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Scattering with absorptive interaction: Energy-dependent potentials
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The energy dependence and analytic structure of the effective interaction for elastic
scattering of composite particles are investigated using Feshbach's projection technique. A
generalized Levinson theorem is established for complex, nonlocal, and energy-dependent
interactions. The analytical results are illustrated by means of Argand diagrams for a solv-

able model and the effect of energy averaging is discussed.
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I. INTRODUCTION

In a previous paper' the partial-wave S matrix
was studied for a wide class of complex interactions,
both local and nonlocal. In particular, the motion
of poles of the S matrix as a function of the absorp-
tive strength of the interaction was examined, and
approximations to the S matrix near resonances
were deduced. In Ref. 1 both real and imaginary
parts of the interaction were assumed to be energy
independent; this assumption is not justified if one
wants to cover a wide range of energies and to study
threshold effects.

In the present paper, the energy dependence of the
effective interaction in the elastic channel, resulting
from a many-channel projection technique, is inves-
tigated (Sec. II) and its influence on the Fredholm
determinant and the S matrix are examined. On the
basis of the analytic properties of the Fredholm
determinant (Sec. III), a generalized I.evinson
theorem for the physical phase shift in the elastic
channel is proven which takes into account the ef-
fects of channel coupling (Sec. IV). The general
considerations of Secs. II—IV are tested and illus-
trated by a simplified two-channel model (Sec. V)
which can be solved exactly. The results are
represented in terms of Argand diagrams which are
particularly suitable for displaying the analytic
structure of the S matrix. %ith regard to experi-
mental data, the influence of energy averaging is
studied in a schematic (N =30)-channel calculation.

II. ENERGY DEPENDENCE
OF THE EFFECTIVE INTERACTION
BETWEEN COMPOSITE PARTICLES

Throughout this paper we shall restrict ourselves
to a finite set of coupled two-body channels. In a
nuclear-physics context, the model space is then
spanned by wave functions ql of the type

where (b, describes the center-of-mass motion, P~
and g describe the internal fragment structures in
channel m with the relative motion wave function

g~ and M takes care of full antisymmetrization be-
tween the fragments. The Schrodinger equation in
the above model space is equivalent to the following
set of integrodifferential equations

( Tp~ ~ V~~ +e~ E)g~ =—g —V~~ g~ .
m'Qm

Tz denotes the kinetic energy operator of relative
motion in channel m, and e~ the corresponding
threshold energy. V is the mean-field potential in
channel m, which is coupled to channels m'+m
through the interactions V . Due to the antisyrn-
rnetrization between the fragments, both Vm~ and
V~~ are nonlocal in the relative-motion coordinates

p~ and p~ . By preorthogonalization of the X chan-
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nels under consideration, one can always ensure that
V and V ~ are independent of the total energy E
of the two fragments in the c.m. system.

If one is only interested in elastic scattering in one
specific channel, the projection technique of Fesh-
bach may be used to introduce an effective interac-
tion in this particular channel. Let P denote the
projector onto the channel of interest (m=1, say}
and Q= 1 P th—e projector onto the remaining ("in-
elastic" } channels of our model space. The effective

and

H11=Tp, +&1+V11

Hamiltonian for the m =1 channel reads

H ff —Hi i +PHQ(E —QHQ) 'QHP

=Hi i+H, (E),
with

(2.3)

(2.4a)

H, (E)=( Vip Vjiv)

E —H22

VN2

—V2N V12

V1N

Vc GQ Vc (2.4b)

in obvious notation. Under appropriate restrictions
on V»» [cf. Ref. 1, Eqs. (2.5)], and noting that
QHQ is a Hermitian operator in the Q subspace, G{i
may be expanded in the complete set of eigenstates
of QHQ so that

HE= E —E

respective threshold energies e;.
Starting out from a real nucleon-nucleon force

and from real wave functions qi, the operators

v,' l 0„&&(()„ I v,

and

c 1{(e Ne I
vc

E g+ jg

To prepare for the discussion of analytic proper-
ties and energy dependence of H, we rewrite Eq.
(2.5) as

Dn
H, (E)= g +C (E) i n.B(E), —

n n

(2.6)

with

D.= g vi Ik.;&&0; I vi, ,

x v'„
I {(„;&&{(„I

v„.

In Eq. (2.7), P» denote the components of the bound
state P„of QHQ at energy E„,whereas the continu-
um states P, have components P„, starting at their

vii I ke, i & &0~j I vij
minie, ,eJ) E —ei,j+1

(2.7)

B(E)= g 0{E—min(Ei, EJ ))

ii I k«&&0« I

ii dE',
Ei E —e

(2.9)

is negative definite for E &e; and positive definite
for sufficiently large E. Its general energy depen-
dence is shown schematically in Fig. 1. Summation
over indices i and j will lead to a smooth energy
dependence of C(E) below the first and above the
Nth inelastic thresholds, while between these thresh-
olds C(E) may vary rapidly. Below the first inelas-
tic threshold, the coupling to inelastic channels,
m=2, . . . , X, causes an additional attractive force
which can give rise to additional bound states in the
elastic (m = 1) channel.

If there are any bound states of H~. ——QHQ, the
coupling Hamiltonian H, becomes singular, giving
rise to the well-known compound resonances. Its

are real. Moreover, they are non-negative since, e.g.,

&o

(2.8)

for an arbitrary diagonal element. Equation (2.8)
ensures that B(E}describes flux absorption rather
than production. For example, a diagonal term of
C(E),
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FIG. 1. Energy-dependence for a typical term in the
real part of the coupling Hamiltonian II,.
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energy dependence can be studied analytically for se-
parable interactions. For demonstration we have
chosen the interactions to be of a Yamaguchi type,

m~ ~m'~

=P m (2.10)
P P

and restricted ourselves to a two-channel problem.
In this case H~ ——H2 is a one-channel Hamiltonian,

determined by the range parameter a2 and the
strength parameter $22, and the coupling Hamiltoni-
an H, has the following form in momentum repre-
sentation:

yi["~ 1 k,(E) P2(E )
(k) +a )(k +a )

(2.11)

Figures 2(a)—(d} show the real and imaginary parts
of y~ as a function of E for various values of the
strength parameter P2z.

In Fig. 2(a) the interaction in channel m =2 is as-
sumed to be repulsive (Pq2&0). Hence there is no
bound state of H2, and Rey~ shows the same struc-
ture as CJ in Fig. 1. For attractive forces the situa-
tion changes drastically: As soon as P22 becomes
negative, a compound resonance may appear just
beyond the threshold e2. This causes a rapid change
of Rey& and a sharp increase of Imy& [Fig. 2(b)], ac-
cording to Eq. (2.7}, since the modulus of ((}„be-
comes large in the vicinity of a resonance. With Pz2
decreasing further, H2 will develop a bound state be-
tween the thresholds. This leads to [see Fig. 2(c}]a
pole of Rey~ while Imy& is reduced as compared to
Fig. 2(b) as long as no further resonance appears.
Finally, H2 can have a bound state below the first
threshold e& [see Fig 2(d)], .causing the effective in-
teraction in channel 1 to be repulsive for E & e& In.
contrast to the cases displayed in Figs. 2(b) and (c),
the corresponding pole of H, for E & e& does not in-
fluence the physical phase shift through the general-
ized Levinson theorem, as we shall see in Sec. IV.

III. ANALYTIC PROPERTIES
OF THE EFFECTIVE INTERACTION
BETWEEN COMPOSITE PARTICLES

(c)
10--

1

-10-

. 5
I

=-e.s

10

Let us start from a simple example by studying a
separable, energy-dependent interaction given in
momentum space as

( p (
&

[ p ') =g(E) y fg(p)f'(p')
I

xp((p. "')
4 I (3.1)

P22 =-30 with a singularity in the coupling constant at

-10--
~ ~ ~ r

5 10

FIG. 2. Energy-dependence of the coupling Hamiltoni-
an H, (full line: real part; broken line: imaginary part)
for various coupling strength Pz2 in a two-channel madel
(arbitrary units).

g(E) =g, +a'l(E —Ec) .

Since for a separable operator 8
det(1 B}= 1 —TrB, —

(3.2)

(3 3)

the Fredholm determinant for the 1=0partial wave
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dp(g, k) =det(1 —Go(k) Vp) (3.4) constitute an analytic mapping except for branch
points at

is easily seen to have the explicit form (E =k l2p)

dp(g, k)=1—g(k ) J . (3.5)
Iform» I

'dp

(k2 —p2)+i0+
The energy dependence of the coupling constant g
changes the overall analytic structure of dp with
respect to k. None of the poles and zeros of dp are
where they would be if g were taken to be a con-
stant. The primary effect, however, consists of in-
troducing a pole of the Fredholm determinant at
E =Ep as well as a zero at some (in general com-
plex) energy

E,=Ep+6 ——I .l

2

' 1/2
2P1

$2
(3.10)

Hence, the coupling Hamiltonian H, is a mero-
morphic function of k for Imk&0 apart from
branch points at real values

k„=+(2p)e„lfi )'~,
and has poles at

k; =+(2p, iE; IfP)'i

according to Eq. (2.6). The Green's function in the
"elastic" channel,

According to the relation'
Gi (E —H——ii ) (3.11)

dp(g, —k)
So(g, k) = (3.6)

V,rr ——V) ) +H, (E), (3 7)

whose energy dependence is entirely determined by
Gg(E), cf. Eq. (2.5). Inspection of Eqs. (2.6) and
(2.7) shows that H, is a meromorphic function of
the channel momenta

this zero implies a pole of the S matrix at E =E„.
For real energies E&0, dp is real by virtue of Eq.
(3.5) so that, for Ep+b &0, the above zero of dp lies
on the (negative) real energy axis, i.e., I =0. If
Ep+ b, & 0, the zero lies in the right half of the com-
plex energy plane where dp is complex, implying a
nonzero I &0 since

~'
I fob» I

'& 0

According to Eq. (3.6) this implies a resonance of So
which may come close to the real E axis provided
a «

I gp I
("compound resonance").

We shall now generalize the above results for the
case of the effective interaction of Eq. (2.3),

E=G (V))+H, ),
0

E1c=G1Hc .

Using the resolvent identity

G1 ——G +G V1161

one finds directly the relation

E =E1+E1,—E1EC1, ,

or equivalently,

1 E=(1 J))(1——E),) . —

(3.12)

(3.13)

(3.14)

(3.14')

Hence the Fredholm determinants d, d1, and d1c
corresponding to the kernels EC, E1, and E1„respec-
tively, are connected through

is a meromorphic function of k for Imk & 0 and has
poles at the eigenvalues of H», as well as a branch
point at the elastic threshold.

The Fredholm determinant of the full effective in-
teraction (3.7) is constructed, in direct analogy to
Ref. 1, by defining the following kernels:

' 1/2
2JMn

fi
(E e„),—n =1,2, . . . , N (3.8) 1d1c . (3.15)

Kn = Pn k2 Pn2

pi

for Ims„&0 provided the interactions V„„are
Hilbert-Schmidt kernels. For ImK„&0, i.e., on the
"physical sheet, " the relations

' 1/2

Kn+ 2 &n
LM1 2P1

Pn

n =1,2, . . . , N (3.9)

d1 is an analytic function of k for Imk &0, with
zeros at the bound states and resonances of H11,
while d&, is a meromorphic function of k having the
same singularities as E~,. According to Eq. (3.15),
the zeros of d ~

will cancel those poles of d~, which
are due to 61. The full Fredholm determinant d is,
therefore, a meromorphic function of k for Imk &0
except for the branch points k„[Eq. (3.10)] at the
threshold energies; it has poles at the bound states of
QHQ according to (2.6), and its zeros are the same
as for d1,. The possible positions of zeros and poles
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of d are shown in Fig. 3. Note in particular the fol-
lowing:

(1} In accordance with the introductory example
to this section, the bound states of QHQ at E; give
rise to pairs of poles and zeros of d (k). If
e& &E; & e~, the poles lie on the real k axis and the
zeros (representing compound resonances) appear in
the lower half of the k plane. For E; & e&, the poles
appear on the imaginary axis with the associated
zeros close by.

(2) The poles of d (k) due to bound states of QHQ
are located symmetrically with respect to the ima-
ginary k axis, while the zeros of d (k), corresponding
to compound and potential resonances, lose that
symmetry in the presence of the imaginary part of
H, (cf. the discussion in Ref. 1).

(3} Nonlocal potentials may exhibit positive-
energy bound states. Such normalizable states em-

Qk

bedded in the continuum show up as pairs of zeros
of d(k) on the real axis symmetrical to k=0. De-
pending on the choice of the model space, one may
also have norm alizable states which solve the
dynamical equations (2.2) at arbitrary energy. Such
"redundant" states, which are a consequence of the
Pauli principle, ' will not be discussed in the fol-
lowing. We refer the reader to Ref. 7. Furthermore,
we assume, as in Ref. 1, that so-called "spurious
states" are absent.

IV. A GENERALIZED
LEVINSON THEOREM

We are now in a position to establish a general-
ized Levinson theorem for the phase shift 5(k) in
the elastic (m= 1) channel, taking into account the
effects of channel coupling. We shall restrict our-
selves to spin-zero fragments, so that the relative or-
bital angular momentum is a conserved quantity; to
simplify the notation we shall suppress the corre-
sponding index l throughout this section. The proof
of the theorem will rest on the analytic properties of
d(k), as discussed in the preceding section, and on
the asymptotic behavior of d (k),

d
k

(lnd(k))~0,

d(k)~1,
for ~k

~

~a) . (4.1)

4I ~ f
tej Rek

FIG. 3. Contour of integration C and possible positions
of poles and zeros of the Fredholm determinant d(k),
relevant to the Levinson theorem. )&: poles of d(k) for
real k corresponding to bound states of QHQ for
6~ &E & e&, appearing in pairs symmetrical to k =0.
Their number, multiplied by their respective order, is
denoted by ng. g: zeros of d{k) with Imk&0 corre-
sponding to compound resonances. 0: zeros of d (k) cor-
responding to compound resonances or potential reso-
nances, shifted onto the negative real k axis by ImH, .
Their number, multiplied by the respective order, is denot-
ed by na gt: zero.s of d(k) resulting from compound res-
onances or potential resonances, shifted into the second
quadrant of the k plane through ImH, . Let nr be their
number, taking into account the respective order.
poles of d{k) on the positive imaginary axis, due to the
bound states of QHQ for E & e~. Let nos be their number.
0: zeros of d(k) associated with a 6 pole. : zeros of
d(k) which correspond to bound states of H,fq. Their
number is n~. ~: possible zero of d(k), of order q, at
k=0 representing a zero-energy bound state of H,ff.
positive energy bound states. Let nI denote the number
of such pairs. The energy scale is chosen such that e& ——0.
Branch points are marked as

p(k) =——,(arg[d (k)]+arg[d ( —ka)]), (4.2)

which is zero for real interactions. ' Moreover, we
define a function d(k) by a Jost-Kohn type of in-
tegral

d(k) =exp —f dk'1 ",$(k')
k' —k

(4.3)

which is analytic outside the real k axis. Then

Special care is required in relating the argument of
d(k} to the (negative) physical phase shift 5(k)
since, in the general case, d(k) may have zeros and
poles on the real k axis, and argd (k} is not antisym-
metric with respect to k (Ref. 1), in contrast to 5(k).
We proceed in a similar way as in Ref. 1 and start
by replacing d (k) by some other function which has
the same zeros and asymptotic behavior and similar
analytic properties as d(k), but is antisymmetric in
k. Except for discontinuities to be discussed below,
this function will carry the negative physical phase
shift.

To this end we define the following function, at
least piecewise continuous:
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~d(k)
~

=exp —9' I dk', +0,1 ~, P(k')

arg[d(k+i 0)]=/(k), (4.4)

of (4.8), and the contributions of the small semicir-
cles around zeros, poles, and branch points of d(k)
at real k cancel the jumps of argd(k) at these points,
so that

for real k, and P(k)~0 as
~

k
~

~ ao, so that

d(k)~1 as
~

k
~

~ac .

The function

d(k) =d (k)d(k) (4.6)

then has the same zeros, poles, and branch points as
the original Fredholm determinant d(k) and is
meromorphic for Imk)0, except for the branch
points, as is d (k). The negative of its argument is

—arg[d(k)] = —arg[d (k)]—P(k)

= —, (arg[d ( —k)]—arg[d (k}]J (4.7}

for real k, which manifestly shows the desired an-
tisymmetry. From (4.1) and (4.5) we obtain the
asymptotic behavior

d(k)~1,
for

~

k
(
~ a) . (4.8)

k
(lnd(k})~0,

We normalize lnd(k = ao ) =0.
We are now prepared to calculate

arg[d( oc )]—arg[d(0)]

I=2i(arg[d( ao ))—arg[d(0)]) (4.10b)

using the antisymmetry of d(k), Eq. (4.7). Compar-
ing the two results one has

arg[d(ao }]—arg[d(0)]=n(ns+ni) . (4.11)

Some care is required in relating the phase of d(k)
to the physical phase shift 5(k) whenever d(k) has
zeros or poles on the real k axis. To avoid ambigui-
ties we define the physical phase shift 5(k) in the
elastic channel as half the phase of S»(k), contin-
ued downward in energy withoutjumps of mfrom .a
conventional value of 5(ao)=0. There are three
cases to be considered, as shown schematically in
Fig. 4:

(1) d(k) may have a pair of zeros at some real mo-
menta +ko corresponding to a positive-energy
bound state that happens to survive in the presence
of InW, . While 5(k} is continuous by definition,
the phase of d(k) must discontinuously drop by n.

(Ref. 9) when k passes through +ko in the positive k
direction. Therefore, in such a case,

arg[d(0)] —arg[d( m )]= —5(0)+5( ao )+np~,

(4.12)

by evaluating the integral

I= f lnd(k) dk (4.9)

where nz is the number of positive-energy bound
states in the partial wave under consideration.

(2) Poles of S»(k) of the third quadrant, due to
compound or potential resonances, may be shifted

along the contour C of Fig. 3. Applying the residue
theorem, one obtains

I =2@i(n~ ncs+ncs—+nI )=2@i(nq+nl),

(4.10a)

-aug 3 (ki

bearing in mind that the residue of the logarithmic
derivative of d(k) is determined by the negative or-
der of a pole and the positive order of a zero, respec-
tively. Thus the contributions from poles ( ncaa)—
and zeros (+ ncq) of d(k) due to bound states of
QHQ below e, cancel in (4.10a). n~ denotes the
number of bound states of H,rr and nl the number
of zeros of d(k) resulting from compound and po-
tential resonances shifted into the second quadrant
of the k plane through ImH, . [In this context, by
potential resonances we mean resonances of H&&,
modified by contributions from C(E), Eq. (2.7).] If
(4.9) is evaluated directly as a line integral, there are
no contributions from the large semicircle by virtue

0 k) ko k k

FIG. 4. Schematic representation of discontinuities in
—argd(k) (dashed line) and 5(k) (full line) due, respec-
tively, to one positive-energy bound state (np ——1) at
k =ko, and one bound state of QHQ above elastic thresh-
old (n~ ——1) at k =k& and one pole of S(k) shifted onto
the negative real k axis by the absorptive part of Hc
(n~ ——1). We assume n~ ——n~ ——0.
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onto the negative real k axis through ImH, .' If
such a pole has moved to k =—k, S~ ~ (k) will have a
zero at momentum k on the positive real k axis.
When moving around this zero, in the direction of
increasing k, the phase of S~~(k) must increase by
n '.Hence the physical phase shift 5(k) increases
discontinuously by m/2, whereas the phase of d(k)
changes in a continuous manner since both d (k) and
d(k) are nonzero. Note that a jump by m/2 is al-
lowed with our definition of the physical phase
shift. Denoting the number of such poles by nx, we
have

arg[d(0)] —arg[d( oo )]= —5(0)+5( oo ) —nay/2 .

(4.13)

(3) There are poles of d(k} [or d(k), respectively]
corresponding to bound states of QHQ with

e& &E; & en appearing in pairs symmetrical to k=0.
When passing through such points +k; in the posi-
tive k direction, the phase of d(k) must discontinu
ously increase by n while 5(k) remains continuous
with the above definition. Hence

0 0
kg =)le, lip =Pip, (4.17)

where the index zero refers to the bound states gen-
erated by V~~ alone. Excluding the highly acciden-
tal case where H,gf has bound states at zero energy
(i.e., assuming q=0), the Levinson theorem reduces
to

V. COUPLED CHANNEL PROBLEM
IN AN EXACTLY SOLVABLE MODEL

In this section we illustrate and test the above
general results with a simplified model which can be
solved exactly. Following Weidenmuller" we as-
sume that the potential matrix elements V~~ are lo-
cal and constant within a finite range,

5(0}—5( oo ) =m(ns+ nt —n~)

(weak coupling} . (4.18)

The number ng still appears in Eq. (4.18}. Only if
the P and Q spaces are totally decoupled does Eq.
(4.18) reduce to the standard form of the Levinson
theorem.

arg[d(0)] —arg[d( oo )]=—5(0)+5( oo )—ng~,

(4.14}

=0 for p,p'&a,(, ')
mm P&p —V 5(p —p') for p&a . (5.1)

where ng is the number of bound states of QHQ
with Ei &E& &Ett.

Combining Eqs. (4.11)—(4.14) gives the final re-
sult (cf. Fig. 4)

5(0)—5( oo )=n(ntt+nz+nt ng-
+[q —nx]/2}, (4.15)

(4.16}

Similarly, the real part of H, will not change the
number of bound states in the elastic channel so that

where q denotes the order of a possible bound state
of H,tt at zero energy. Equation (4.15) differs from
the result obtained in Ref. 1 for energy-independent,
complex potentials by including the number n~ of
bound states of QHQ with e& &E; &e~. The nega-
tive sign is easily understood: The Levinson
theorem reflects the dimension of the subspace inac-
cessible to a scattering system by orthogonality. On
the other hand, the coupling of the elastic channel to
the eigenstates of QHQ enlarges the space accessible
for scattering; they are, therefore, counted in the
Levinson thcerem with a sign opposite to that for
bound states.

In the weak coupling limit, th-e imaginary part of
H, will be too small to shift resonances into the
second quadrant or onto the negative real k axis.
Hence

Although this parametrization is a rather drastic
simplification, it should be perfectly sufficient to
study the basic analytic properties of the multichan-
nel S matrix and to test the generalized Levinson
theorem. Throughout the calculation the reduced
mass was assumed to be the proton mass and the
range of the interactions to be a=2 fm in all chan-
nels. The results of the calculation for various sets
of potential parameters V ~ are presented in terms
of Argand diagrams, which are particularly suitable
for displaying the analytic structure of the S matrix.

Figures 5 and 6 show Argand diagrams for the
two-channel problem for various values of V», V&2,

and V22. For easy orientation, the eigenvalues of a
square-well potential, with range a=2 fm and for
the proton mass, are listed in Table I for various po-
tential depths. Figure 5(a) describes a situation
where V]~ is not strong enough to produce a bound
state in channel 1, whereas V&2 supports a bound
state in channel 2 just below the threshold e2, which
was chosen to be 10 MeV. The Argand graph starts
moving counterclockwise on the unit circle up to
about 2.8 MeV, indicating a weak resonance due to
V& t directly beyond threshold (e~ ——0). Having
passed the resonance, the graph reverses its direction
of motion until the bound state in channel 2 be-
comes important at about 5.8 MeV: Moving coun-
terclockwise again it points to the corresponding
compound resonance. At 10 MeV the second chan-
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V„, = 10MeV

Y»= 5MeV

V»=15MeV
Im(S)

a)
V«= 20 MeY

Y»= 5MeV
V»- 30MeV

Im(S)

TABLE I. Positions of bound states (E&) in a square-
well potential (range a=2 fm; reduced mass=proton
mass) for various values of the potential depth Vp.

2.8

-1.0

6.8 MeV
E

Re(S) -~0 -0.5
0 MeV

Re (S)

1.8MeV
5&&(o)-5~~ {~}=K(1-1)=0

V« = 20MeV

V»= 5MeV

V~2= 35Mev
Im(S)

c)
V„„=20MeV

V»= 5MeV
V22=40MeV

Im(S)

-1.0
S»(o)-S„„(-)=~(0-»=-~

Vp (MeV)

5

10
12
15
20
30
33
34
35
50
80

110
120
150

E& (MeV)

—0.207
—1.789
—7.361
—9.389

—10.090
—10.802
—22.441
—48.519
-76.169
—0.793 and —85.569

—17.263 and —114.569

-1.0 -0.5 0.5
---05

Re(S) -1,0 Re(S)

---10
-1.0

&«(o)-6~~(~)=Tt;(1 0)=T(;

channel 2. ~ith the energy increasing further, the
Argand graph tends to the point (1,0). Thus we
have

FIG. 5. Argand diagrams of the elastic-channel S ma-
trix, resulting from a two-channel problem, for various
sets of potential parameters in Eq. (5.1). The generalized
Levinson theorem is exemplified for various values of the
number of bound states n~ and compound resonances n~.

nel opens and the absolute value of S&& drops below
1 due to the imaginary part of H, [cf. Fig.2 (c)], ac-
counting for the loss of fiux from channel 1 into

5(0)—5( co ) =—m.

as expected from Eq. (4.15) in the presence of one
compound resonance, caused by a bound state of V22
for e, &E &e2, and no bound state in the elastic
channel (i.e., n& 1, na ——0——). Cases (b)—(d) in Fig. S
refer to a system with one bound state in the elastic

Im S&~

1.0--—

V« =120 MeV

Y»= 10 MeV

V,2= 120MeV
Im {S)

05--

(a)
V«=120 MeV

Y»= 20MeV
=120 MeV

Im {5)

05--

(b)

I
'l7.82

I
I

l

.05
Re S~~

Re {S) -1.0
B.4MeV

MeV

10Me

Re{5) 12.68
11

~')1(~)=«2-1)=& 6g)(o)-~))(~) =&( 2+ 1 - 1 )=2Tt
l

n& n& n&

FIG. 6. Argand diagrams as in Fig. 5, showing the in-
fluence of the coupling V~2 between the channels. In case
(b) the coupling is strong enough to shift a resonance from
the third into the second quadrant via the absorptive part
of H, .

FIG. 7. Argand diagram for the elastic channel S ma-
trix in an (X=30)-channel model calculation. The poten-
tial parameters used are listed in Table III. The graph
points to a number of compound resonances in the pres-
ence of absorption but without energy averaging.
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(o) 10--
Im S~~

b, E=O.)2 MeV
(b)

b, E= 0.4 MeV

05--
38

-1.0 Re S~~ Re S~~

(c)
Im S»

h, E= 2MeV

Re Sq

FIG. 8. Energy-averaged Argand diagrams for the elastic-channel S matrix. The same model parameters and number

of channels are used as in Fig. 7; hE is the averaging interval in Eq. (5.2).

TABLE II. Parameters of an (N=30)-channel model calculation. Threshold energies e„.

21

8 10

12 13

25 26

22 23

13 15

14 15

27 28

24 25

18 20

16 17

29 30

26 27

21 22

18 19

31 32

28 29

23

20

33

30

33.5 34 34.5 35 35.5 36 36.5 37 37.5



1910 %. CASSING, M. STINGL, AND A. %EIGUNY

TABLE III. Parameters of an (N=30)-channel model calculation. Potential matrix ele-
ments V&~,'i,j= 1,2, . . . , 30.

220 14 13.5 12 11.5
125 13.5 12

128 12

12

12 11.5
140 11.5

120
11

11

150 10.5
138 10

140 9.5
170 9

180 8.5
200 8

153 75
155

channel for various potential depths Viq. In case (b)
there is no bound state of channel 2 in the interval

e~ &E & eq', consequently the Levinson theorem
counts one bound state and (indirectly via n~ ——1)
one compound resonance, i.e., 5(0)—5( oo )=0. The
compound resonance disappears as soon as the
bound state of channel 2 moves below the threshold
ei ——0 [see cases (c) and (d)]. Again one verifies the
Levinson theorem (4.15) by noting that in case (c)
the repulsive coupling Hamiltonian H, happens to
remove the bound state in channel l.

The influence of the imaginary part of H, on the
Levinson theorem is displayed in Fig. 6. For the
parameters chosen, there are (cf. Table I) two bound
states in channel I and one compound resonance due
to a bound state of channel 2 between the thresh-
olds. In contrast to case (a) in Fig. 6, the coupling
Vi2 is strong enough in case (b) to shift a resonance
from the third into the second quadrant so that
nl ——1 in case (b). In fact, one finds 5(0)—5(ao ) =n.
for case (a), whereas 5(0)—5( ao ) =2m in case (b), as
predicted by Eq. (4.15). With the restriction to local
interactions, Eq. (5.1), there are no positive-energy

bound states, i.e., nz ——0.
The above model calculation is unrealistic in two

respects: (i) the number of channels included is too
small, and (ii) in view of finite energy resolution, ex-
perimental data should be compared to energy-
averaged theoretical results. Figures 7 and 8 show

the results of such a calculation for X=30 channels
and the thresholds and interaction matrix elements
are given in Tables II and III. Without energy
averaging, a rather complicated Argand diagram in
the elastic channel is obtained (Fig. 7): Up to the
first threshold at 8 MeV the graph moves clockwise
on the unit circle and the deviation from unitarity is
sinall for energies below 12.5 MeV. With increasing
energy a number of circles show up, reflecting com-
pound resonances of the system whose widths vary
from 1 to SOO keV. Some of these circles go around
the origin counterclockwise and eriter the Levinson
theorem with a negative sign. Physically they re-
flect compound resonances weakly coupled to the
elastic channel and correspond to the g in Fig. 3.
They enter the Levinson theorem indirectly through
their associated poles of d on the real axis, i.e., by
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TABLE III. (Contiriued. )

1.5 0.5
0.5
0.5

7

120 6.5
130 6

140 5.5
165 5

172 4.5
150 4

160 3.5
135 3

145 25

174 2

110 1.5
118

1 0.5
1 0.5

115 05
115

0
0
0
0

129

n(2n —The o.ther type of circles in Fig. 7 which do
not enclose the origin arise from compound reso-
nances shifted into the second quadrant through
ImH, and denoted by a star in Fig. 3. These reso-
nances cancel in the I.evinson theorem since they
enter directly through nim and indirectly via —n~m
to the same order.

For comparison with actual experimental data,
the S matrix has to be averaged over some finite en-

ergy interval, e.g.,

(s(E))= I,s(E )dE . (5.2)

Figure 8(a)—(c) show the graph of Fig. 7, after ener-

gy averaging, for various values of 4E. The effect
of compound resonances is largely suppressed; only
the broad resonances "survive" the energy-averaging
process, as one would intuitively expect. It should
be noted that the Levinson theorem as stated in Sec.
IV holds for the phase shift of the exact partial-
wave S matrix but not for the phase of an energy-
averaged S matrix. This should be borne in mind
when trying to infer the pole structure of the S ma-

trix from experimental data with finite energy reso-

lution.

VI. CONCLUSION

In the present paper, a previous study' of com-

plex, nonlocal but energy-independent potentials has

been extended to include energy-dependent terms as

predicted by Feshbach's projection formalism. The
corresponding Fredholm determinant turns out to be

a meromorphic function of k on the physical sheet.

In addition to the properties due to the meanfield

potential Vzp, the real part of the coupling Hamil-

tonian H, introduces poles of d(k) at the bound-

state energies of the Hamiltonian QHQ. For ener-

gies beyond the first threshold, the poles lie on the
real k axis, and the corresponding zeros of d (k), j.e.,
poles of S(k), in the lower half of the k plane
represent the well-known compound resonances. If
there are bound states of QHQ below the first
threshold, the corresponding poles of d (k) lie on the
imaginary k axis, with the associated zeros close by.
H, also influences the number and positions of
bound states in the elastic channel due to Vzz', in
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particular, if repulsive, H, may remove some bound
states of Vpt. The absorptive part of H, destroys
the symmetry of poles and zeros of d(k) with
respect to the imaginary k axis and may shift zeros
of d(k) from the third quadrant into the second
quadrant (cf. Refs. 1 and 12).

Based on the analytic properties of d(k), a gen-
eralized Levinson theorem has been established. It
shows that, beyond the normal version:

(i) The number of bound states of QHQ with
e~ &E; &e~ in each partial wave is counted with the
sign opposite to the number of bound states in the
elastic channel. The opposite sign reflects the fact
that, in contrast to bound states in the elastic chan-
nel, the presence of bound states of QHQ with
e& &E; &s~ enlarges the space of states accessible to
the scattering system. Thus the compound reso-
nances, associated to these bound states of QHQ and
represented by zeros of d(k) in the lower half of the

plane, enter the Levinson theorem indirectly
through their corresponding poles of d(k) on the
real k axis if absorption is weak.

(ii) Strong absorption can shift zeros of d (k), i.e.,
poles of S(k), from the third into the second qua-
drant. The corresponding "localized" states" are
counted like bound states. If such a zero happens to
be shifted onto the negative real k axis, it is counted
with weight —, like a bound state at zero energy but
with opposite sign.

The above results have been illustrated by a sim-
ple solvable model of square-well interaction for an
N-channel problem. The results (for %=2 and 30)
have been presented in terms of Argand diagrams in
the elastic channel. As expected, the information
about the resonance structure of the problem sup-
plied by such diagrams is washed out when the S
matrix is averaged over energy intervals comparable
to the resonance widths.
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