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Three-body reactions for a local potential in coordinate space
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The three-body theory of reactions is formulated for local potentials in coordinate space
on the basis of the Faddeev equation. The wave function is expressed as a sum of all possi-
ble channel wave functions. In solving, the physically important pole terms are taken as the
zeroth order terms. The higher order terms are treated as the perturbation. The kernels

that appear in the perturbational series are regular at the origin and confined in a finite re-

gion of space, thus enabling us to calculate the breakup process numerically. We can expect
that this perturbational series is rapidly convergent. The equation is finally reduced to a
coupled set of integral equations for the elastic and breakup amplitudes.

NUCLEAR REACTIONS Three-body model. The Faddeev equation
for local potential in coordinate space. Coupled channels including

breakup. Perturbational calculation. Physically important terms as
lowest order terms. Anticipated rapid convergence.

I. INTRODUCTION

After pioneering work on three body problems, '

now called the Faddeev theory, a considerable
amount of work has been performed to study the
properties of few-body systems, and also to extend
the method to nuclear reactions. Contrary to con-
ventional theories of nuclear reactions, the Faddeev
approach renders an impetus to the treatment of
three-body breakup processes on a mathematically
rigorous basis.

So far, the Faddeev equation has been solved for
the breakup process by three different approaches:
(i) by invoking a separable potential in momentum
space, (ii} by using the Pade approximant in
momentum space, and (iii) by solving the partial
differential equation in coordinate space. In con-
trast to these approaches, it has been the author' s
desire for a long time to formulate the Faddeev
equation in such a manner that the theory resembles
the conventional theory of reactions as closely as
possible, at the same time having the equation solu-
ble with a minimum of ambiguities. To reiterate:
(l) We want to formulate the wave function in the
form of an integral equation consisting of a sum of
the elastic, inelastic, rearrangement, breakup, and

closed channels. (2) We want to formulate the
theory to be used for a local potential in coordinate
space. We prefer not to use the hyperspherical coor-
dinates. These considerations will make our theory
accessible to a wide class of nuclear physicists. (3)
The theory should be formulated so that all numeri-
cal calculations are performed within a finite region
and the contributions from large distances are treat-
ed analytically. This requirement is not necessary if
we confine ourselves to the elastic, inelastic, or rear-
rangement channels, but it is necessary if we treat
the breakup process.

The formulation of the three-body theory with the
purpose (l)—(3) has never been tried before. Let us
explain the difficulties that we encounter in the
course of the formulation, and describe how they are
removed.

In handling three-body problems, one is often
tempted to make a separable expansion of the two-
body scattering matrix (t matrix) with the hope that
the expansion approaches the exact one with an in-
creasing number of separable terms. Although this
approach is powerful insofar as we deal with the
problem approximately at relatively low energies, it
is not suitable for treating the problem exactly.
Even from the approximate point of view, this ap-
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proach is not desirable, because with an increasing
number of separable terms the number of nodes in
the separable expansion increases, and the computa-
tion task becomes rapidly unmanageable even on a
powerful computer, while convergence becomes
slow. Furthermore, at high energies or for larger
angular momenta where the Born approximation be-
comes effective, the use of a separable expansion
with many terms is simply absurd. As an alterna-
tive, we have proposed an iterative approach to the
three-body problem in which physically important
contributions, such as the primary singularity lead-
ing to the elastic channel, the effects of a virtual
state, or resonances, are treated as the lowest term,
while all the remaining higher order terms are dealt
with as the perturbation.

To achieve this purpose, the wave function is
decomposed into channels as a sum, ' and the two-
body t matrix that appears in the Faddeev wave
function is expressed as a sum of a separable term
that describes the effects of the virtual state or reso-
nances and a nonseparable term that may be treated
as the perturbation. Such a separation of the t ma-
trix was proposed by us."'

At this point it is appropriate to discuss the
method of a nonsingular kernel in the two-body
problem. ' This method has attracted physicists
concerning the convergence of iteration. In this
method, a modified equation is related to the origi-
rial equation in a simple manner. There are many
ways of choosing the modified equation. However,
if we confine ourselves to the question of conver-

gence, we may not claim the advantage of the
method of a nonsingular kernel so strongly, because
there are many other ways of obtaining convergent
results.

Here, we should emphasize that one of the advan-

tages of the method of the nonsingular kernel lies in
the fact that this method yields the off-shell t matrix
as a sum of one nonseparable and one separable
term. From a practical point of view, it is impor-
tant that the number of separable terms does not in-

crease to improve the numerical result. This is very
different from the usual separable expansions.

Now, let us compare various kinds of methods of
the nonsingular kernel. The most general expression
of the off-shell t matrix is given by Eq. (51) of Ref.
11. As discussed in Refs. 12 and 14, it is known at
this moment that this equation is related to four
kinds of nonsingular equations: the Jost-type, the
standing-wave-type, the Kowalski-Noyes-type, and
the one presented by us, "' each of which is related
to a modified convergent equation for a two-body
problem. For instance, the Jost solution is one of
these. However, the Jost solution is not suitable to
use for the two-body sector in the three-body equa-

tion, because it is not regular at the origin and as a
result, some matrix elements diverge. ' The standing
wave equation is not suitable, because it can diverge
on the real momentum axis. The Kowalski-Noyes-
type equation is not suitable, either, because the re-

sulting separable term of the t matrix has no relation
to physical poles. After all, the Kowalski-Noyes-

type equation serves only to obtain a convergerit re-
sult. In contrast to these, our ameliorated equa-
tion" ' is free from all of these difficulties; it is reg-
ular at the origin, and all physically important poles
are involved in one separable term of the t matrix.

We have thus a modified equation [as given by
Eq. (30) of Ref. 12] that is convergent at the two-
body level. However, it is not evident ab initio
whether this modified equation embedded in the
three-body equation is convergent or not. In this sit-
uation, it is highly desirable to have a further
method by which we can get a convergent result
even if the original Neumann series is divergent. As
a preliminary for handling this problem, we have
proposed a method of acceleration. ' ' It has been
shown for two-body equations that this method is
very efficient in getting a rapid convergence even
when the original Neumann series is divergent.
Since the type of equations handled in Ref. 14 is the
same that appears in the three-body problem (the
Fredholm type), we expect that the same accelera-
tion method is also successfully applicable to the
series involved in the three-body system such as Eqs.
(19) and (41) of this paper.

In the Faddeev equation, the scattering process is
described in a manner that the interactions take
place successively between one pair of particles after
another. Therefore, the elastic scattering is
described as a scattering from a nonlocal potential. '

After some efforts' ' we have reached a con-
clusion that a method of treating the n-d elastic
scattering as a scattering from a nonlocal potential,
which is rapidly convergent for "high" energy such
as 20 MeV, is usually extremely slowly convergent
at "low" energies such as 1 MeV. To overcome this
difficulty, a method of nonsingular kernel for a non-
local potential has been proposed and combined with
the method of acceleration. ' If we use this method,
we get a convergent value very rapidly, even at low
energies.

The breakup process gives rise to the following
difficulty. If we use the usual Green's function and
try to make a simple-minded iteration, we are forced
to calculate numerically up to infinitely large dis-
tances, at each order of multiple scattering series.
Evidently, this is simply impossible. In the method
of solving the partial differential equation, s this dif-
ficulty is avoided by putting the boundary condition
at the asymptotic region. This method has the fol-
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lowing shortcoming, however. With decreasing en-

ergy, the asymptotic region escapes to larger and
larger distances. Especially if there exists a final
state interaction between a pair, as in the case of the
singlet nucleon-nucleon interaction, the pair is sub-

ject to this interaction no matter how large the dis-
tance between the spectator and the c.m. of the pair
is. As a result, we have to perform numerical calcu-
lations up to infinitely large distances. This difficul-
ty is avoided by smoothly joining the boundary con-
dition of this region with that of the breakup region
in the six-dimensional space. However, even with
this clever boundary condition, we cannot avoid the
numerical difficulty coming from the fact that the
asymptotic region is far away from the origin at low
energies. Because of these difficulties, we do not at-
tempt to solve the partial differential equation, but
we formulate the kernel of the Faddeev equation so
that the numerical calculations are performed only
in a finite region and the contribution from large
distances is calculated analytically. '

In concluding the Introduction, we are now in a
position to construct a three-body theory with pur-
poses (1)—(3) from our elements. ' ' In Sec. II we
present our three-body theory as concisely as possi-
ble. For the purpose of clear presentation, we
neglect antisymmetrization' and the Coulomb po-
tential without loss of generality. Our theory can,
of course, be easily generalized to a more general
class of three-body systems, e.g., those having many
discrete excited states. In Sec. III conclusions are
given.

II. THEORY

To avoid complications due to reduced masses,
etc., and to demonstrate our theory as clearly as pos-
sible, we keep the neutron-deuteron system in mind
without loss of generality. For the same reason, we
neglect spin until Sec. II F.

A. Decomposition into channels

In the Faddeev theory, the total wave function of
the system is expressed as a sum of three com-
ponents 4" (i =1,2, 3)

gy qI(&)+ gy(2)+qy(3)

Here, 4" represents the wave function in which the
pair of particles j and k are subject to the final state
interaction V;= Vjk, while the particle i stands as
the spectator. Although Faddeev introduced this
decomposition for mathematical reasons, the physi-
cal meaning of Eq. (1) is stated in Ref. 12. We
denote by t; the t matrix For the pair jk, by Go the
Green's function in the three-body free space, by

p(jk) the radial wave function of the target (deute-
ron), by f(i) that of the incoming particle, and by

I ao & the (isospin-, spin-) angular-wave function of
the initial state. The Faddeev equation then reads

'0"'=P(23)f(1)
I
ao&+Got)(%' '+V' '), (2)

with two other equations obtained by the cyclic per-
mutations of 1, 2, and 3. For simplicity, we shall
use the permutation operator Q defined by

gal(1) —ql(2)+ qy(3) (3)

The angular momenta of the interacting pair and
the spectator will be represented by L and l, respec-
tively. We designate by x ~ the distance between par-
ticles 2 and 3, and by y~ the relative distance be-
tween particle 1 and the c.m. of the pair 23,

0's, (xi)JI(poli) I&o(L I)& .

Let us introduce a complete orthonormal set of
functions IP ~ z ], where P ~ z denotes the product of
the normalized plane wave for the spectator

' 1/2
2

Q~(p, g~ ) =
7T

and the angular wave function
I

o,
& &,

0... =~~(p»,zi)
I
~i & .

The spectator energy Ez and the energy of the in-
teracting pair Eq are related by

2

E —E E
4m

The Green's function Go in Eq. (2) is a function of
x& and y~. We expand it by IP ~ z ) and express the
function 4"' as a sum of four components, '

x)= r2 —r

y& ——r~ —(r2+r3)/2 .

We use the usual notations for the spherical Bessel
and Hankel functions; j~(kr) and hI+ (kr) for
momentum k and coordinate r. We represent the
nucleon mass by m, the energy of the system by E,
and the energy of the bound pair 23 by I E2q

I
. The

initial momentum po of the incident particle is given
by

1/2

3A, «+IE I)

With these notations, the initial state P(23)f(1)
I
uo &

in Eq. (2) is written more explicitly as
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q'"'=4(23)f(1)
I
ao &+10(23)& I

ao &G) &ao
I
&0(23)

I

I'»
I

Qq'"'&

+g f, de I kp, &G),qr), q & NJ, I
Qq'"'&+ Ca"

I

Q'p'"
&

a&

(9)

and

1
G) ——

F.+ IE» I

—K)+ie
1

Gi, q
Eq —/23+it

(10)

On the right-hand side, the first (second, third,
fourth) term represents the initial (elastic, breakup,
closed) channel wave function. Here, G), G) q, and
t& q are two-body operators defined by using the ki-
netic energy operator K» (K)) for the relative
motion of the pair 23 (the spectator 1 and the c.m.
of the pair 23) as

I

resonances. (For instance, if Dq were the Jost func-
tion, it would involve an infinite number of zeros,
almost all of which are physically insignificant.
Furthermore, the calculations are almost impossible
because most of the zeros lie outside the analytical
region on the complex momentum plane. )

Since co
& q

—1 vanishes at large distances, we treat
this term as a part of the closed channel. This term
is combined with Cz" of Eq. (9),

(16)

t& ——V&+ Vi Gi t&, , V&
——V23 (12)

The notation Cz" represents the sum of operators
for the closed channel as given by Eqs. (10b) and
(10c) of Ref. 10. Since the explicit form of this
operator is not necessary in the present article, we
do not write it here.

B. Breakup channel

We can prove by the stationary-phase theorem ' that
the last term on the right-hand side asymptotically
vanishes. If we use Eq. (16), Eq. (9) reads

q '"=(((23)f(1)
I
a, &

+P(23)
I
ao&G) &(()(23)

I
&ao I V23

I
Q%

+Xf, dE. I(('),q& I6-, &

D "q,-,

Following Ref. 12, let us bring the breakup term
in Eq. (9) to a tractable form. In Eq. (32) of Ref. 12,
we expressed the kernel G& qt& q as a sum of one
nonseparable term co& q

—1 and one separable term
as

G),qr) q (~l, q
—1)

+c( ) )
I
Q)p ( ) )

&

whereAq ~ is given by

~q ..
= &u(qx)) I

&N—... I
I')~),q I

gq'"'&

(17)

1—I((').q& D &fi(qx) )
I v(~), q

q

(13)

Here, the nonseparable term co& q
—1 is regular at

the origin and

i(qx
&

—Lm /2)

P) q
~ qhL (qx))-(+) e

X
(14)

In Ref. 12, we intentionally accommodate only a
finite number of physically important poles as the
zeros of the function Dq,

In Eq. (17), the breakup term is expressed as a sum
and an integration over the separable terms. The
breakup amplitude (I/Dq)Aq~ manifests the effect

of the pole in the final state interaction through
the factor 1/Dq.

C. Closed channel

We calculate the closed channel as the perturba-
tion. We define the operator (1—C'"Q) '

by the
Neumann series

Dq ——0. (15)
1 1+C(1)g+C())QC())g+. . .

C(1)g
Since these poles are the origin of the divergence or
very slow convergence we thus secure the conver-
gence of the series involved in the nonseparable
term. At the same time, we can avoid the calcula-
tions on a large number of physically insignificant

(19)

We expect that this perturbation series is conver-

gent, because a11 effects of poles, the primary singu-
larity causing the elastic scattering and the poles
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that affect the breakup channel, are excluded from
the closed channel. We do not know of course
whether the Neumann series (19) is actually conver-
gent or not. Fortunately, this anxiety is relieved if

1

0(23)F(1) I&o&+gf d~~
1 —C"'Q'

we adopt the method of acceleration which in many
cases changes the divergent series into a convergent
one 14' 16

We write Eq. (17) as

(20)

where the function F(1) stands for the wave function of the elastic channel,

(21)F(1)=f(1)+G)&4(23)
I

&oo
I

1'23
I
Qq""& .

Since C"' is real and vanishes at large distances, we may say that in Eq. (20) the elastic and breakup waves are
"dressed. "

D. Elastic channel

Next, we discuss the wave function F(1) given by Eq. (21). Substituting Eq. (20) into Eq. (21), thereby using
the fact that the two components ql( ' and 4' ' of QV ("give the same contribution, we find

F(1)=f(1)+G)2&4(23)
I

&&o
I ~23 (2) I

(xo &
I
(t'(31) &F(2)

1

C(2)Q

E 1 — '
1+G)2+ f, dE~&(()(23)

I
&~o

I
&23 (2) I/2, q& I(tp~ & ~q, ~,

C2

In this equation, the matrix element

&p(23)
I

&&o
I

~23 (2) I~o& I(()(31)&
1

C(2)Q

is a nonlocal potential, which we denote by U (1,2),

U (1 2)= &p(23)
I

&+0
I

~23
1

1 —C"'Q

(22)

(23)

The explicit form of this nonlocal potential has been given in one of our previous papers. ' (There, the effect
of the closed channel C' 'Q is not taken into account. )

A function representing the coupling of the elastic and the breakup channels is as follows:

Uq (1)=&/( 2)3I &ao
I

Vg3 (2) I(t)g, q& I f~~, & (24)

Using Eqs. (23) and (24), we express Eq. (22) simply as

F(l):f(1)+G)2U (1 2)F(2)+G)2+f dEpUp ~ (1) Aq (25)

The function (24) needs a closer look. When x2 becomes very large, the closed channel operator C' ' vanishes.
By Eq. (14), the function (1—C' 'Q) '

I P2 q & behaves as the spherical Hankel function qhl+'(qx2) in this lim-

it. Since x2 is a function of r), as seen by Eq. (4), and y, is also a function of r„U~ ~ (1) is an oscillatory

function of y) up to an infinitely large distance. Therefore, the overlap of this function with the Green s func-
tion G, in Eq. (25) could cause some difficulty. However, we need not worry about this situation. When y)
becomes large, the last term of Eq. (25) behaves as

G(2+f dE, U,",., (1) ~q.. —zoll'"V oZ))g f dE, kV o,u)
2 C2

(26)

where the amplitude gI(po, p ) is given by
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Cl(po p)= &0 (23)
I &Ji(poli) I &ao I

I z3
1 C~g~ 142@& I (('p

1

P(23)
I &j~(poy&) I &ao I

V,3
1 c(~) ICAL&& I

az& Iji,(m'z)&
1 ~ 2

' 1/2

(27)

In evaluating this amplitude, the part that we cannot treat numerically, since it extends to infinity, is the
asymptotic part of qhL (qxq) which is the asymptotic limit of Pz ~. A11 other parts are confined in a finite re-

gion and can be calculated numerically. The term in question is
' 1/2

2
kr(po p») =qp—

7T
&W(23)

I &ji(poJ i)
I

&ao I
I'231a2&

I Jl (F32) &
I

J i", '(qx2) & (28)

To bring Eq. (28) to an amenable form, we use the formula given in the previous articles,

&ji(poJ i) I
&ao

I
a2&

I Jl (N 2) &14", (qx»&

1 2
du jL (Axt)Ap~(ao az'u) xz dxjL (A, ,x, )hL (qx, ) . (29)2 (+)

Pou pop 2 2

Here A,, A, &, and u are defined by

~ = po/2+ p,
~i= —(Po+P J2) (30)

gies if we use a method of the nonsingular kernel to-
gether with the method of acceleration. Further, we
define a function by

F (1)=G) Up ~, (1)+PG)2U (1,2)Fp (2), (35)
u =cos0

PoV

The explicit form of the function A~&(ao,aq. u) is

given in Ref. 23, but it is not necessary for the
present discussions. We make use of the formula
given by Fuda for the last factor of Eq. (29).

J x dx jL (M )hL+'(qx) =
(q +i,e—)

(31)

We have discussed in Ref. 12 that if we use Eq. (29)
together with Eq. (31) for the right-hand side of Eq.
(28), we can calculate it numerically.

Now, we come back to Eq. (25). The Green's
function G& given by Eq. (10) for the incident neu-
tron is expressed as a sum of a separable term and
the standing wave Green's function PG& as

G ~
= —ipo I f( I ) & &f( I )

I
+PG ),

where we take

f(1)=Ji(post )

(32)

(33)

F(1)=f(1) P+Gi2U (1,2)F(2) . (34)

In Ref. 14, it is shown that the iterative calculation
of this equation converges very quickly for all ener-

If we designate by F(1) the elastically scattered
standing wave for the nonlocal potential 2U (1,2), it
satisfies the equation

+gJ dEqFq ~ (1) (36)

The function F(2) that is involved in the (as yet
unknown) solution to the integral equation (25) is
now contained in the elastic amplitude

&J"(I)
I
U'(1, 2) IF, &

in Eq. (36). In Sec. IIE, we shall obtain a set of
coupled integral equations for this amplitude and
the breakup amplitude Aq ~, . If we solve this cou-

pled set of equations, we obtain the wave function
F(1) from Eq. (36) and the Faddeev component 4"'"
from Eq. (20).

E. Integral equations for amplitudes

To simplify the description, we omit the particle
indices in relevant quantities. For instance, the am-
plitude

&f( 1)
I

U (1,2)
I
F &

is expressed simply as &f I
U IF&. This does not

cause any confusion. We write Eqs. (20) and (36)
simply as

which is calculated in the same way as Eq. (34).
In terms of Eqs. (34) and (35), Eq. (25) is ex-

pressed as

F(1)=F(1)[1 ipo& f(1)
I

2—U (1,2)
I
F(2) &]
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Fao&

and

F=F(1—2ipo(f
I

U IF&)

++2F~ Aq
1

ap

1 — 1+g
1 ~Q ldqkp &D Aq

ap q

(37)

(38)

respectively. Similarly, the amplitude Aq defined

by Eq. (18) is written as

(39)

From Eqs. (37)—(39), we derive a set of integral
equations relating the amplitudes (f I

U
I
F& and

Aqa o

If we use Eq. (37) on the right-hand side of Eq.
(39), we get

I&Fao& —&&Jq&~ I ~~qQ
1 1 — 1

(40)

Further, if we use Eq. (38) in Eq. (40), we get

Aqa = —
&Jq4pa I

I ~q Q ~ I
PFao &(1—2'po &f

I

U'
I
F & )

g&jq4'—p I v~qQ1 c L2I PFpaao&+
I 4'q4pa &3

1 — — 1
(41)

On the other hand, if we multiply by (f
I

U on
both sides of Eq. (38) from the left, we obtain

&f I
U'IF&=&f

I
U'IF&(1 —2&po&f

I

U'IF&)

+2+(f I
U IFp & Aq . (42)

ap

Thus our problem has been reduced to solving the
set of integral equations (41) and (42). As we have
described, all quantities in these equations are feasi-
ble for numerical calculations. The region of in-

tegration spreads only over a finite region of space.
In the course of the calculations, we do not need any
contour integral in the complex momentum space,
as required in the usual three-body calculations in
momentum space.

After solving Eqs. (41) and (42), the breakup am-
plitude (I lDq)Aqa is obtained and we calculate the
elastic amplitude of the total system by the follow-
ing expression that is derived from Eq (25):.

2(f
I

U' F&+2+(f
I U~ & A,

ap
(43)

Having calculated the amplitudes, we get the wave
function for the elastic scattering by Eq. (38) and
the Faddeev component 0'"' by Eq. (37).

F. Treatment of virtual state

So far, we have neglected spin and isospin. The
inclusion of these variables is, of course, achieved by
extending the definition of the function

I
a & to in-

clude spin and isospin. However, it is more complex
than that. We have to correctly take into account
the effect of the singlet virtual state.

Equation (9) discussed so far should be regarded
as the equation for the interacting pair in the triplet
state. We do not need any modification of Eq. (9)
for this component except that the singlet state is
now coupled to it. With obvious notations, Eq. (9)
now reads

+T ='(('(23)f(1)
I ao &+

I
0'(23) &

I ao &G& &ao
I

&0'(23)
I ~23 I

Q(+ ' T+4")&

+g I dEp I%pa, &Gi,qri, q&kpa, I
Q(+r +'ps )&+Cr'I

I
Q(q'r +ps

aT, l

(44)

The equation for the singlet state does not involve the initial wave and the elastic wave. Thus the singlet
Faddeev component reads

q's =2 f, "Ep I (tp, &Gi,qri, q&dpa, I
Q(+s"++T")+cs'I'

I
Q('ps" ++T") .

aS, l
(45)
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In the triplet state, the effect of the two-body bound
state has been extracted out in the form of the elas-
tic term and no effect of the bound state remains in
the closed channel, as demonstrated in Ref. 10. On
the other hand, in the form of Eq. (45), the contribu-
tion from the singlet two-body virtual state is in-
volved in the closed channel denoted by Cz'I'. To
make the zeroth order term physical and at the same
time to get a good convergence in iterations of the
closed channel, we extract out the effect of the virtu-
al state in the form of the Sturm-Liouville function.
This kind of treatment has been adopted by us '

in calculations of H and He. Thus, as a special ap-
plication of Eq. (51) of Ref. 11, we write for a suit-
ably chosen energy E'( & E)

Et
C(I) y j dE

I
y~s ) q

~

gs )

(46)

Swhere ft q
denotes the normalized Sturm-Liouville

function without any node for the singlet interaction
with energy —

~ Eq ~, and A,q represents the corre-
sponding eigenvalue. Since we have presented the
Sturm-Liouville function as well as the operator Cs t'

in detail in Refs. 23 and 26, we do not repeat it here.
As in Eq. (16), the nonseparable term in G& qt, q

of
Eq. (45) is combined with Cz't' and treated as the
perturbation for the singlet states.

Finally, as an extension of Eqs. (41) and (42), we
have a set of coupled integral equations for three
kind of amplitudes, (f

~

U ~F), Aq, and Aq .
Since the extension of Eqs. (41) and (42) to this set
of coupled equations is obvious, they are not written
here explicitly.

III. CONCLUSION

We formulate the three-body theory of reactions
with local potentials in coordinate space. In our
theory, the calculations are performed according to
the following steps. (1) First, we calculate the two-
body equations (34) and (35). (2) We put the results
in the matrix elements of Eqs. (41) and (42) and cal-
culate the perturbation series (1—CQ) '

by the
method of acceleration. (3) Then, we calculate the
matrix elements in Eqs. (41) and (42). (4} Finally,

we solve the set of coupled integral equations (41)
and (42) to obtain the amplitudes. (5) To obtain the
wave function, we use these results for Eqs. (37) and

(38).
As explained in the Introduction and throughout

Sec. II, emphasis in our formulation is put on the
following points:

(1) The formulation is performed in a manner
suitable for comparison between the effects of the
elastic, breakup, and closed channels.

(2) In the zeroth order approximation, only contri-
butions from physically important poles are includ-

ed.
(3) The effect of the pole in the final state interac-

tion is included explicitly by the factor I /Dq in Eq.
(17).

(4) All physically important resonances are in-

cluded as one separable term regardless of their
number. '

(5} The effects other than those due to poles are
treated as the perturbation [(1—CQ } ' in Eq. (41}].

(6) Improvements of the numerical results are
achieved by performing the perturbation iteration up
to any desired higher order term. We have a
method of doing it in a very efficient way. '

(7) All operators involved in perturbation itera-
tions are confined in a finite region of space. The
functions that appear in the course of iteration are
regular at the origin. ' The contribution from the
asymptotic region of the breakup process is con-
tained only in Eq. (24). This part is calculated
analytically. These properties of our theory make
numerical calculations feasible. Also, we expect that
these properties will make the rigorous mathemati-
cal treatment of the three-body scattering theory
much easier than the conventional ways.

(8) In the whole course of calculations, we need

not take any contour in the complex momentum
plane. All of our calculations are performed on the
real momentum axis.

(9) The problem is finally reduced to a set of cou-

pled linear integral equations for amplitudes [Eqs.
(41) and (42)].
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