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The elastic scattering neutron cross section at low energy displays many narrow reso-
nances. By definition, the optical-model scattering function is equal to a suitable energy
average of the actual scattering function. This average should be independent of the partic-
ular representation chosen for parametrizing the actual scattering function and also fairly
independent of the averaging weight function. In particular, it should be fairly independent
of the width of the weight function, even though a sparsity of resonances might require the
width to be comparable to the energy range of the measurements. It is shown by direct nu-

merical calculations of the average that this holds in the example of the scattering of p3/2
neutrons by S. Attention is drawn to pitfalls which exist when this average is evaluated

analytically from parametrized forms of the scattering function. Several ways of graphical-

ly representing or of parametrizing the average scattering function are illustrated and dis-

cussed.

NUCLEAR REACTIONS High resolution R-matrix scattering func-I

tion, average scattering function, and optical model scattering function;
application to ' S+n for p3/2 neutrons.

I. INTRODUCTION

The optical model is one of the most useful tools
of nuclear physics from the theoretical as well as
from the practical point of view. For simplicity, we
consider here the case in which only one channel is
open for a given angular momentum and parity.
The optical-model scattering function S (E) at en-

ergy E is usually defined as being equal to the ener-

gy average (S(E))I of the scattering function S(E):

S (E)=:(S(E)), ,

where I denotes the averaging interval. Experimen-
tally for low energy nucleons, particularly for neu-
trons, the detailed energy dependence of the scatter-
ing function S(E) for each significant partial wave
can be determined from high resolution cross section
measurements. It becomes important to correctly
average these data for each partial wave in order to
compare with optical model descriptions of the
scattering. Such a comparison is meaningful only if

the right-hand side of Eq. (1.1) can be defined in
such a way that it is essentially independent of the
averaging interval I, of the weighting function used
in performing the averaging, and of the particular
parametrization used for representing S(E).

Brown' has argued that the Lorentzian averaging
weight function is particularly convenient, and that
one has then

(S(E))I=S(E+iI) . (1.2)

In order to calculate the right-hand side of Eq. (1.2),
one needs an explicit algebraic form for S(E). In
practice, this is obtained by fitting the data over a
limited energy region, usually in the framework of
R-matrix theory. One of the primary purposes of
this paper is to point out that conditions necessary
to justify the contour integration leading to Eq. (1.2)
are not usually satisfied in the convenient and com-
monly used R-matrix parametrization for S(E) and
that, relatedly, the quantity S(E+iI) may be a sens-
itive function of the averaging interval I. We
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II. NUMERICAL CALCULATION
OF THE AVERAGE SCATTERING FUNCTION

A. The scattering function

For a spin zero target, the angle-integrated elastic
scattering neutron cross section for one partial wave
is given by

o(E}=mk g ~

1 S(E}~— (2.1)

where g is the familiar spin-statistical factor, E is
the bombarding energy, and k is the neutron wave
number at energy E.

The quantity S(E) is the scattering function for
the relevant partial wave. It is a complex function;
for real E, we write

S(E)=S„(E)+iS;(E). (2.2)

If only one channel is open at energy E, S(E) has

demonstrate two alternative techniques (one numeri-
cal, one analytic) for averaging S(E), both of which
are justified mathematically and yield consistent re-
sults.

Our presentation scheme is the following: In Sec.
II, we calculate (S(E})1 numerically from the
parametric form of S(E) determined2 in the specific
experimental case of scattering p3/2 neutrons by S;
we show that the energy-average (S(E))l is nearly
independent of the choice of the averaging interval I
and of the averaging weight function. Therefore,
the corresponding optical-model potential indeed
need not refer to any specific averaging procedure.
Also in Sec. II we describe several ways of represent-
ing (S(E))l graphically and briefly discuss their
relative merits. In Sec. III, we explain why the 8-
matrix parametrization for S(E) is incompatible
with a straightforward application of Eq. (1.2). We
show nevertheless how a close approximation to
(S(E))l can be obtained analytically using the R-
matrix parametrization introduced in Ref. 2. In Sec.
IV we point out that a generalization of Eq. (1.1) is
necessary to include experimental cases where the
resonances are so narrow or so widely spaced as to
have little influence on the average of S(E). Even
with this refinement we find that a good approxima-
tion to S (E) is obtained analytically using the
same parametrization of the R matrix as in Sec. III.
In Sec. V, we establish contact between (S(E))I on
one hand, and the neutron strength function and the
smoothed R function on the other hand. In so doing
we find simple expressions for deducing an approxi-
mate (S(E))i from the preceding R-matrix
parametrization of the data. Our main conclusions
are summarized in Sec. VI.

modulus unity for each angular momentum and par-
ity,

S„(E)+S;(E)=1 . (2.3)

The cross section may therefore be expressed in
terms of the real part of S as

o(E)=2@k g [1 S„(E—)] . (2.4)

It would be incorrect to infer from Eq. (2.4) that the
measurement of 0(E) determines only the real part
of S(E). Indeed, Eq. (2.3) enables one to find the
magnitude of S;(E) once S,(E) is known; the physi-
cal observables are independent of the sign of S;(E).
On the other hand, the energy average cross section
(0(E))i determines only the average of the real part
of the scattering function:

~0(E)~I =2nk g[1—'(S (E)~l] (2.5)

When going from Eq. (2.4) to Eq. (2.5), we assumed
that the factor k need not be averaged over.

B. Definitions of the energy average

The experimental data cover only a finite energy
domain, [Ei,E„],whose lower and upper ends we
denote by Ei and E„. Hence, a meaningful numeri-
cal calculation of the average of S(E) should involve
only the quantities S(E') with Ei&E'&E„. We
write accordingly

E„
(S(E)) = f F (E,E')$(E')dE',

where E is given by
E

E(E)I f Fl (E,E——')E'dE',

and the normalization of the weight function is

(2.6)

(2.7}

E.f F (E,E')dE'=1 . (2.8)

We shall always take the averaging weight function
FI(E,E') to be an even function of (E E'), al-—
though the function is distorted as E approaches the
end points of [Ei,E„]. Equation (2.7) defines E as
the energy average of the energy E. At the center of
the experimental domain, E is equal to E. The
quantity E is introduced for the following reason,
which will be discussed in detail in Sec. IV. The
definition of the optical-model scattering function
S (E) should involve only the average of the
strongly energy dependent part of S(E) in the
domain [Ei,E„], i.e., that part which arises from
resonances within or close to the domain. The func-
tional energy dependence of the slowly varying part
of $(E) should not be affected by the averaging.
The introduction of the average energy E helps in
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fulfilling this requirement, since the average of the
linear function a+pE is given by a+pE.

Three typical choices for Fl(E,E') are considered
here:

FI(EE )=
(E E'—) +II,

(2.9)
0.6

Itu

FI (E,E')=fGe (2.10) 0.4

FI (E E ) =fa e(IB
I
E E'

I
)— (2.11)

These correspond, respectively, to a Lorentzian, a
Gaussian, and a box weight function. The coeffi-
cients f are determined by the normalization condi-
tion (2.8), and are implicitly functions of energy E.

The quantities II., IG, and I~ characterize the size
of the averaging interval I. Henceforth, we shall
somewhat arbitrarily identify 2I with the full width
at half maximum of the weighting function F. Then

I =IL Is ——(ln4——) IG . (2.12)

Figure 1(a) shows the dependence upon E' of func-
tions F, F, and F for E =550 keV and 2I =600
keV. The value E=550 keV corresponds to the
middle of the domain [0, 1100 keV] covered by the
experimental data ' in the case n+ S, which is
discussed in detail below.

Figure 1(b) shows the Lorentzian weight function
for 2I =400, 600, and 800 keV. Figure 2 shows the

I
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FIG. 2. Dependence upon the energy E of the average
energy E as defined by Eq. (2.7), in the case of the
Lorentzian weight function (2.9), with 2I=400 keV
(dots), 600 keV (full curve), and 800 keV (long dashes).

D &I&(E„EI). — (2.13)

This is not an ideal situation. Ideally we would have
the inequalities

average energy E, as defined in Eq. (2.7), vs E for
the Lorentzian weight function and for these three
values of the averaging interval I.

In the case of p3/g neutrons on S, the average
spacing D between neighboring resonances below
1100 keV is about 160 keV. ' In order to obtain a
meaningful average, the averaging energy interval I
should satisfy the inequalities

D «I«(E„EI), — (2.14)
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but often this is not encountered in light nuclei. In
the case of p3/2 neutrons on S, inequalities (2.13)
are satisfied for I=300 or 400 keV. The value
I=200 keV is already somewhat too small since no

p 3/2 resonances are observed between 4 12 and 714
keV, a region near the energy domain's center where
the average {S(E))1 is normally expected to be
most unambiguously defined. This is precisely one
of the reasons that the example n+ S is instruc-
tive, since the problems encountered in that case are
rather typical for light nuclei or for nuclei near
closed shells.

C. Representations of the energy average

FIG. 1. Dependence upon E' of various weight func-
tions Fq(E,E') for E =550 keV, each normalized to unity
in the interval [0, 1100 keV]. In (a) all curves have full
width at half maximum 2I =600 keV with the solid curve
corresponding to the Lorentzian (2.9), the dots to the
Gaussian (2.10), and the rectangle to the "box" (2.11). (b)
shows the Lorentzian with 2I =400 keV (dots), 600 keV
(solid curve), and 800 keV (long dashes).

A straightforward way of representing {S(E))1
would be to show its real and imaginary parts.
However, it is more meaningful to present two
quantities which are more directly related to the ex-
perimentally observed resonances and to the nonres-
onance background. One example of such a pair of
quantities is the shape elastic and the compound nu-
cleus cross sections,
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and

cr„(E)=nk 'g
~

1 —(S(E))l ~'

~,(E)=~k g(1 —
~
&S«)&l

l
)

(2.15)

(2.16)

Other representations of (S(E))I can be chosen
which maintain the correlation to the experimental
resonance and nonresonance cross sections. For in-

stance, MacDonald et al. ' proposed to write

(S(E))I——exp[2i5(E)], (2.17}

and to plot the real and imaginary parts of the opti-
cal model phase shift 5:

5(E)=5„(E)+i5;(E). (2.18}

The 5, and 5; are rather closely related to o„and
O.„respectively.

Yet another representation is inspired by R-matrix
theory ' and consists of writing

z;~I@I I+iP(E)[R(E)+in.s (E)]
1 iP(E)[R—

(E)+its�

(E)]
(2.19)

where P and P denote the hard sphere phase shift
and penetrability, and where the real quantities R
and s are the smoothed R function and the strength
function, respectively. A disadvantage of this repre-
sentation is that all these quantities depend upon the
choice of the interaction radius a. One advantage is
that the threshold behavior at E~O is contained in
the penetrability and not in R or s; R and s may then
be parametrized by simple algebraic expressions
such as contants or linear functions of E.

In contrast, the representations in terms of com-
pound or shape-elastic cross sections and in terms of
complex phase shifts do not depend on the choice of
channel radius, but also do not factor out threshold
behavior. For example, for s-wave neutrons we have
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neutrons by S in the experimental energy domain
[0, 1100 keV]. The experimental data are described
in Refs. 2 and 3. Resonances with J = —, have
been observed at the energies E~ ——97.5, 1 12.2,
288.4, 412.3, 740.8, 778.6, 920.7, and 1091.4 keV.
Our main purpose is to show that (S(E))I is well
defined, i.e., is fairly independent of the averaging
interval I and of the choice of the weight function
F(E,E'). We consider the I.orentzian, Gaussian,
and box averaging weight functions. The input is a
parametric expression for S(E) which is given in
Ref. 2 and which is discussed in Sec. III. We em-
phasize that since the definition (2.6) of the average
involves only "measured" values of S(E), any other
accurate parametrization of the data would lead to
the same value for the average S function; this has
been verified numerically.

5„(E)
lim =R '
E~O k

(2.20) (tz- O 1O

2ko 5(E)
Sp —— lim

7T E +p k
(2.21)

where R' is the potential scattering length. The con-
ventional s-wave strength function is given by

0.05

0
0

I I I I I I I I I I

0.2 0.4 0.6 0.8 1.0
E (MeV)

where kp is evaluated at 1 eV. It thus appears that
in the case of 1-wave neutrons it might be more use-
ful to plot the ratios 5,(E)/k +' and 5;(E)/k +'
rather than 5„(E)and 5;(E).

D. Numerical results for n + S

In the present subsection, we calculate the average
value of S(E) in the case of the scattering of p3/2

FIG. 3. Dependence upon the average energy of the
three quantities which are closely related to the off reso-
nance scattering in the case of p3/g neutrons on S in the
observed domain from 0 to 1.1 MeV, The quantities are
(a) cr„ from Eq. (2.15), (1) 5„ from Eq. (2.18), and (c) R
from Eq. (2.19) for a 6.4-fm channel radius. The
Lorentzian weight function (2.10) has been used. Each
figure shows curves for 2I =400, 600, and 800 keV with
that for 400 keV being the longest and that for 800 keV
being the shortest curves.
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1. Lorentzian averaging weight function 0.25
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The related quantities o„, 5„and R defined by
Eqs. (2.15), (2.18), and (2.19) are plotted in Figs.
3(a}, (b), and (c}, respectively, for the Lorentzian
weight function (2.9) for 2I =400, 600, and 800
keV. Since the plotted quantities depend mostly on
the slowly varying off-resonance cross sections, they
are each found to be practically independent of the
averaging interval. Note that this would not be the
case if we had not introduced the average energy E
on the left-hand side of Eq. (2.6).

The related quantities o.„5;,and s are plotted in
Figs. 4(a), (b), and (c), respectively, for the same
weight fuiictions as Fig. 3. Since these quantities
are each closely related to the resonance structure
they are more sensitive to the averaging interval.
Near 550 keV for the narrowest Lorentzian,
2I =400 keV, all three figures show a dip which re-
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FIG. 5. Comparisons of the average compound cross
section cr, for various weight functions. In both (a) and
(b) the full curve is reproduced from Figs. 4(a) for the
Lorentzian for 2I =600 keV. (a) includes the average for
the Gaussian function, Eq. (2.10), for 21 =600 keV (dots)
and 2I =800 keV (long dashes). (b) includes the box aver-

ages, Eq. (2.11),with the same dot arid dash notation.
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fiects the absence of resonances between 412 and 740
keV; the larger values of 2I, namely 600 and 800
keV, are thus more meaningful.

2. Other weight functions
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FIG. 4. Dependence upon the average energy of the
three quantities which are closely related to the reso-
nances observed in the case of p3/3 neutrons on "S in the
domain from 0 to 1.1 MeV. The quantities shown are (a)
cr, from Eq. (2.16), (b) 5& from Eq. (2.18), and (c) s from

Eq. (2.19) for a 6.4-fm channel radius. The Lorentzian
weight function (2.9) has been used with 2I =400 keV
(dots), 2I =600 keV (solid curve), and 2I =800 keV (long
dashes).

We repeated the above calculations using the
Gaussian and box weight functions. The resulting
tr5e, 5„, and R were not sensitive to the shape of the
function; that was expected because they were in-
sensitive to the width of the Lorentzian. However,
since the quantities cr„5;, and s are sensitive to the
width of the Lorentzian, we expect them also to be
more sensitive to the choice of the function. In
Figs. 5(a) and (b) we show tr, for the Gaussian and
the box weight functions, respectively. The box
average does not lead to a smooth curve; abrupt
changes occur each time an energy E~ coincides
with a sharp edge of the weighting function. But
even in this case the results only fluctuate about the
correct value of o;.

3. Conc1usion

We conclude from Figs. 3—5 that the average
scattering function can be quite well determined
from the experimental data, even though in the
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present case only a few resonances exist so that the
averaging interval I cannot be chosen much larger
than the level spacing D. In Sec. III, the average
that we now have determined numerically will be
compared with various analytical expressions which
have been proposed in the literature. For that com-
parison we adopt as our "standard average" the
evaluation of Eq. (2.6} with the Lorentzian weight
function, Eq. (2.9), and with an averaging interval
I =300 keV.

III. ANALYTICAL APPROXIMATIONS
FOR THE AVERAGE SCATTERING

FUNCTION

Since the integration of the scattering function
cannot be done exactly in closed form, results ob-
tained for (S(E})1from Eq. (2.6) are of necessity
produced by numerical integration using carefully
selected quadrature schemes. However, once a par-
ticular parametrization is chosen for the scattering
function, it is possible to make approximations
within the integrand and for the integration limits
which yield an analytic form for the average scatter-
ing function. The analytic form thus obtained may
be a good approximation to the standard average.

A. Parametrizations of the experimental data

A convenient way to analyze low energy neutron
scattering data is based on the R-matrix formalism,
which automatically embodies the unitary property
(2.3). In the one-open-channel case, the scattering
function is given by

R (E)=R'"'(E)+R'"'(E) (3.4)

where R'"' is the "internal function" which contains
the poles within [E~,E„] and R'"' is the "external
function" which contains the infinite series of poles
outside the domain; thus

and

N 2

R int(E)
~=i E~ —E

2

R ext(E) g It

N Ep —E

(3.5)

(3.6)

0.30

In this form the analytic properties of S(E), for
complex E, are well understood; poles occur only in
the lower half of the complex E plane. However,
Eq. (3.6) for R'"' is not practical because the indivi-
dual external poles are unknown; only their effects
are measured within the experimental domain.
From its definition R'"' must be a smoothly increas-
ing function of energy within the domain. This
function can be parametrized in any of several ways
to give the correct S(E), and any of these when in-
troduced into Eq. (2.6) yields the correct standard
average.

Often the experimental data are not sufficient to
show the exact energy dependence of R'"'. For p3/p
neutrons on S the R'"' was deduced from the
resonance-background interference pattern at the
eight resonance energies E~. Figure 6 shows the
eight values with uncertainties. These data would
permit a simple linear function for R'"', but a better

2;p(E) 1+iP(E)R (E)
1 iP(E)R(E) —'

where the R function has the form

(3.1) 0.25

0.20—

E((Ep (Eg, ()t, =l, . . . , N) .

The R function may then be written as

(3.3)

R(E)= g (3.2)
p.=1 P

The quantities E& and y& are real. In Eq. (3.1), we
have chosen the boundary parameter 8 of R-matrix
theory equal to the "shift function, " whose energy
dependence has for simplicity been neglected; this
approximation becomes exact in the case of s-wave
neutron scattering.

The fine structure data give information on the
resonance energies Ez only within the experimental
domain, or at most slightly beyond the end points EI
and E„of the domain. Let us denote by E~ those
observed resonance energies:

0.15—

0.10
p r

o.o5
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0.2
I I

04
I l I I
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1.0

FIG. 6. Dependence upon energy of the external R
function in the case of the scattering of p3/p neutrons by

S. The experimental points with associated uncertainties
were obtained in Refs. 2 and 3 by fitting the resonance-
background interference pattern at each of the eight reso-
nances. The full curve was obtained by least squares ad-
justment to the data using a smoothed R function; see
Eqs. {3.8)—{3.10). The dotted curve was obtained by ad-
justing the widths of a three-pole parametrization, Eqs.
{3.11)—{3.13), to give a good fit to the full curve.
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procedure is to adopt a function which approxi-
mates the shape expected from the definition (3.6).
We shall consider the following two types of
parametrization.

s=(y )/D =0.0093 . (3.7)

Johnson and Winters introduced the principal value
integral

E
R'"(E)=Pf, dE'

=s ln E —E)
(3.8)

Following Lane and Thomas they argued that, ex-
cept near the end points where R'" has singularities,
the quantity

R (E)=R'"'(E)+R'"(E) (3.9)

is a smooth function of E which can usually be
represented by a constant or by a linear function.
The solid curve in Fig. 6 shows that, with
s =(y )/D, a good fit to R,„, is obtained with the
linear form

I. The empirical smoothed R function, R

Let us call s the average value of the strength
function s (E) inside the experimental domain.
From Fig. 4(c) and from the resonance parameters
we see that s is approximately equal to the ratio of
the average width to the average spacing of the eight

p 3/2 resonances,

ya =0.235,0.0058, and 3.10 MeV . (3.13)

Numerical calculations showed, as expected, that the
standard average is essentially the same with this
representation of R'"' as with the smoothed R-
function parametrization.

The caret on the quantities E and y is a re-
minder that these are merely parameters and should
not be identified with the actual poles Eu and re-
duced widths y„. Indeed, a drawback of the
parametrization (3.11) is that it amounts to assum-
ing that the structure of the R function, e.g., the
pole spacing, is very different outside the domain
[Et,E„]from that inside. One is not allowed to at-
tach any physical meaning to the right-hand side of
Eq. (3.11) for values of E outside of the domain
[Ei E.]

B. Erroneous extensions into the complex plane

If the representation (3.1) is introduced into the
averaging integral, Eq. (2.6) becomes

(
—

)
e g;t)(s ) 1+iP(E')R (E')

E( 1 iP (E')R (E—')

could be described within the uncertainties by a sin-
gle distant pole, but we have introduced three poles
and adjusted the widths to give a good fit to the full
curve for R'"' deduced above. The dashed curve in
Fig. 6 shows the fit for

&a= —1.0, 1.2, and 11.2 MeV, (3.12)

and, respectively,

R(E)=a+bE, (3.10) xFt(E,E')dE' . (3.14)

with a=0.083 and b=0.113 (MeV)
This parametrization ascribes the characteristic

shape of R'"'(E) to the end point logarithmic singu-
larities of R'"(E). The physical origin of these
singularities lies in the assumption that for an ener-

gy range of the order E„Et beyond the —end points
Ei and E„, the external R function keeps approxi-
mately the same structure as the internal R function,
i.e., has approximately the same strength function.

M 2

R ext(E)
i E —E

(3.11)

Since R'"' must be a slowly varying smooth function
within [Et,E„],an adequate fit can be obtained with
only a few poles, say four or less. The data in Fig. 6

2. Few pole approximation for R '

Another parametrization of R'"' consists of ex-
pressing it as a sum of a few pole terms,

We now consider evaluating the integral by con-
tour integration with the scattering function, or
various approximations to it, extended into the com-
plex plane. In this section we discuss improper ex-
tensions which yield incorrect averages. In Sec.
III C we use a proper extension which yields a good
approximation to our standard average.

1. S(E+iI)
Brown' proposed to approximate Eq. (3.14) by

choosing the Lorentzian weight function, extending
the limits to + oo, closing the contour in the upper
half of the complex energy plane, and evaluating the
integral using the theorem of residues. Following
this proposal, one usually writes

( ( )) =f.,'=f„-f '. —f.-f.,
=S E+iI, 3.15
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FIG. 7. Sketches of two integration contours used to
argue that the average S matrix is related to S(E+iI).
The crosses represent poles of S(e). (a) is a semicircular
contour used for Eq. (1.2) or an extension thereof; see Eq.
(3.15). (b) is a box contour used for Eq. (1.2) or an exten-
sion thereof; see Eq, (3.17). The distance ab is 2aI and
the distance bc is I.

z;~I+~ exp[2P~ri sin8/2]
exp[2iPv ri cos8/2]

(3.16)

Since the exponent in the numerator is both real and
positive for 0&8&m., the integrand grows exponen-
tially as the radius of the semicircle increases. The
integral over the negative real axis is likewise non-
negligible, as can be seen by setting 8=~ (E'= —g)
in Eq. (3.16).

Direct comparisons of S(E+iI) with our stand-
ard average support these criticisms. In Fig. 8, the

where c.s. denotes a closed and o.s. an open semicir-
cle and where the integrand has been suppressed for
clarity. The closed contour is illustrated in Fig. 7(a).
Since all such poles are in the lower half of the com-
plex e plane, one argues that the only contribution to
the value of the integral is from the pole at E+iI in
the Lorentzian weight function.

However, the approximation indicated in Eq.
(3.15) is invalid for any practical R-matrix
parametrization because the integrand (and thus the
integral) is not vanishingly small along the semicir-
cle contour in the complex plane. To understand
this, note that we may set E'=ye' with 0&0&m.
and ri —+oo to describe the semicircle. Then, for
P(E') =P(E')'~ (where P is a positive constant), we
find

0
0

I

0.2
I

0.4
I I I

0.6 0.8 1.0
E OR E (MeV)

FIG. 8. A comparison for 2I =600 keV of the "stand-
ard" values of R and s vs E [full curves reproduced from
Figs. 3(c) and 4(c)] with those values (dotted curves) de-
duced from expressing S(E+iI) in terms of R and s as in
Eq. (2.19). The pole expansion of R '"' [see Eqs.
(3.11)—(3.13) was used for S(E +iI).

dotted curves represent the values of R and s [see
Eq. (2.19)] obtained by replacing E by E+iI in the
scattering function S. The solid curves are the
correct results obtained in Figs. 3(c) and 4(c) by the
numerical averaging technique. Obviously the two
sets of results are seriously discrepant. For calculat-
ing S(E+iI) we used the three-pole representation
of R'"'. Similar results were obtained using the
empirical smoothed R-function representation.

A second method of approximating Eq. (3.14) is
to use the box weight function, following a proposal
by Lynn. One then sets

&S(E)&,'= J, = I,
c.b.

(a~b~c~d~a)

=S(E +iI),

b.b.
(b~c~d~a)

(3.17)

where c.b. denotes a closed and b.b. a bottomless box
and where the closed contour is shown in Fig. 7(b)
with the vertical distance, ad =bc, set equal to I.
For a= —, this is the form considered by Feshbach,
Porter, and Weisskopf. For a= 1 this form corre-
sponds to our box average defined in Eqs. (2.6) and
(2.11) provided EI+I&E &E„I. —

One then argues that, at a distance I above the
real axis, S(E+iI) is independent of E' within the
domain E —aI&E'&E+aI, so that the integral
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along the top of the box from c to d yields
S—(E+iI). Further, one assumes that the contri-

butions from the vertical sides, bc and da, will can-
cel. Since integration along the entire closed con-
tour yields zero, Eq. (3.17) follows.

That this result is incorrect we have seen above.
Both the argument that S(E+iI) is independent of
E and the assumption that the vertical sides cancel
are, in general, not justified.

2. R(E+iI)

0.20

0.15

0.10—

0.05—

0 I I

0.030 I I

I I I

I I I

(a)

I I I

I I I

Actually both Brown' and Lynn used an approxi-
mation to the scattering function for their contour
integrations, and the analytic extension of that ap-
proximation into the complex e plane is far better
behaved than the extension of the scattering func-
tion itself. They argued that, since the hard-sphere
phase shift and the penetrability are slowly varying
functions of energy within the experimental domain,
a good approximation to Eq. (3.14) results from set-
ting E'=Ein III and P,

2;y{EI f ~ 1+iP(E)R (E')
1 iP(E)R —(E')

XFI(E,E')dE' . (3.18)

The remaining E' dependence of the integrand

0.025 L
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0.2 0.4 0.6 0.8
I

1.0

E OR E (MeV)
FIG. 10. A comparison as in Fig. 8 except that the dot-

ted curves were deduced by evaluating R(E+iI) in Eq.
(3.19) and expressing the equation in the form of Eq.
(2.19). The additional curves (long dashes) for 2I =800
keV demonstrate the strong I dependence for s.
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occurs in the R function and in the weight function.
In order to examine this approximation we calcu-

lated the integral in Eq. (3.18) numerically and ex-
pressed it as R and s from Eq. (2.19) for comparison
to our standard average. From Fig. 9, which shows
R and s obtained by the two evaluations, we con-
clude that the approximation is quite acceptable in
this case of p3/2 neutrons on S.

One might expect, therefore, that extension of the
integrand of Eq. (3.18) into the complex plane would
be straightforward because the difficulties reported
in the previous subsection resulted primarily from
the analytic extension of P(E') and P (E'). Thus, we
might expect that the expression

0.10 q;~(~) 1+iP(E)R (E+iI)
1 iP (E)R (E+iI—)

(3.19)

0.05

I I I I

1.00.20 0.4 0.6 0.8
E (MeV)

FIG. 9. A comparison for 2I =600 keV of the stand-
ard values of R and s [full curves reproduced from Figs.
3{c)and 4{c)]with those values {dotted curves) obtained by
approximating the hard-sphere phase shift and penetrabil-
ity by P{E)and P{E)as in Eq. (3.18).

would be a good approximation to the standard
average. However, calculations using this expression
show that it can be a bad approximation. Figure 10
compares the results of (3.19) for I =300 and 400
keV with the standard average, in the form of R and
s from Eq. (2.19). We see that the strength function
has a large discrepancy which increases with I. The
same discrepancy occurs for both the few pole and
the smoothed R-function representations of R'"'. In
the latter case the strength s(E) includes a term
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bIIm, where b is the slope of the smoothed R func-
tion of Eq. (3.10). This spurious term gives rise to
the large I dependence in Fig. 10.

Exactly where the underlying assumptions for the
two contour integration methods are violated is
more easily seen for the box weight. The require-
ment that the contributions from the two vertical
sides cancel will be met only by accident, since it is
unlikely that an arbitrary parametrization of R (E')
will have the property that R is the same along the
two sides, i.e., that R (E'=E aI+—iy) is equal to
R (E'=E+aI +iy) for 0 &y &I. Similarly, one
could not expect that R(E'+iI) is independent of
E' for E aI &E—'

&E+aI.

3. R'"'(E+iI)

In the preceding prescriptions the calculated
strength function s (E) has a spurious component re-
lated to the behavior of R'"'(E') for E' outside the
domain [E(,E„]. Therefore, one might reasonably
choose to replace E by E+iI only in the internal R
function, R'"'(E). Thus, one asks whether or not the
expression

z;p(x) 1+iP(E)[R'"'(E)+R'"'(E+iI)]
1 iP (E)[R '"'—(E)+R '"'(E +iI)]

is a good approximation to (S(E))I. Let us write
expression (3.20) in terms of R and s as in Eq. (2.19);
this yields the approximation

N (Ex E)y~~
R(E)=R'"'(E)+ g.=i (E. E)'+I'- (3.21)

and

s(E)=—g~ ~,=i (Ei, E)'+I'— (3.22)

For large values of I as discussed above the right-
hand side of Eq. (3.22) decreases with increasing I,
whereas the physical strength function should be in-

dependent of I. Hence, expression (3.20) is also not
an accurate representation of (S(E))I, except in the
idealized case where inequalities D «I«(E„E()—
are fulfilled. Then, indeed, the right-hand side of
Eq. (3.22) can be replaced by (y ) /D. For light nu-

clei, however, the interval I often cannot be taken
much smaller than E„—EI, since it must be larger
than D. Again, the unphysical results arise from the
non-negligible contributions for energies E outside
the domain [Ei,E„] either E'&Ei, E'&E„, or the
vertical sides for the box average.

C. The uniform R function

Having demonstrated that several contour in-

tegrations are improper, we now show that it is pos-
sible to express the R function as the sum of two
terms, the first of which is slowly varying such that
it may be fixed at E'=E and the second of which is
a uniform R function which satisfies the require-
ments of the contour integration.

1. Theoretical development

Following Lane and Thomas, we define the uni-

form R function to include the observed poles of the
domain plus a sum of outer poles which have the
same statistical properties as those inside,

R (E')=R'"'(E')+ g E E~' (3.23)

Runi(Ei) Rint(Ei)~
Egg Eg

i
~ s(E")dE"

JE Eti (3.24)

where s(E") is the same strength function as that
associated with R'"'(E') for E' near E. That is,
s (E")may be approximated by s(E). Therefore, for
E' near E, the uniform R function becomes

dE"
Rx (E')=R'"'(E') —s(E) I

+s(E) I (3.25)

The integral with infinite limits vanishes, and the
uniform R function is seen to be of the form

E E~
RE (E')=R'"'(E') —s(E)ln E (3.26)

where R '"'(E') is given by Eq. (3.5), and the summa-
tion involves only values of E outside of [Ei,E„].
The caret notation is used here, just as in the few-

pole representation of Eq. (3.11), to emphasize that
the poles are not the actual ones outside of the
domain. The exact values of P~ and E~ cannot be
specified, since only their statistical properties (i.e.,
the pole strength and pole density) are assumed.
Even the statistical properties are not necessarily
representative of the region just outside of the
domain.

We wish to evaluate (3.23) for E' within the
domain. Since the E are outside, only the tails of
these poles contribute. Therefore the summation
may be approximated by an integral over the outer
region,
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FIG. 11. Pictorial representation of the uniform R
function. For E' near E this function is the sum of the
two integrals over the outer region plus the summation
over the inner region. See Eqs. (3.24)—(3.26). Here the
average strength function s(E") is shown to be linearly in-

creasing from EI to E„.
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The preceding definition of R; is shown pictorially
in Fig. 11.

The remainder of the R function, i.e., the slowly
varying part for E' near E, is found by subtraction,

R(E') =R (E') RE"'(E—') .

Substituting from Eqs. (3.4) and (3.26), we find

Eu —E
R (E') R'"'(E')+s(E)ln

I

(3.27)

(3.28)

Since R (E') is slowly varying, except near Et and

E„, it may be approximated within the integrand of
I

0.2 0.4 0.6 0.8 1.0

E QR E (IVleV)

Eq. (3.18) by fixing its values at E'=E in the same
manner that the hard-sphere phase shift and pene-
trability were fixed at E. This gives the approxi-
mate average S function as

FIG. 12. A comparison for 2I =600 keV of the stand-
ard values of R and s vs E [full curves reproduced from
Figs. 3(c) and 4(c)] with those values versus E (dotted
curves) deduced using the uniform R function, i.e., Eq.
(3.30) expressed as Eq. (2.19). The dashed curves show
only the leading terms, R and s, in Eqs. (5.3) and (5.4).

E„ 1 +iP (E )[R (E)+RE '(E') )(S(E))r-e '&'', Fq(E,E')dE' .
1 —iP(E)[R(E)+RE '(E')]

(3.29)

Because RE (E') is a uniform R function, the requirements for the contour integration schemes are now
met. Again we consider the box weight function; the contributions from the vertical sides, da and bc, do cancel
here since the only E dependence in the integrand of (3.29) is in the uniform R function. Also, the value of
RE (E') along the top of the box (i.e., at E'~E'+iI) is independent of E', so RE"'(E') may be set at
R (E+iI) there. Thus we have the algebraic prescription

z&lzl 1+iP(E)[R(E)+RP'(8+iI)]
S(E) e

—2iii(E) (3.30)
1 iP(E)[R(E)+R—E (E+iI)]

2. Use ofR ""'and comparison
to the numerical average

To use Eq. (3.30) for averaging high resolution
cross section data we first estimate s from the
widths and spacings of the resonances. For s S, s
can be approximated by the constant (y /D ), as in
Eq. (3.7). (Justification for this approximation is
given in Sec. V.) Given s and the resonance parame-
ters we calculate RE at E+iI from Eq. (3.26); and

given s and the experimental R'"', we calculate R
from Eq. (3.28). Since R is a slowly varying func-
tion of energy it can be parametrized as a linear
function as in Eq. (3.10). Such a parametrization is
permitted because R is needed only on the real axis.

Figure 12 shows the resulting (S(E))I from Eq.
(3.30), expressed in terms of R and s from Eq. (2.19).
By comparison with our standard average, which is
reproduced from Figs. 3(c) and 4(c), we see that the
contour integration using R ' is a good approxima-
tion.
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IV. THE OPTICAL-MODEL
SCATTERING FUNCTION

2;p(E) 1+iP(E)R(E)
Sbs, E =e

1 iP (E)R—(E)
(4.1)

which has modulus unity. With this definition we
have

In Sec. II, we demonstrated numerically that in
the case of the scattering of p&&2 neutrons by S the
right-hand side of Eq. (1.1) is approximately in-

dependent of the averaging interval I and of the
averaging weight function F(E,E'). These proper-
ties are requested if one wants to use Eq. (1.1) for
defining the optical-model scattering function
S (E). Generally, these properties do hold; how-

ever, there ate some experimental cases where they
do not hold because, as discussed in detail below, the
resonances are too narrow or too widely spaced to
significantly influence the average of S(E). Hence,
a refinement to the definition of Eq. (1.1) is neces-
sary.

We first note that it is in the spirit of the optical
model to average the variations of S(E) about a
smooth background. The arguments contained
above, as well as for instance in Refs. 2 and 6, indi-
cate that this background can be identified with the
quantity

ever with the experimental strength function
s=(y )/D. It is thus clear that by averaging the
full S(E) one includes in the quantity s(E) of Eq.
(2.19) a contribution which arises from the energy
dependence of the background. When (y )/D is
particularly small, this spurious contribution may
even dominate the value of s(E). This is the case
for the scattering of p-wave neutrons by Ca, for
which (y )/D is one order of magnitude smaller
than in the case of p3/2 neutrons on S.

The spurious contribution sbs, (E) moreover in-
creases with the averaging interval I. Indeed, the
unitary function Sbs, (E) is represented by a point
which moves along a portion of the unit circle as E
increases from Ei to E„; the average (Sbs, (E))I is
represented by a point which lies inside the unit cir-
cle, at a distance from it which is proportional to I,
provided that I is small and that the energy depen-
dence of Sbs„(E}is sufficiently smooth.

The occurrence of the spurious background con-
tribution to the strength function can be avoided by
defining the optical-model scattering function by
Eq. (4.3). The reasoning carried out in Sec. III C 1

shows that in practice this amounts to the following
simple prescription:

„.&,E, 1+~'P (E)[R(E)+RE"'(E +iI) ]SON(E) —zig(E)

1 iP(E)[R (E—)+RE"'(E+iI)]

S(E)=Sbs, (E).S„,(E), (4.2) (4.5)

where the unitary function S„,(E) contains the ener-

gy dependence associated with the resonances inside
or slightly outside the domain [Ei,E„]. We now ar-
gue that it is more appropriate to define the optical-
model scattering function by the equation

S (E)=S,(E) (S„,(E)) (4 3)

The right-hand side of Eq. (4.4) contains a positive
quantity sbs, (E) which has no relationship whatso-

This equation includes Eq. (1.1} as the limiting case
reached when the background is independent of en-

ergy
To understand the need for these equations for the

case of narrow widely spaced levels, let us consider
the instructive limit s(E) +0. Then, S(E)—reduces
to the background (4.1). Unless the latter is exactly
independent of energy, it differs from its energy
average (Sbs,(E))I. The latter has modulus smaller
than unity. One can thus write (Sbs,(E))1 in the
form of Eq. (2.19},namely

. . . 1+iP(E)[Rbs,(E)+iirsbs, (E)]
Sb„(E)),=e

1 —iP (E)[Rbs, (E}+i ms bs, (E)]

(4 4)

where Rg."'(E') is defined by Eq. (3.26). The
strength function s(E) and the smoothed function
R (E) can then be defined by the relation

oM 2;yiE~ 1+iP(E)[R(E)+its(E)]
1 iP (E)[R (E—) +i ms(E)].

(4.6)

In the case of p3/2 neutrons on S, the results
contained in Fig. 9 show that the definition (4.3) is
approximately equivalent to (1.1). However, it will
be shown elsewhere' that this is not the case for the
scattering of p-wave neutrons by Ca. In that case,
indeed, the right-hand side of Eq. (1.1) depends
upon I because of the occurrence of a spurious back-
ground contribution sbs, (E) which is comparable to
the actual strength function s(E). The definition
(4.3) rather than (1.1) must be used. This is a fur-
ther illustration of the usefulness of the data
analysis described in Sec. III C.

We emphasize that the quantities Sbs, (E), S„,(E),
and the right-hand side of Eq. (4.5) are essentially
independent of the parametrization of the fine struc-
ture data. Indeed, the background is experimentally
well defined and the use of R instead of R'"' in Eq.
(4.1) in effect amounts to defining a background
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FIG. 13. Cumulative plot of the p3/2 neutron reduced
widths. The staircase is the experimental sum for the
eight observed resonances. The straight solid line is the
integral for constant s=0.0093 with the intercept y0 ad-

justed for best fit to the staircase. For the dotted curve,
s {E)is from the dotted curve in Fig. 12{b), i.e., the result
from using the uniform R function with 2I =600 keV.

These equations can be rewitten in the form

s (E)=s(E)+sf(E),

and

R(E)=R(E)+Rf(E),

where the "fluctuating" s and R are given by

sf(E) =—g
r~'

~.=i (E. E)'+-I'

E„ dE'
s(E)—

1T I (E' E) +—I
and

Rf(E)=
i.= i (Ei. E)'+I—'

(5.3)

(5.4)

(5.5)

which is nearly independent of the precise location
of the boundaries EI and E„of the experimental
domain.

V. DATA ANALYSIS USING R and R"

and

R (E)=R (E)+ReRg"'(E +iI) (5.1)

s (E)= ImRE"'(E+iI) . —
7r

(5.2)

From high resolution neutron cross section data
and the corresponding R-matrix parameters one can
obtain an experimental S (E) by averaging for
each partial wave as indicated by the right-hand side
of Eq. (4.3). One can then describe this average by a
model, say a phenomenological model with ap-
propriate real and imaginary well depths. The
averaging could be done numerically as in Sec. II;
however, a good approximation is obtained more
easily by contour integration using R" in Eq. (4.5).
For this purpose the R'"' is parametrized in terms of
a smoothed R-function, R(E), as outlined in Sec.
III A 1. In the example for p3/3 neutrons on S, the
data are described adequately by a constant s and
linear R (E); however, the s in Eq. (3.8) could be an
energy-dependent quantity, s(E), and the R(E) in

Eq. (3.10) could be higher order than linear.
For constant s an even simpler calculation can be

made to give a good approximation to the contour
integration. . In fact, part of this simple calculation
is a familiar procedure in the literature of neutron
physics. In the following we show the connection to
that procedure.

By expressing the approximation of Eq. (4.5) in
the form of Eq. (2.19) we find

p
~u (E' E)dE'—

~Ei (E E)~+I~
' (5.6)

R(E)=R(E) (5.7)

and

s(E)=(y )/D . (5.8)

In Fig. 12 the dashed curves show R and (y )/D
for the case of p3/2 neutrons on S; indeed these are
good approximations to R(E) and s(E). This veri-
fies that (y ) /D is a good estimate of s for the con-
tour integration.

The familiar procedure in the analysis of low-

energy neutron scattering data is to identify the
strength function with the slope of the straight line
which best fits the staircase obtained by plotting
versus E the quantity

& y'.
EA, &E

(5 9)

For S p3/2 waves this cumulative plot is shown in
Fig. 13; it is to be compared with the straight line

yo+sZ, (5.10)

where s is set equal to (y ) /D and yo is a best fit in-
tercept at E =0. Also shown in the figure is

E
yo+ I s (E')dE' (5.1 1)

where the function s (E') is from the complete con-
tour integration as shown in Fig. 12.

In the literature of neutron physics the strength

If s(E) can be approximated by the constant
(y )/D, it is clear from Eqs. (5.5) and (5.6) that sf
and R are energy dependent but fluctuate about
zero. Thus, to a good approximation
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function s has usually been approximated from the
staircase plot of the resonance data, but the corre-
sponding evaluation of R from R'"' has often been
omitted. (An exception occurs for very low energy
s-wave neutrons where the familiar potential scatter-
ing radius R' is proportional to 1 —R). But the
evaluation of R and s are of equal importance for
deducing an optical model potential; R and s are
closely related, respectively, to the depths, Vo and
WD, of the real and imaginary potentials. To illus-
trate the importance of the quantity R we cite the
analysis of the S data by Johnson and Winters.
They found the fitting of R with a phenomenologi-
cal spherical optical model potential required a
much deeper real well for p waves than for s waves.
Subsequently MacKellar and Castel" showed that
this I dependence could be removed by including de-
formation effects in the S target.

IV. SUMMARY

By comparison with numerical averages, we have
shown that the algebraic prescriptions most often
encountered in the literature for calculating the
average S function may lead to inaccurate results.
The origin of these disagreements has been exhibit-
ed. We have argued on physical and analytical
grounds and demonstrated numerically that replac-
ing E by E+iI only on the uniform part of the R
function [see Eqs. (3.26), (3.28), and (3.30)] gives an
accurate prescription for calculating the average S
function. This average is approximately the optical

model S function as indicated in Eq. (4.5).
In these equations, the average strength function

s(E) is the ratio (y ) iD, i.e., the ratio of the ob-
served average reduced width to the average spacing
in the vicinity of the energy E; and the smoothed R
function R is determined by fitting the experimental
external R function R'"' with the procedure used in
Ref. 2 and described in Sec. III A 1. In fact, except
for minor fluctuations, the R (E) and s(E) so derived
are good approximations to the more detailed R(E)
and s!E) from Eqs. (3.30) and (2.19). Thus one is
justified to use simply R (E) and s(E) in Eq. (4.6) for
finding an average S (E) which can be compared
to an optical model. Clearly, in such an analysis of
experimental data, one must obtain both the
strength function s and the smoothed R function R.
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