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It is shown that, at large momentum transfers, one can extract nuclear structure

information from the response (function) of the nucleus to an external scalar probe by

factorizing the on-shell form factor associated to the struck nucleon. This result, derived

both for elastic and inelastic scattering, arises from compensations between off-shell effects
and exchange current effects generated by the (local) nucleon-nucleon interaction. The
corrections to this on-shell factorization are in general found to be small at large momentum

transfers. The role of the final state interaction in the nuclear transition form factor is then

investigated and it is shown how one can, for instance, correct the orthogonality defect

introduced by using a plane wave approximation for the struck nucleon.

NUCLEAR REACTIONS High momentum transfer reactions, elastic
and inelastic scattering, on shell form factor, factorization,

orthogonality.

I. INTRODUCTION

Electron scattering is still presently the best tool
to extract information on the nuclear transition den-
sities or on the corresponding form factors. In the
Born approximation, which is justified since the
electron interaction is weak, the nuclear response
function is factorized into an elementary nucleon
form factor, not necessarily on shell, and a nuclear
transition form factor. ' To obtain information on
the internal part of the nuclear densities, it is obvi-
ous that one needs data at large q . The interpreta-
tion of such data is, however, obscured by the pres-
ence of off shell effects in the nucleon form factor
as well as of meson exchange effects which may be-
come important in that regime. ' The motivation
of the current work is thus the study of such effects.
To gain some insight, we shall simplify the problem
and discuss the response of the nucleus to a scalar
probe as shown in Fig. 1. In Ref. 5 it has been
remarked that for a class of processes contributing
to the elastic nuclear response, the off-shell effects
in the nucleon form factor cancelled specific ex-
change effects generated by the local nucleon-

nucleon potential. In that framework, one obtains,
for large q, the usual factorization

Fg (q) =f~(q)s ( q ),
where fg(q) denotes the on-shell nucleon form fac-
tor and Soo( q) the elastic nuclear form factor.

In this work we shall show that the factorized
form (1) can be extended to a larger class of process-
es contributing to the elementary nucleon-scalar
probe vertex, on one hand, and to the case of the in-

elastic response of the nucleus, on the other hand.
These results can be derived assuming that the nu-

cleons, which are treated nonrelativistically but have
structure, are distinguishable and are assumed to in-
teract via two body local scalar potentials. There-
fore the two-body local interactions between the
nonrelativistic nucleons are treated here on a com-

FIG. 1. Diagrammatic representation of the nuclear
response to the scalar probe (wavy line).
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tential V in Eq. (3a) is the sum of the two-body (lo-
cal) nucleon nucleon interactions

FIG. 2. Diagrammatic representation of the nucleon

form factor (the dashed lines represent scalar mesons

while the wavy lines represent the scalar probe).

V=g V~J . (3c)

G(E)=(E+iri HA )— (2)

Here, E represents the energy of the 3-body system
and Hq is the nuclear Hamiltonian

(3a}

The kinetic energy operator T is defined by

A q 2

T=g (3b)

where m is the nucleon mass and Q; denotes the
three-momentum of the ith target nucleon. The po-

(b)

pletely different level than the meson effects which
dress the nucleons. The elementary nucleon form
factor, f~(q), is represented diagrammatically in
Fig. 2. We stress that the scalar mesons of mass p
are treated relativistically, in contrast to the nu-
cleons. In the following, we shall not be concerned
with problems of renormalization since we use the
loop integrals formally without attempting any
direct evaluation. For this reason, we do not specify
the vertex functions a, P, y which might be func-
tions of the square of the four-momentum transfer
but not explicitly of the external energies. The typi-
cal regime in which we shall work is characterized
by p &

~ q ~, and by nuclear excitation energies less
than or of the order of q /2m (where m is the nu-
cleon mass).

In order to calculate the response of the nucleus
to a scalar probe (illustrated in Fig. 3), one has to re-
place the free nucleon propagators by the interacting
Green's function

The interacting Green's function (2) is shown di-

agrammatically in Fig. 4, where it is expanded in
terms of the free Green's function

Gp(E) = (E+i21 —T) (4)

according to the relation

G(E)=Go(E)+Go(E)VG(E) .

If we were to approximate the interacting Green's
function (2) by the free one (4), we would obtain the
usual impulse approximation for the nuclear transi-
tion form factor. The calculation involves three di-
mensional integrals over the Fermi momenta of the
target nucleons and, as a result, one obtains a factor-
ized formula similar to (1) where, however, the nu-
cleon form factor is off shell due to the initial bind-
ing of the struck nucleon. The other terms in the
expansion (5) of the interacting Green's function (2),
shown in Figs. 4(b)—(d), when inserted in the evalua-
tion of the nuclear response function [see Figs. 3(b)
and (c}] describe interaction (or exchange current)
effects generated by the nucleon-nucleon interaction
in the nuclear transition form factor. In Ref. 5 only
the process described by Fig. 3(b) has been con-
sidered in the specific case of the elastic scattering
on a deuteron target. In this case, it has been shown
that, in the limit of large q, the nucleon-nucleon
interaction effects, generated by Figs. 4(b),(c), . . . ,
compensated the off-shell effects generated by the
impulse approximation term of Fig. 4(a), so that one
recovers the on-shell factorization (1). In the
current work we extend this result and prove it for
elastic scattering, direct inelastic transitions, and
quasifree scattering in the case of a many body sys-
tem of nonrelativistic distinguishable constituents
interacting via two body local potentials. Note that
similar ideas may be applied to the study of in-
clusive processes.

$G G

{c) (a) (b) (c)

FIG. 3. Diagrammatic expansion of the nuclear
response function. The box represents the interacting
Green's function.

FIG. 4. Green's function representation. (a) corre-
sponds to the impulse approximation. (b), (c), and (d) are
generated by the nucleon-nucleon (local) interaction.
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An additional difficulty which is met when one
attempts to extract nuclear structure information
from exclusive processes, like one nucleon knockout
reactions, for instance, arises from the treatment of
the final state continuum wave function. In the
practical evaluation of such a process, one generally
introduces a plane wave (or an optical potential dis-
torted wave) approximation for the final state wave
function. This inconsistent treatment of the initial
and final nuclear states leads to an orthogonality de-
fect. ' In this work, we derive an approximate
formula for the transition form factor which
corrects for the lack of orthogonality. In this paper
we also present results concerning the low momen-
tum transfer behavior of the transition form factor.

The paper is organized as follows. In Sec. II we
consider the case of the inelastic nuclear response
described in Fig. 3(b), i.e., the scalar probe couples
to a virtual meson. Section III is devoted to the
study of the inelastic process displayed in Fig. 3(c),
where the scalar probe is coupled to the virtual nu-
cleon. Elastic scattering is then easily derived as a
particular case. In Sec. IV we show how to correct
for the lack of orthogonality in the case of an ex-
clusive excitation process when the continuum final
state is treated in a plane wave approximation. The
conclusions are presented in Sec. V together with a
brief discussion of the relation of our approach to
more general meson theories.

q-qq,
7

q

FIG. 5. Kinematics of the scalar probe-virtual meson
coupling program.

II. COUPLING OF THE SCALAR PROBE
VIA VIRTUAL MESONS

In order to study off shell and interaction (or ex-
change current) effects in the nuclear response func-
tion we have to consider the processes which give
rise to an explicit energy dependence in the nucleon
form factor. This is obviously not the case of the
process described by Fig. 3(a), where no off-shell
dependence occurs and the interaction effects are
implicitly built-in in the initial and final nuclear
wave functions. We therefore first investigate the
process, illustrated by Fig. 3(b), where the scalar
probe interacts with the target nucleons via virtual
mesons. The kinematics of this process is specified
in Fig. 5. The formal evaluation of the diagram can
be written as

~A (q) J 00(Q1~Q2 )(Qi —qi, Q2
~

G(eo qfp)
~

Q' —q), Q2, ~ ~ ~, )

Yp d qid Qid Q2'''d Qld Q2
, ((." Qi —qi Q2

[qio —q —O l[(qio —qo) —(qi —q) —V )
(6)

where q is the four-momentum transfer. In Eq. (6), Pp and P„are exact ground state and excited nuclear
states, respectively, eo and e„being the corresponding energies

&~0o=~o4o, &~0.=&.0.
and Hz has been defined in (3). Note that the final state, P„, may be a continuum state, Finally, Ju denotes the
meson mass and the various vertex functions may depend upon the corresponding square of the four-
momentum transfers q, q &, and q~

—q.
The many body matrix element of the interacting Green's function in (6) reads explicitly

(Q& —qi, Q2 . ~ ~G '(&p —qto) lQ'i —ql Q&

= '~o —9io—
( ) q))~ A

II~(Q -Q;)

—g ~ (Q; —Q'@(Q;+Q, —Ql —Q,') g 6(Q —Ql)

For simplicity, we ignore here the nuclear center of mass motion effect in this expression. The factorization of
Fz"(q), defined by (6), in terms of an on shell nucleon form factor implies the cancellation of the off-shell ef-
fects in the impulse approximation [zeroth order term in the expansion of the full Green s function (5), i.e.,
Fig. 4(a)] with the contribution of interaction effects (higher order terms of the Green s function expansion,
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i.e., Figs. 4(b), (c), etc.). It can be displayed by introducing an approximation to the amplitude (6) such that the
associated corrections become small in the limit of large q . It is important to note that the approximation is
made on the full expression (6) and not directly at the level of the matrix element (7) of the Green's function
(2). It indeed corresponds to an effective approximation, G„ to the Green s function (2) where the matrix ele-
ments depend upon external parameters like the momentum transfer q. Let us thus make the ansatz'3

&Qi —qi, Qz I
G '(&o —ego) I Qi —qi Qz &=I &o —ego —~(qi, q)l II &(Q —Q') . (8)

The parametric energy e in Eq. (8), which is a function, to be specified later, of both momentum transfers q &

and q, does not depend on the nucleon momenta Q;,Q,'. As is clear from (8), the approximate Green's func-
tion G, is defined to be diagonal in the nucleon momenta. We now expand the exact Green s function G in
terms of the approximate one G„which reads schematically

6 =G, +G, (H~ e)G, +—G, (Hq e)G,—(Hg c)G,—+ (9)

where we have used the definitions (2) and (8). The function e is then defined in a variational way such that
the first order correction in the expansion (9) vanishes, leading then to a factorized expression similar to (1)
with on-shell nucleon form factor f~(q).

The matrix element of the first order correction term, G, (Hz —e)G„gives explicitly

A 2d4~'"= f Hd'ad'n' » ' » &o(Q~, Q~,
I:01'—p'll(el —e)' —p'] ~0 —elo —~(ql q)

+

+ X ~"(Q —O' N(Q +Q —Q' —Q') g ~(Q —Ql )

0n Qi —q Qz,
~o 9io F- q»q— — (10)

The binding potential, V, in this expression is eliminated by using the many body Schrodinger equation applied
either to the initial (Po) or final (P„) state. Now requiring this first order correction term to vanish imposes the
following relations:

Qi (Qi —q»2 - 2

0= f co(Qi Q& ''' ) ~o
2

—~(q, q)+
2 4.*(Qi —q.Q» »gd'Q (1 la)

and

(Qi-q)
0 1& 2~ ~ ~n

2m
—e(qi q)+

2 0:(Qi—q Qz, , ) g d'Q;
2m i=1

(1 lb)

(12)

We also have to calculate

In order to arrive at an explicit determination of the function e(q ~,q), we thus have to evaluate the integral

A

I(q„q)= f Po(Q], Qp . . . ) 0 (Q]—q, Qg . . . ) gd Q, .
m i=1

A

J(q)= Jko(Qi, Q~, , ) 4.'(Qi —q, Q~, , ) Pd'Q;,
P7l i=1

which, upon subtracting (1 lb) from (1 la), is obtained to be

(13a)
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~2
J(q) = eo —s„+ S,„(q), (13b)

where S,„(q ) denotes the nuclear transition form factor
A

S..(q)= f gd'Q;po(Qi Q2 ~, )p (Ql —qi, Q2, . . . , ). (14)

(15)

The integral (12), I(qi, q), is actually determined by the relations (13). This is seen by considering the scalar
product Qi. q i which can be written as

(Qi. q)(qi q)Qi'qi=, +Qii'q»,
q

where Q|z and q|z are the projections of the vectors Q| and q& on the plane perpendicular to the momentum
transfer q. The second term on the right hand side of (15) will not contribute to expression (10) because of the
symmetry of the integrand in the d q& integral, under the exchange q»~ —q &z. The contribution of the in-
tegral (12) to the correction (10) is then simply

q'
I(q&, q)= Eo —E„+ S,„(q) .

2m
(16)

Using these results, we see that the correction term 5, Eq. (10), vanishes provided the function e(q&, q) is
defined by the relation

qi
e(q&, q)=e'o+

2m
q q1'q

6P 6n+
22m q

(17)

This choice of the parametric energy corresponds to what has been referred to as the optimal approximation in

Ref. 13. We may now replace e'( q|,q) by its value (17) and the Green's function 6 by 6, in (6). Up to second

order corrections, the expected factorized formula then reads

F~""'(q)=f~ '(q)S..(q» (18)

where the nuclear transition form factor S«(q) is defined by (14) and the contribution fz '(q) to the elementary
nucleon form factor is

f'"(q)= f rP'd'qi
r -+

(ql —u )l(q —q) —
V 1 eo —~.+2, —

2
—qo2 2 2 2, q

2m q

(19)

Indeed, Eq. (19) represents the contribution of the process, illustrated in Fig. 6, to the on shell nucleon form
factor. This may be readily seen if we rewrite (19) as

2d4
f~"(q)=f. . . , g(qq|), (20a)

(q i' —V')Pq i
—q)' —V')

where the nucleon propagator g (q, q, ) is equal to

g(q, ql)=«-, &-, -, —qlo)——1 (20b)

or, equivalently,

g(q, q|)=[E-, q
—E-, -„—(q|o —qo)j

In Eqs. (20b) and (20c), we have introduced the vector

(20c)

p =m EO 6n+ q q

q2' 2
(21a)
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and the energies E k are defined by (k an arbitrary vector)

2kE =m+
2m

while the energy transfer, qp, is given by

qp =(sp-~. )

(2 lb)

(22)

It remains now for us to show that the corrections to the factorized expression (18) of the nuclear response
function are small in the limit of large momentum transfers. We therefore consider the first nonvanishing
term in expansion (9), i.e., G, (H& E)G,—(H~ —s' )G„whose matrix element reads

~'"= f Op(Qi Q2. , )[H~ —«qi q)l[H~ —«qi q)]4.'(Q i
—q, Q2,

g'(q, qi) g d'Q;d'Q, (23)
[qi' —i ')[(qi —q)' —

i
'1

where g (q, q i ) is defined by (20b).
Using the definition (3) of the Hamiltonian Hz and eliminating the potentials by the repeated use of the

many body Schrodinger equation, we arrive at

[(Qi-p) qi][(Qi —p) (qi-q)]
Np(Qi Q2

p' (P —qi)'
m

2m 2m
—Oio

'Y~ d qi
(24)

Ep, P Ep q)p P-q( Eg —q P- q

px jp

FIG. 6. Contribution to the on shell nucleon form fac-
tor corresponding to probe-meson coupling.

where the momentum p is given by (21a).
In order to estimate the correction term (24) to

the main term (18) we separately discuss final bound
states and continuum states for quasifree scattering.
For bound states (in particular the ground state for
elastic scattering) we assume a rather fast falloff of
the wave functions ((lp and P„ in momentum space
so that the dominant contribution to the d Qi in-

tegral in (24) comes from the region where the
momentum Qi has the same order of magnitude as
half the momentum transfer q. Since we work in a
region of large momentum transfer such that '

q /2m is much larger than the nuclear excitation
eilei'gy e —Ep (i.e., ~ q ~

&&kF), we read from (2 la):

q
p ~—

2
'

With these assumptions, it is clear that the correc-

I

tion term b' ' of Eq, (24) is at least of the order of
kp /q as compared to the leading term (18).5

In the case of a final continuum state, we first
consider the limit of a plane wave for the outgo-
ing nucleon which has the asymptotic momentum k
and the corresponding energy eg= k /2m. The fi-
nal state wave function peaks then at

k=Qi —q

and
~ Q, ~

is of the order of the Fermi momentum
kz. The momentum p in (21a) is thus given by

(Qi'q)
p

q

and we have

Qi —p=Qii.
The correction term 6' ' of Eq. (24) is therefore
suppressed as compared to the main term [Eqs. (18)
and (19)]by the factor

(Qii'qi)'

(Qi q)(qi q)

q 2
—mq&0

Since the integral over the four-momentum qi in
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G G

q~ q ~Q'-a, -q

q)

FIG. 7. Kinematics of the scalar probe-virtual nucleon
coupling diagram.

p p-q( p-q~-q p- q

p, a, p

FIG. 8. Contribution to the on shell nucleon form fac-
tor corresponding to probe nucleon coupling.

Eq. (24) implies that we have
~ q & ~

—
~ q ~

(Ref. 14),
the correction term (24) is suppressed by at least a
factor of the order of (k~/

~ q ~

). In order to com-
plete the proof, we should now show that the exact
result differs from the plane wave result by terms of
the order of (kFl

~ q ~
) for large momentum

transfers. This will be discussed in Sec. IV [see Eq.
(53)]. We thus have proven, under reasonable as-
sumptions for the nuclear wave functions, the on
shell factorization in the case of inelastic transitions.

I

III. COUPLING OF THE SCALAR PROBE
VIA VIRTUAL NUCLEONS

The discussion of the preceding section can be ex-
tended to another class of processes, shown in Fig.
7, where the kinematics is specified. We shall not
use the many body notation of the latter section, al-
though we stress that the derivation in the following
goes through as before, but shall refer, for the sake
of simplicity, to a bound nucleon plus a core. The
form factor illustrated in Fig. 7 is then given by

aP d Qd Q'd Q"d qt
+~ '"'(q) = (t o(Q)

q —p

&& &Q —qi I «&o —qio)
~

Q"—qi& &Q"—qi —q I
6(eo —qio —qo) I

Q' —qi —q &4.*(Q'—q)

(25)

where Po and P„denote the wave function of the nucleon, interacting with the core, in the initial and final
states. The matrix elements of the inverse of the full Green's function then read

(Q —qi)'
&Q —q 16 '(.—qo)IQ" —q &=' o —qo — '&(Q —Q")—I'(Q —Q")

2m
(26a)

and

(Q' —qi —q)'
&Q"—q&

—q I6 '(eo —qio —qo) ~Q' —qi —q&= ~o —qio —qo — '&(Q"—Q') —V(Q"—Q') .2'

In the same spirit as before, we make the double ansatz

&Q—qi I 6.i (~o —qio) I
Q"—qi&= leo —qio —ei(qi, q)l~(Q —Q"»

&Q"—qi —q ~
6.2 (~0 qlo qo)

~

Q' —qi —q &
= (&o—qio —qo —~z(qi, q) j&(Q"—Q')

(26b)

(27a)

(27b)

In these equations, since we only look for an approximation to expression (25), the parametric energies e
&

and

G G G 6
(z

/

P g P P

FIG. 9. A more complicated process.
FIG. 10. Contribution to the on shell nucleon form

factor corresponding to the process of Fig. 9.
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eq only depend on the external variables q& and q. These functions will be determined from the condition that
the first order corrections to (25) vanish when expanding the interacting Green's functions, 6, in terms of
the approximate one, G, . The first condition, which arises from the expansion of the matrix
element & Q —q ) ~

G(eo —q, o)
~ Q "—

q ) ), reads
P

(Q-«)'
2m

—~)(q) q) @Q—Q')+I'(Q —Q')
PQd g)

~1 0 2 2 a1

G. )G.20:(Q' —q)~'Q~'Q'=0 .

Using the same techniques as before [see Eqs. (10)—(16)],we arrive at

(28)

(P —q))'
~)(q) q)=~0+

2m

and we therefore have

~2
p
2m

(29)

&Q —q) I G. )«0 —e)o) I

Q"—q) & =
~2
p
2m

—qio—

&(Q—Q")
(p —q))'

2m

&(Q —Q")
E-—E- - —qioP P —a~

(30)

In these equations, the momentum p and the energy E- are defined by Eqs. (21). Similarly the second condi-
tion which follows from the expansion of the term

&Q"—q) —q I G«0 —e)0 —eo) I

Q' —ql

yields

2
q~

e2(q), q) =e„+
2m

~2
q

6p —E~—
2 2mq

(p —q —q))' (p —q)'
=&n+

2m 2m
(31)

&(Q"—Q')
&Q"—q) —q G~2(~o glo qo) Q' —q) —q&= E-—E- - - —qio —qoP P —S —S~

&(Q"—Q')
E' —E —q)pP a P —S —S~

(32)

Now replacing the exact Green s functions by their approximate counterparts (30) and (32) in expression (25),
we obtain the following factorized formula:

+~""'(e)=fr '(e)~-(q»

where, now,

&,„(q)= f $0(Q)$„"(Q—q)&'Q,

and the associated part f~ '(q) of the nucleon form factor is given by
2 d4f(2)( ) f 0 r el

(rI)' u')[E- E- -——e)0][E—- -—E- - - —e)olP P 9 P —9 —9)

(33)

(34)

(35)

It is again easily seen that this is an on-shell contribution to the form factor, Fig. 8, since [cf. Eqs. (21) and
(22)]

(~ ~)QE- =m+ =m+ +qp ——E- -+qp .p p
2m 2m P —a

The result (33) therefore displays once more the cancellation between the exchange current contribution and the
off-shell effects generated in the impulse approximation. The evaluation of the corrections to expression (33)
proceeds just as before and the conclusions are the same.

The case of elastic scattering is trivially obtained from Eqs. (33), (34), and (35) by noting that the vector p
[see Eq. (21a)] simply reduced to the vector q/2.

We can now immediately show that the previous results can be extended to more general processes provided
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the nucleon is assumed to be nonrelativistic. Consider, for example, the process of Fig. 9. Here we again re-

place the exact Green's functions by approximate ones, G„which as in Eq. (27) do not depend on nucleon mo-
menta in such a way that the first order correction is zero [cf. Eq. (28)]. Eliminating the potential term in
(G ' —G, '), by the use of the Schrodinger equation, we can find each of the approximate Green's functions.
The essential point is that the local potential commutes with all the approximate Green's functions since they
do not depend on nucleon momenta. A procedure similar to that used in going from Eq. (25) to Eq. (33) leads
to a factorized formula like (33) where the contribution to the nucleon form factor

aP'd "q,d'q, 1

2 2 2 2
(qi p)(—q2 p) —- - -, —qio

1
X [E + — qlo q20][E- —E- - -, -, —qio —q2o —qo]p —qi —qg

x -—q2o —qo]v v —q~ —q

(36)

In this expression the momentum p is again given by Eq. (21a) and it is clear that (36) is the on shell contribu-
tion to the form factor defined in Fig. 10.

IV. ROLE OF
FINAL STATE INTERACTIONS

AND ORTHOGONALITY

In the last two sections we have obtained the on-
shell factorization formula for the case of inelastic
scattering (from which the elastic scattering case is
trivially derived) by considering a large class of ex-
change current contributions to the nuclear response
function. Since our derivation does not only hold
for discrete excitations, knockout processes can be
treated on the same footing. We note that the
quasielastic limit i.e.,

eq —E0= —qp =q'/2pt2

corresponds to p=0 in Eq. (21a). In this region,
however, the resulting cancellation is of compara-
tively minor importance since off shell effects are,
here, much less relevant than, for instance, in elastic
scattering at high momentum transfer. Yet, on the
other side, in order to extract information on ground
state properties like single hole wave functions in a
knockout process [e.g., (e,e'p), (n, n'N), . . . , ], th. e
factorization formulae are certainly insufficient. In
fact, in the nuclear form factor S,„(q), defined by
Eq. (14), the details of the ground state wave func-
tion are still obscured by the final state interaction
effects. It is clear that one has, in principle, to treat
in a consistent way both the initial state and the fi-
nal continuum state. In general, though, one ap-
proximates the final state wave function by a plane
wave, or an optical potential distorted wave; a conse-
quence of this approximation is the lack of ortho-
gonality between the initial and final states. ' In

order to eliminate, at least partially, this orthogonal-
ity defect, one has to introduce corrections to the
plane wave approximation for the struck nucleon.
We work in the same framework as before and, for
simplicity, refer to a nucleon interacting with an in-
ert core. We first specify a few notations. The nu-
clear form factor is defined by [see Eq. (34)]

S -„(q)= f d'Q1('-„'*(Q)p (Q+q), (37)

where k is the momentum of the ejected nucleon of
energy ep=k /2m, —q the momentum transfer,

$0 the initial (bound) wave function, and 1(t'z
' the

ingoing continuum final state wave function associ-
ated with the energy e k. This state is related to the
corresponding plane wave state by the formal rela-
tion

( 1( -„
i
= (X-„

i
(1+VG), (38)

~-„(q)=(X-„iVG iy, )

= f d Qd Q'V(Q —k)

&«Q I
G

I
Q')40(Q'+ q) . (40)

where V is the interaction between the nucleon and
the core and G denotes the full Green's function of
the nucleon. The first term on the right hand side
of (38) (i.e., 1) corresponds to the standard plane
wave approximation for the form factor

Sok (q) =$0(k+ q), (39)

while the corrections, arising from the VG term, en-
sure the orthogonality with respect to the initial
state. To try to evaluate these corrections, we thus
consider the matrix element
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In the same spirit as before we wish to evaluate this
integral (40) in the high energy region, i.e., large k,
by introducing an effective Green's function, 6„
such that

&qIG. '(ek }Iq'&=&(q—q')g '(~g ~),

(41a)

where

A-„(q)= g A~&'(q) (42)

when the nth order term, A'&z'(q), contains the ap-
proximate Green's function to the power (n+1).
The high energy limit, in principle, ensures the con-
vergence of this expansion.

The zeroth order term in (42) (i.e., n =0) reads
simply

g (s ~,E)=E ~
—E(k, q)+l7I (41b) A ~ (q)= 'tp — 'g(Ep, F)gp(k +q) .(p) (k+ q)

We assume the function e to depend only on exter-
nal variables like k and q. Now expanding the ex-
act Green's functions in (40) in terms of the approxi-
mate one, (41},the correction may be expressed as

(43)

Following the same algebraic manipulations as in
the previous sections, we obtain the first order term
of the expansion (42):

2

A~k'(q)=g (e&,F) f d p ep —F(k, q)+ (k+q)q'pV(
2m m

(44)

However, in contrast to what we have done previ-
ously, we cannot define the parametric energy
e(k, q) independently of the nuclear potential, since
it appears explicitly in (44), and require at the same
time that the first order correction (44) vanish. We
thus shall follow the work of Ref. 7 and we define
F(k, q) as

e(k, q) =op+
2m

(k+q)~
2m

(45a)

where Ep (6p&0} is the'energy of the nucleon in the
initial bound state and [k ~ —( k + q )~]/2rri
represents the average kinetic energy transferred to
the nucleon. Equation (41b) now becomes

g (&-,&)= ep+irj . —(k+q)
2m

(45b)

The first order correction (44) reads then

where we have left out terms of order q and 1/k .
Therefore the approximate expression (46) does
indeed preserve the orthogonality property

Spk (q=0)= f dr/'-„'*(r)gp(r)=0.

It is clear that such a linear behavior, related to the
scalar character of the probe in the momentum
transfer, can only hold for very small values of q, as
compared to the asymptotic momentum k, ' as can
be seen by inspection of the q corrections. To have
some insight into the k dependence of the form fac-
tor (46) we go to the coordinate space representation
and write, assuming a spherically symmetric poten-
tial,

~(k q)= f q pV(p)kp(p+k)~'S

=i f r dr V(r)R&1(r)
GfT

A~~(q)= —g'(~k ~) f ~ J V(P)kp(p+k+q) . X f ~ne '"" q I (II ),
T

(48)

(46)

Before we try to evaluate the higher order terms
in (42) we study the small momentum transfer
behavior in the high energy limit, i.e.,

~ q ~
&&

~

k
~

.
The transition form factor (37), using (42)—(46), is
given by

S -„(q)=— f d p q p V(p)$ (p+q),
(k —2mep)~

(47)

where the bound state wave function has been ex-
pressed as

fp(r)=R~I. (r)&f (fI„) .

The radial integral is surface dominated because of
the presence of the derivative of the potential. The
angular integration can be performed straightfor-
wardly and the k dependence only appears through
the spherical Bessel functions jI &(kr) and jL, +i(kr)
Then using the asymptotic expansion of these func-
tions, expression (48) has the following behavior:
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F(k, q)~ f drsin kr (L—+I)—
k 2

So«(q) =$0(k+ q)

+ fdpV(p)
(k+ q)

2m
—Eo+ p q

m

x/0(p+k+q) . (51)

XRNg(r) V(r) .d
dr

Assuming a sharp edge potential, the function
F(k, q} would display oscillations related to the ra-
dius of the potential and a 1/k falloff [note that the
form factor (47) would then present a 1/k' falloff].
However, the effect of the surface thickness is here
essential and it will modify the falloff to an ex-
ponential decrease times some inverse power law
while preserving an oscillatory structure. '

As a further illustration of Eqs. (47) and (48) we
make an explicit evaluation in the case of the
Coulomb potential for the s wave and obtain, as in
Ref. 10 (where the sign of q is the opposite),

F(k, q) = m
2

q O k

which shows a large reduction as compared to the
plane wave result [$0(k), Eq. (39)] since we have

S,-„(q) = —2"', SI,'«(q). (49)
q o k

As a last remark concerning the small momentum
transfer behavior in the high energy limit, we men-
tion that in the case of a dilute system where the
spatial range of the wave function (s wave) is large
as compared to that of the potential, we again obtain
the result (49) because the wave function peaks at
p= —k.

We now return to expansion (42) and study the
limit of high momentum transfers. The momenta

i
k

i
and

i q i
are then both large compared to the

Fermi momentum. Retaining at each order in the
expansion (42) the contribution of leading order in

(q p/m), thereby neglecting commutators of the po-
tential with lower order terms in (q. p/m), the nth
order correction becomes

3 '&'( q ) =g"+'(e «, e')

n

X f d'p — V(p)po(p+k+q),

(50)
where g(e«, eQ is given by (45b). Within these ap-
proximations the series (42) can be resummed and
the form factor reads

For k and q which are both large but otherwise un-

related, it is not easy to find a simple expression for
the form factor (51). Although in the case where

i k+q i
is small as compared to kF, the conver-

gence of the series (42) is hard to assess [in the d p
integral in the correction (50), the dominant contri-
bution comes from the small values of p], expres-
sion (51) has the interesting feature that in this limit
one recovers the plane wave result. Indeed, setting
k+q=A, in (51) with

i
A,

i «kr, wehave

So«(q)=$0(A, )

+ fd pV(p)

2m
—go+ + l'g

m

x/0(p+ k) . (52)

Since the integrand peaks at small values of p and

using the Schrodinger equation V(j) 0 ——(eo —K)$0
we find that the integral (52) in the limit

i
A,

i
«kr, k,q is of the order (kr/q)$0(A, ). We thus

obtain

so«(q
~
q+k j«k, q

kF
((,(k+q) 1+0 (53)

V. CONCLUSIONS

The study of elastic and inelastic nuclear reactions
at large momentum transfer is very important to
shed light on high momentum components of the
wave function, short range correlations, etc. Hence,
one has to seriously consider the possibility of fac-
torizing the on-shell nucleon form factor from the
response of the nucleus. We have shown that in the
case of a scalar probe, there is indeed the possibility
that various effects (i.e., exchange current versus off
shell effects), which, in principle, preclude a
transparent interpretation of the high momentum
transfer data, may cancel each other to a large ex-
tent. The uncertainty in extracting nuclear structure

To summarize, it is important to remark that the
correction, in (51), to the plane wave approximation
for the final state is expressed in terms of the poten-
tial between the nucleon and the core but not of the
continuum final state wave function. Although ex-

pression (51) for the transition form factor has been

derived assuming
i

k
i

and
i q i

are large, it has
built-in the right small momentum transfer
behavior. In other words expressions (51) and (47}
coincide in the limit

~ q i
going to zero to order q .

This leads us to conjecture that (51) has a larger
range of validity than indicated from its derivation.
We thus expect that expression (51) will be useful

for practical calculations.
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information would then be substantially reduced.
As far as possible applications are concerned in

the case of knockout reactions where a correct han-
dling of the continuum is not always possible, one
can still start in the high momentum transfer limit
from a plane wave approximation for the struck nu-
cleon and calculate, in addition, the corrections in
(51) which become small in the quasielastic regime.
Such corrections take care of what is usually called
the orthogonality defect. We think that the sys-
tematic procedure we have presented may be a use-
ful starting point for a realistic analysis of exclusive
and inclusive processes in the domain of large
momentum transfer. Within the discussion of the
orthogonality problem, we have also presented some
general results concerning the low momentum
transfer behavior of the transition form factor.

As practical examples we mention two cases. One
can, for instance, calculate in quasielastic electron
scattering [e.g., (e,e'p)] the form factor (37) via Eq.
(51) and compare it with the experimental results in
order to obtain information on the occupation am-
plitudes associated with the single particle bound
states. The plane wave and correction terms clearly
factorize the occupation amplitude and, with some
information on the potential from the scattering of
the nucleon on the residual nucleus, one may achieve
a reliable estimate of the correction term.

Formulae such as (51) may also be useful to
analyze the inclusive large angle proton nucleus
scattering p+2 —+p +x, thus providing insight into
the reaction mechanism. As a matter of fact, two
mechanisms have been proposed for that reaction.
In the first one, the observed proton comes from the
target, ' which would correspond to an inelastic
transition at small momentum transfers, whereas the
second assumes that one observes the backward scat-
tered projectile' which, in contrast, would corre-
spond to an inelastic transition at large momentum
transfers.

The results we have derived in this work are valid
for a system of A particles which have structure, are
distinguishable, nonrelativistic, and interact via two
body local interactions. The nucleons are treated
nonrelativistically even in the loop integrals contri-
buting to the elementary nucleon form factor,
whereas the mesons are treated relativistically. If
one would try to extend these results to include the
effects of antisymmetrization, one would have to
consider simultaneously, in addition to the processes
we have studied, the related processes where the vir-
tual meson flips to another nucleon (i.e., genuine
meson exchange effects) together with those where
the virtual meson enters as a constituent in the nu-
clear wave function (i.e., renormalization effects).
The framework in which such a calculation would
be performed has been outlined in Ref. 18. There, it
was shown that the cancellations between recoil
terms and wave function reorthonormalization arise
as an explicit consequence of the nonrelativistic lim-
it for the nucleons, and this result holds not only for
zero momentum transfer but is true for any momen-
tum transfer [see Fig. 4, Eq. (37), and the discussion
in Ref. 18]. The cancellation would not, in general,
occur if one takes into account relativistic effects
(see also the discussion in Ref. 19).

ACKNOWLEDGMENTS

Two of us (F. C. and J.-P. D.) would like to thank
the Weizmann Institute of Science, where much of
this work was done, for warm hospitality as well as
for financial support. One of us (J.-P.D.) thanks the
Direction Generale des relations culturelles, scientif-
iques, et techniques of the French Ministere des Re-
lations Exterieures for a travel grant. This work
was completed at Orsay and one of us (F.C.) thanks
the Division de Physique Theorique of the Institut
de Physique Nucleaire for financial support.

T. De Forest and J. D. Walecka, Adv. Phys. 15, 1

(1966); T. W. Donnelly and J. D. Walecka, Annu. Rev.
Nucl. Sci. 25, 329 (1975).

I. Sick, in Lecture bootes in Physics, No. 137, edited by H.
Arenhovel and A. M. Sarius (Springer, Berlin, 1981).

3R. D. Amado, Phys. Rev. C 19, 1473 (1979).
4J. Hockert, D. O. Riska, M. Gari, and A. Huffman,

Nucl. Phys. A217, 14 (1973).
5S. A. Gurvitz, Phys. Rev. C 22, 1650 (1980).
R. Rosenfelder, Ann. Phys. (N.Y.) 128, 188 (1980).
F. Cannata and S. A. Gurvitz, Phys. Rev. C 21, 2687

(1980).

S. A. Gurvitz, Weizmann Institute of Science Report No.
%IS-82/7 March-PH (unpublished).

R. D. Amado and R. Woloshyn, Phys. Lett. 69B, 400
(1977).
J. V. Noble, Phys. Rev. C 17, 2151 (1978); J. M, Eisen-
berg, J. V. Noble, and H. J. Weber, ibid. 19, 276 (1979);
Q. Haider and J. T. Londergan, Ebid 23, 191198'1)..

'L. S. Celenza and C. M. Shakin, Phys. Rev. C 20, 385
(1979).
S. Boffi, F. Cannata, F. Capuzzi, C. Giusti, and F. D.
Pacati, Nucl. Phys. A379, 509 (1982).

' S. A. Gurvitz, J.-P. Dedonder, and R. D. Amado, Phys.



27 NUCLEAR STRUCTURE EFFECTS IN HIGH MOMENTUM . . ~ 1709

Rev. C 19, 142 (1979).
'4A. B. Migdal, Qualitative Methods in Quantum Theory

(Benjamin, New York, 1977), p. 402.
~5R. D. Amado, J.-P. Dedonder, and F. Lenz, Phys. Rev.

C 21, 647 (1980).
S. Frankel, Phys. Rev. Lett, 38, 1338 (1977).

S. Gurvitz, Phys. Rev. Lett. 47, 560 (1981).
8M. Gari and H. Hyuga, Z. Phys. A 277, 291 (1976).
H. Arenhovel, in Lecture Notes in Physics, No. 137,
edited by H. Arenhovel and A. M. Sarius (Springer,
Berlin, 1981).


