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Simple graphical techniques are employed to obtain a new (simultaneous) derivation of a
large class of connected-kernel scattering equations. This class includes the Rosenberg,
Bencze-Redish-Sloan, and connected-kernel multiple scattering equations as well as a host
of generalizations of these and other equations. The basic result is the application of graph-
ical methods to the derivation of interaction-set equations. This yields a new, simplified
form for some members of the class and elucidates the general structural features of the en-

tire class.

NUCLEAR REACTIONS Graphical techniques and connected-kernel
equations. Rosenberg, Bencze-Redish-Sloan, and interaction-set equa-

I. INTRODUCTION

Derivations of the members of a certain class of
connected-kernel scattering equations (which con-
tains, e.g., the Rosenberg,! Bencze-Redish-Sloan®
(BRS), sigma set,>~> and connected-kernel multiple
scattering>® equations), or the general interaction-set
equations® which govern®~> the class, often rely
heavily on algebraic! =% or algebraic-combina-
toric®—° methods at some stage of the development.
Although these derivations can be particularly
cogent for some purposes, including the exploration
of the physical® and mathematical'® content of the
structures which arise in the theory, they tend to be
both tedious and convoluted. Since the members of
this class of equations are too complex for direct
computational applications, they serve primarily to
display the answers to questions concerning the gen-
eral characteristics of the many-particle problem
and to provide points of departure for realistic ap-
proximation schemes. Thus, it is often advanta-
geous!! to possess simple graphical'!~!3 pictures of
the essential structure of the equations in order to
guide both formal investigations and approximation
schemes, e.g., in effective interaction or optical po-
tential theories. Unfortunately, the essential struc-
ture of the equations is often obscured by the
aforementioned derivations.

Recently, Kowalski!! emphasized the simple
graphical features which underlie the interaction-set
equations when only pair-wise (two-body) interparti-
cle forces are present in the many-particle Hamil-
tonian. The removal of the restriction to pair-wise
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tions.

forces is evidently desirable, both to incorporate the
possibility of fundamental many-body forces and,
especially, to accommodate the more general types
of effective many-particle forces which arise in some
truncated nuclear reaction theories.'#!>  The
development of Ref. 11, however, appears to be tied
to the narrow notion of almost-connected graphs'!!
which arises naturally in the case of only pair-wise
forces.

In this paper we obtain the extension of the ideas
of Refs. 1 and 11 to the circumstance wherein there
are arbitrary many-particle forces. This result,
which is obtained through a straightforward gen-
eralization of the concept of almost connectedness,
provides a simple graphical picture of the entire
class of interaction-set equations. As a by-product
of these considerations we obtain a new, structurally
transparent form of the interaction-set equations of
Ref. 6 which should enhance their usefulness in re-
gard to realistic nuclear reaction theories and
models.

II. INTERACTION SET EQUATIONS
AND CONNECTIVITY

In this section, we briefly review those aspects of
the interaction-set equations which are required for
the graphical analysis of Sec. III and for under-
standing the generality of that analysis.

Our considerations are posed primarily in terms
of the transition operator,

T=VGG,~!, (1)
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and, in particular, the operators T),:
T=YT,=I[V],GG,™". )
? P

In Eq. (1), V is the sum of all interparticle interac-
tions in the N-particle system, G|, is the free Green’s
function, and G is the full Green’s function for the
system

G =G, V. A3)

In Eq. (2) the sum runs over the full set of distinct
partitions p of the N-particle system, where a parti-
tion of a many-particle system is a division of the
system into distinct groups or clusters of particles.
The notation [V], signifies the part of V (if any)
which has connectivity p, that is to say, the part of
V which connects all the particles internal to each
particular cluster of p but connects no particles
which are contained in different clusters of p. The
decomposition of ¥ in Eq. (2) represents the usu-
al'®!” (string or C,) connectivity expansion of V. It
is important to note that, since the p span the full
set of partitions, the potentials [ V'], span the set of
possible interparticle potentials, including both fun-
damental many-body potentials and the more gen-
eral effective potentials which arise in some reaction
theories.!* 1

The interaction-set operators T, satisfy the
interaction-set integral equations®

Ty= 3 Bpg+ 2 (Ki)peTy )
q q

where

(Kp)pg= %prMQI(P2+F)m,nG0QIKn,qQO
(5)
and
B, ={[T,1,+8,1[V1i[GG,™'1,18,, - (6)

The operators T, and the Eqs. (4) are referred to as
interaction-set operators and equations, respectively,
since they are indexed by the same set of partitions
which characterize the interparticle interactions. It
is shown in Ref. 6 that the kernel of Eq. (4) becomes
connected after a single interaction. In fact, Egs.
(4)—(6) represent the generalization of the Rosen-
berg! equations to accommodate arbitrary many-
particle forces.® In Eq. (5), P, (Q,) projects on (off)
the set of partitions consisting of exactly n clus-
ters,!® while I" and A are matrices in partition space
which are defined by®

F=Q2A‘CQ1 > (7)

(Rgp=1—(A) , ®)
Co=—("N,, 9)
with
A,p=1 bCa
=0 bZa . (10)

In the above, C is the usual “contained in” notation,
A’ is the transpose of A, [V]; is the fully-connected
part of ¥ which corresponds to the unique single
cluster partition (labeled 1), and §;;=1-38; ;. Evi-
dently, the structure of the interaction-set equations
is quite obscure in the above. In Sec. III we find
that a graphical analysis can be employed to rewrite
them in a much more transparent way.

In Sec. III our analysis is confined to the
interaction-set operators T, and Eqgs. (4)—(6). The
interaction-set is more general than indicated
above,® however, and, since the methods and results
of Sec. III can be taken over immediately to the en-
tire interaction set, we outline the generalization of
the above before proceeding to Sec. III.

The interaction-set idea is extended to include
transition operators of the generic form (a arbi-
trary),

T*=V°GG,~ !, (11

by simply adopting a different notion of connectivi-
ty.® In Eq. (11), ¥° is the interaction external to
partition @ and G, is the a-channel Green’s func-
tion, so that

G =G, -y, (12a)

V=V't+V,, (12b)
and

G, '=Gy,"'-Vv,, (12c)

where ¥V, is the interaction internal® to partition a.
Let [A]§ denote the b-connected part of the operator
A in the C, connectivity classification, where C,
connectivity is defined in analogy to C, connectivity
except that in C, one classifies the connectivity of
an operator according to the interactions external to
a only.>® That is, the interactions internal to a are
treated, for purposes of classification only, as if they
were disconnected operators (in the usual sense).
For example, both ¥V, and G, are completely
disconnected in C,. It is then easy to see>® that the
decomposition [cf., Eq. (2)]

Te= 3 T¢= 3 [V°]3GG, " (13)
p 4

leads to interaction-set equations for the T, that are
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FIG. 1. An example of the graphical pictures (for
N=5) which are employed throughout Sec. III. The solid
horizontal lines represent particles (labeled 1—S5 in the fig-
ure) and the solid blobs represent the interparticle interac-
tions. The number of lines, n, intersecting the blob
represent the n-body nature of the potential. A free
Green’s function Gg is understood to act between blobs.
This particular graph represents a particular term (for
N=5) of T,, with p=(123)(4)(5), which is fully connected.
This graph also represents Eq. (17) with A=(1234)(5) and
q=(1)(2)(345) since it becomes connected (from the left) at
the fifth interaction.

completely analogous to Egs. (4)—(6) (which corre-
spond simply to the special case where a is the
unique N-cluster partition). All that is required are
the replacements® [in Egs. (4)—(6), e.g.]

T,—-T,, (14a)

Go—G, , (14b)
and

[(V,—= Ve =[V];—Vady0 - (14¢c)

The fact that the kernel of the resulting integral
equation becomes C; connected after a single in-
teraction follows from the obvious fact that any
operator which is C, fully connected is necessarily
C fully connected.

III. GRAPHICAL ANALYSIS

From the definition Eq. (2) of the T), it is evident
that T, consists of the sum of all parts of T which
end on the left with a p-connected interaction. The
contributions to 7, (and to T) are easily visualized
in terms of graphical pictures of the terms of T,
which arise when an expansion of G, using the resol-

vent relation!® [cf., Eq. (2)]
G=Go+G,oVG , (15)

is inserted into the definition T,=[V],GG,~'. An
example of the types of graphs which we have in
mind throughout this section is displayed in Fig. 1.

We have the Cy decomposition,

Tp=[Tp]dis+[Tp]1 ’ (16)

where dis refers to the sum of all of the disconnect-
ed parts of T, and 1 refers to the fully-connected
part. In order to simplify the discussion, it is con-
venient at this point to assume that [ ¥];=0, but to
leave the disconnected parts of V unrestricted. This
restriction is removed later.

Consider now the fully-connected part of Eq. (16),
and let us use X, Y, and Z to denote arbitrary terms
or graphs of T. If [X,]; denotes a fully-connected
graph contained in T, then it possesses the unique
decomposition

[Xp]1=[Yp]kGOZq ’ (17

where A1 and AUg=1. The union of two parti-
tions, AUg, is defined!” to be the partition with the
largest number of clusters which contains both A and
g. Thus the condition AUg=1 ensures that [X, ], is
fully connected. Equation (17) and its uniqueness
obtain, because if we follow the graph of [X, ], from
the left we eventually encounter (for the first time)
an interaction which makes it fully connected. The
part of the graph preceding this interaction deter-
mines [Y,], uniquely, while the remainder of the
graph determines Z, uniquely (see Fig. 1).

If we now sum Eq. (17) over all fully-connected
graphs (which end with [V],) we obtain

[T,0i= 3 SIT,1:6G00104:7, - (18)
A#1 ¢

Upon inserting Eq. (18) into Eq. (16) we find that

Tp:[Tp]dis+ ); 2 [Tp]AGOSAUq,qu ’ (19)
+*1 q

or, in matrix form,
T'_—[_T’]dis'*‘WQlGOgT ) (20)

where T is the column matrix with row labels p, and
the matrices W and 8 are defined by

(W)pa=[T, 11, 1)
(g)p,1= pUA,L > (22)

and we recall that Q, projects off the unique single-
cluster partition. The kernel of Eq. (19) or (20) be-
comes connected after a single iteration since

=2
Kgp= X [T;1aGolT:1.Godguc,18pue,1 »
c,d,e#1
(23)

so that each term on the right-hand side of Eq. (23)
is at least (d Uc) connected which, in view of the
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first 8, is fully connected.

The structure of Eq. (19) or Eq. (20) is completely
transparent. Namely, the structure of the kernel
guarantees that each [7},], couples to only those T,
with respect to which it is almost connected. Equa-
tion (19) or Eq. (20) represents the obvious generali-
zation of the Rosenberg equations and the notion of
almost-connected graphs.

If we compare Eq. (19) or Eq. (20) with Egs.
(4)—(6) for the case at hand (recall that [V];=0, so
far), then we see that the driving terms are the same.
It is not at all obvious, however, that the complicat-
ed kernel of Eq. (4) is equivalent to the simple kernel
of Eq. (19), although it must be. To see that the two
are equivalent, consider the part of the kernel of Eq.
(4):

M=Q,(P,+T)Q,AQ, . (24)
If we make use of the identity®'’

A'CQ,=P,+T, (25)
we see that

M =Q,A'CQ,AQ, (26)
or

M g= 3 842Ca84,184,48,0 - 27

a

Upon using Eq. (8) and the obvious identity

Aa,bAa,c = Aa,b Uc »

we find
Ml,qz 2 Caga,l(Aa,A_Aa,AUq )Sq,o ’ (28)
a
so that application of the identityﬁ’ 17
2 Casa,lAa,b =Sb,1 (29)
a
yields
M; =83,182uq,1 - (30)

Use of Eq. (30) in Eqgs. (4) and (5) yields Eq. (19),
thus establishing the equivalence. The foregoing
highlights the advantage of the graphical method,
namely, complicated combinatoric or algebraic
methods are obviated by the use of simple structural
pictures. We remark that the corresponding results
of Refs. 3 and 11 follow immediately from Eq. (19)
upon restricting ¥ to include only pair-wise forces.
Let us now extend our considerations to the case
where [ V];5£0. It is evident from their construction
that no change is required in Egs. (19) for p=£1, oth-
er than noting that in the sum over ¢ the g=1 term

now contributes. Thus, we need only provide an ad-
ditional equation for

T,=[T],=[V1;GG,~". (31)

In view of Eq. (31), which expresses the fact that T,
has no disconnected part, we write

Ty =[VhIGGo " 1ais+[VhIGG, ;s (32)

in contrast to Eq. (16). Iteration of the Green’s
function G using the resolvent relation Eq. (15) leads
to a graphical picture for (GG,~!) which is analo-
gous to that which we have employed for the 7,. In
fact, the same logical line that was used to obtain
Eq. (18) can be used to show that

[GGy 1= 3 3 [GGo ' 1\GodrugiT, - (33)
A#1 g
Applying Eq. (33) in Eq. (32) yields

T = [VIi[GGo™ " uis

+ 3 3 [VI[GG, '1xGodrug T, »
A#1 ¢
(34)

which is the additional equation required.
Combining Eq. (34) with Eq. (19) yields the final
result of our graphical analysis:

Ty=B,+ 3 KT, , (35)
q
where
Bp=[Tp]dis+8 ,I[I/JI[GGO—I]dis (36)
and
Kpg= 2 ([T, 1a+8,1[V1i[GGo~'11}
Al
X Godpug1Ty - (37)

Equations (35)—(37) are easily reconciled with Egs.
(4)—(6) through the use of Eq. (30).

Finally, we emphasize that the methods and re-
sults of this section can be extended to the general
interaction set equations discussed in Sec. II. This is
easily verified by making use of Egs. (14). We re-
mark also that the transformation from the
interaction-set equations to the corresponding
channel-labeled equations, e.g., the BRS equations,
is easily accomplished through the use of the
sigma-set methods of Refs. 3—5. Thus the concep-
tual clarity of the foregoing graphical analysis ap-
plies to the channel-labeled equations as well as to
their interaction-set counterparts.
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