ) = (A,g vs ) .

F(r~, r„}=f p' '(r(, r2 rs)

X W(r~, r„,r) rs)

Xd ri d rg. (3.71)

F( rz, r„}=1+f((r~, r„)+f2(rz, r„)
+ fs(~p, r„) (3.72)

Substitution of Eq. (3.70) into Eq. (3.71) yields a
spectator expansion in the residual target density.

1

2
3
4
5
6
7

9
10
11
12
13

Cnj
0.253409468E +00

—0.192559749E +01
—0.362778021E —01
—0.256284978E +02
—0.356354807E +01

0.749165310E+00
0.170216948E+02
0.134197792E+02
0.113537630E+00

—0.194835052E+00
0.194423435E +00

—0.128898899E+00
0.475755771E —01

a

0.2100E +01
0.1040E +01
0.4300E +01
0.5400E+00
0.3450E +00
0.2340E +00
0.4550E +00
0.6560E +00
0.7820E —01
0.6607E —01
0.5700E —01
0.5000E —01
0.4650E —01
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TABLE V. Gaussian fit coefficients for realistic
artree-Fock "C density, normalized to unity.

M

Form: p(r) = g C~(a& /n ) ~exp( —a r )Jj=1

g CJ ——1. IO

1 I I

'C(l, d) C(~i2, g.s. )

E lab 50 MeV

M=10. E+n denotes 10+".

1

2
3
4
5

6
7
8
9

10

Cj

0.41 1334549E—03
0.845453470E —01

—0.546794586E +00
0.663778679E +01

—0.264960114E+02
0.604007273E +02

—0.641846813E+02
0.241154588E +02
0.583670412E +01

—0.484814650E +01

aj

0.741894153E—01
0.148378831E+00
0.222568246E +00
0.296757661E +00
0.370947076E +00
0.445136492E +00
0.519325907E+00
0.593515322E+00
0.667704738E +00
0.741894153E+00

Vl

I0

IO—

I I I I

. C ( p, d) C (3/2, g.s.)

Eiab= 700 MeV Realistic Density

Ra = l.326 frn

Ra =2.085 frn

R =2.355 frn

(2) (1) l (1)p, =p"'(l)p'"(2)N[1 —A,,exp( —P, r~q )] .

(3.79)
N is a normalization, A,, is the correlation strength,

I
02

0

l2 II
C(p, d) C(5/2, g.s. )

MeV

I

IO 20 30 40 50 60 70
8 (deg)

FIG. 7. Differential cross section of
12C( d)11C( 3—

p, —,g.s.) at 50 and 100 MeV proton kinetic en-

ergy. The solid curve is the total differential cross sec-
tion, whereas the dashed and dotted-dashed curves
display the pure S-state and D-state contributions, respec-
tively.

b

I.O-

I

2

taI
state
state

O.l—

O.OI
0 24 284 8 l2 16 20

I

19c.fT).(deg )

FIG. 6 Differential cross section of~ ~

12C(~ dqllCg 3—
~g, ) C{~,g.s.) at 700 MeV for different densities in

the distortion functions. The solid curve is the result for
the realistic density from DDHF. The remaining three
curves are the results obtained using a single parameter
(Ro) Gaussian density, where Eo ——1.326, 2.085, and 2.355
m.

0
0 10 4Q20 30

8, (deg)
FIG. 8. Same as Fig. 7, except E~,b ——300 MeV.
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and R is a measure of the corr 1 t're a ion range. Thus

(3.80)I'2.=1+fi+f2.
To evaluate the finite ran e tran

' '
ange transition amplitude

y ~, and express the tar et dens'

transform di
e o ed asymmetric Gaussian

iscussed in Appendix C.
Consider the sensitivity of the cry o oss section in this

o e etails of the densit .
h off'' f

of "C fit to a su
e icients or the re

'
esidual target density

o a sum of Gaussians. The den
'

C was generated by a densit p
e, an the density of the r g

y su traction of the sin le
density of the captur d
the total nucleon- 1

p ure neutron. The vvalues used for

the cross section is virtually identical
1 t d t. Th

Gaussian density d' d
'

d
'

y
'

d y' d results close to
'

y a justed to ield
e realistic density in lowest or

e ig er order terms of Eq. (3.72).

IQ—

I I I I

C {p, d) C(3/2, g.s.)
EIab 700 Mel/'

TOTAL
S STATE
0 STATE

b

O,I—

I I

I

I

8 l2 l6

ec.~.(deg )

FIG. 10. Same as Fi .ig. 7, except E&,b ——700 MeV.

Q.QI
0 20 24 28

In Figs. 7—11 we observe the r po a
-state contributions to

'
n in t e reaction '

C(p, d)"C—
for proton laboratory ener iesory energies ranging from 50 MeV

10—

I I I

C (p, d) C(3/2, g.s. )

EIab= 50Q MeV

Total
state
state

Q. (

I I

I 2 I I

C (p, d) C(3/2, g, s, )

& I.Q- & OQI

/
/

\ /
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\
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t
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\ /
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/
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/
I

I
wr

Q. l—

t

I

25
O.OI

0
I

IQ
I

l5

I

5
I i I

20 30
8 (deg)

FIG. 9. Sam. 9. Same as Fig. 7, except E»b ——500 MeV

Q.OQI

Q.OOOI
0

I I tl l/

I5 20 25 30 35
e (deg)

FIG. 11. Same as Fi .ig. 7, except E»b ——1050 MeV.
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At 100 MeV the D state already provides about
15% of the cross section. Between 300 and 700
MeV the cross section is dominated by the D state
with very little S-state contribution. Note that in
this simplified model calculation the shapes of the S
arid D state cross sections resemble each other. Had
we included spin-orbit pieces to the distortion, there
might have been stronger disparities between these
two contributions.

How sensitive are the results to the zero-range
truncation? In Figs. 12—17 the reaction cross sec-
tions calculated using F~, and the realistic density
(Table IV) are displayed for both FR and ZRT. It is
notable that throughout the energy range 50
MeV —1.05 GeV, the ZRT resembles very closely the
results of the FR calculation. For order of magni-
tude effects and qualitative features, the ZRT repro-
duces the FR calculations throughout the energy
range examined. We conjecture that the first order
correction to ZRT given by Eq. (3.14) should be ade-
quate to reproduce the FR calculation throughout

b

l02

10

IO'

I I I I I

'C(p, d) C(3/2, g. s. )

FR
———- ZRT

IQ

IO

I I I l

C(p, d) C(3/'2, g.s. )

EI,b= 50 Mev

FR
ZRT

/
I / ilIO l

60
I

IO 40 50

IO—

'C(I,d) C(3i2-, g.s. )

Eiob- 500 MeV

FR
ZRT

I

0 30

FIG. 13. Same as Fig. 12, except E~,b ——300 MeV.

b

IQ

ill

4 I.O—

b

IQ
0 I 0 20 30 40 50 60 70

8 (deg)

Q, I—

FIG. 12. Differential cross section for
'

C(p, d)"C(—, ,g.s.), E~,b=50 and 100 MeV. The solid

curve displays the results for the finite range (FR) calcula-
tion, whereas the dashed curve shows the results using the
zero-range truncation (ZRT).

QOI
0

I

IO
I I

I5 20

I

t

25 30 35
e (deg)

FIG. 14. Same as Fig. 12, except E~,b ——500 MeV.
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IG. 15. Sameas Fi . 12tg. 2, except Ei» ——700 MeV
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FIG. 16. Same as Fi . 12ig. 2, except Ei» =800 MeV
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two approaches. The first approach is to use con-
ventional parametrizations of optical potentials
which reproduce elastic and inelastic scattering and
asymmetries as a guide to the input into this (p, d)
formulation. The alternative approach is more mi-
croscopic, and involves generating the nucleon-
nucleon distortion functions from realistic nucleon-
nucleon t-matrix amplitudes, which reproduce the
low and intermediate energy nucleon-nucleon phase
shifts. The first approach is most suitable at higher
energies where optical potentials may be readily ex-
pressed in terms of nuclear densities and have been
successfully used to predict elastic and inelastic
cross sections in the eikonal framework. Within our
framework, higher order correlation effects are
found to be negligible and this affords a more con-
venient microscopic approach to nuclear transfer
cross sections and polarizations.

APPENDIX A: OPERATOR IDENTITIES

[E;(a)—h,'] ~

Xj~- '(a) ) =0 . (A8)

In the following development the (+) indexing on
the scattered states (and the Green's functions) shall
be suppressed for simplicity, unless necessary for
precision. The ket vectors

~
Xj(d)) are obtained in

the conventional way from

Hamiltonians, defined by

hj'=hj+UJ' . (A6)

The Green's functions associated with hj and h~' are
denoted by gj and gj. , respectively.

The ket vectors ~Pj(a)) are defined to be the
eigensolutions of channel (j) and state (a) of the
eigenequation

[Ej(a) hj]—
~
P;(a)) =0 . (A7)

The ket vectors ~X&'-'(a)), are solutions to the
eigenequation

Gj(z) =(z Hj)— (A 1)

Let Ho be the Hamiltonian governing a set of
noninteracting particles; then Hj =Ho+ Vj, where

Vj denotes the specific interparticle interactions in-

corporated in Hj. There exists an associated Green's
function defined by

~X,'(a))= ~P, (a))+g,'u ~P, (a)) .

This may be written as

/

Xj'(a) ) =g,'[[g,'] '+u,'J
/ P, (a) ) .

Then, using Eq. (AS)

[Xj(a))=g,'gj '
f P, (a) ) .

(A9)

(A10)

where z is the usual complex energy parameter
which specifies the incoming or outgoing boundary
conditions as z~E&+is. %e define Vjk as the
difference between two Hamiltonians:

V.k
——H. —Hk .J J

The operator identity defined by

a =b+b(b ' —a ')a

(A2)

(A3)

Gj Gk +Hk Hj:Gk + Vjk (AS)

Consider [hj] to be the subset of [Hj j, defining a
channel in which the particles are partitioned into
two noninteracting self-bound clusters. For each hj
there exists a set of two-cluster interactions denoted

[ u~'], where the index (l) denotes the different
cluster-clustt;r interactions. For example, the
cluster-cluster interactions could represent optical
potentials or more fundamental particle-particle
processes possible in many body systems. From
these interactions we construct a set of interaction

implies that the Green's functions Gj and Gk are re-
lated by

Gj =Gk +Gk (Hj Hk )Gj Gk +Gk ~j k Gj

(A4)

Furthermore, the operator inverses are related by

The inverse equation is

~ P, (a) ) =g, [g,'] '
~

Xj'(a) ) .

Using Eq. (2.11) for P and I ' leads to

~Xj(a)) =g,'[gj'] 'Xj~(a)) .

(Al 1)

(A12)

APPENDIX 8: DEUTERON
VERTEX FUNCTIONS

A modern realistic nucleon-nucleon interaction
V~~ contains at least spin, isospin, spin-orbit, and

Equation (A12) describes the connection between
two scattered waves evolving from the same two-
cluster channel under the influence of different clus-
ter interactions. Suppose that UJ is the "exact" mi-
croscopic interaction between two nuclei, and that
uj' is some optical model potential. Then Eq. (A12)
describes the connection between the exact scattering
vector and the model vector. It provides a starting
point for a study of the differences between the
many-body wave vector and any model wave vector.
The many body operator g&[g& ] ' may be treated by
the spectator expansion or other decomposition
methods. Thus, the framework outlined above is
suitable for studying the many body aspects of the
problem in a systematic manner.
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tensor coupling terms. Such couplings even in the
presence of a soft core render the utilization of these
interactions in the formation of transition ampli-
tudes extremely cumbersome. For general usage in
reactions, it is desirable to obtain from V~~ and its
corresponding deuteron wave function P~«a quanti-

ty which is approximately "invariant"; that is,
which essentially contains all the deuteron proper-
ties, but may be regarded as comparatively insensi-

I

V~y ——Vg+ VzS)2+ Vl.sL S, (81)

and the deuteron wave function is written as

tive to the detailed features of the interaction. These
functions we call the deuteron vertex function.

For the ( Si- Di) configuration, a typical realistic
potential such as the Reid potential can be abbrevi-
ated

1
Pg«(I, Mg)= [Xi—M YooUs(r)+ g (1MJ ~2mDlps)X» Y2«(r)IVD(r)] .

mg) ps
(82)

The deuteron vertex functions di«are defined asmI

the angular momentum decoupled product of
DJ——VNN, pg«. That is,

Di«, (r &)=»«Yoo —Us"«)

+ g (1m~
~ 2mDIps)

mD, PS

I

the corresponding wave functions are generated on a
numerical mesh. Thus the functions UI (r) are
known numerically, rather than analytically. A con-
venient parametrization for these functions is given
in Tables I and II.

APPENDIX C: ANALYTIC EXPRESSION
FOR THE FOURIER TRANSFORM

OF FOLDED SPHERICAL HARMONICS
IN AN ASYMMETRIC GAUSSIAN FIELD

XX,„Y, (r) U' (r)— The harmonic folded integral in a deformed
Gaussian field is defined as

where

(83) I(Q LM;P:Im)= Je'O'"(—R) Yl~(R)e' ''(r)'

and

Us (r) = Vc(r)Us(r)+~&Vr(r) IVD(r)

UD (Vc(r) 2Vr——(r) 3Vls(r—))Wz(r)—

+~8vr (r)Us(r) .

(84)

(85)

XYI (r)E(R, r)d R d r,

where

E(R,r) —=expI —A„X —A„Y A,Z +2B„x—X

(Cl)

An alternative expression for Eq. (83) in terms of
the vertex functions is

Di =Xi doo( r )

+2B&pY+2B,zZ —a„x —a y~ —a z2I.

(C2)

In Eq. (Cl) the YIM(R) are the standard spherical
harmonics, obeying the normalization convention

where

+ g (lmJ
~
2mDlps)X» d2«(r),

(86)

A
~LM(R ) YL'M'(R )d+R ~LL'5MM' ~

and satisfying the identity

YI*.M«)=( —) Yl. ( M)(R) ~

(C3)

(C4)

and

doo(r)= Yoo —Us (r)
7"

(87)

(BS)

The vertex functions di«, (r) are simpler to work

with than is the deuteron potential VzN.
%'hile the interaction V&z is known analytically,

For arbitrary angular momentum states (LM) and
(lm), the integral of Eq. (Cl) is cumbersome. Conse-
quently it is desirable to replace it by a representa-
tion in which the angular momentum dependence
does not appear explicitly in the integral, but is sub-
sumed in a set of differential operators.

A general polynomial differential operator of rank
I and order m, denoted by Di (q), may be defined in
the following form:
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Dt (q) = g a™ti&(an't)q„)
a+P+y=l

X(aiaq, )t'(ai~q, )r . (C5)

By requiring the Dt~ to satisfy the following expres-
sions,

rewritten as

I(Q:LM;P:Im ) =DLM(Q)Dt~(P)J (Q,P), (C8)

where

J (Q,P)= f e'o' e' ''E(R, r)d gdir .

Dt~ ( q )e' q '='(r) Yt~ (r )e' q ' ' (C6a) (C9)

and

Df~(q)e" ' =(r)'&(~(r")e" ', (C6b)

then for a given (lm), the coefficients a~p& are com-
pletely determined. Furthermore, using Eqs. (C4)
and (C6b), the following identity is obtained:

Note that in Eq. (C8) the angular momentum depen-
dence has been removed from the integral of Eq.
(Cl). The integral W(Q, P) is the double Fourier
transform of the coupled asymmetric Gaussian form
factor E(R, r). Evaluating Eq. (C9) yields

W(Q P) n I~(Q P~)Iy(gy Py)I (Qz P )

D& (q)*=(—) D& (q). (C7) (Clo)

Using Eqs. (C6a) and (C6b), Eq. (Cl) may be
I

where

A-a —B.2J J J

' 1/2

exp (Q a+P A+2PQB)
4(AJaj BJ )— (Cl 1)

and j may bex, y, orz.
Thus the harmonic folded integral I(Q:LM;P:lm) has been reduced to a general analytic expression in which

the differential operators Dt~ and Dr ~ project the desired angular momentum coupling.

APPENDIX D: GAUSSIAN FITS TO FUNCTIONS

In order to ensure speed and accuracy in numerical calculations we have least squares fits of analytical func-
tions with carefully selected asymptotic forms to a number of intermediate numerical functions employed in
our analyses. For convenience to other investigators we present the results of these fits in Tables I, II, IV, and
V.
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