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The inverse scattering problem for the Chew-Low model is solved and the solution is used

to construct three different forms for the off-shell m.N T matrix. The three forms differ in

their treatment of the nucleon pole and the crossing cut. One of the forms is shown to be
equivalent to a separable potential model with an energy dependent strength. The analysis

gives some insight into the question of the range of the mN interaction.

NUCLEAR REACTIONS Inverse problem for Chew-Low model; rela-

tion between field theory and potential descriptions of n.N interaction.

I. INTRODUCTION

Many approaches for determining the pion-
nucleon T matrix have been developed over the
years. Reference 1 gives a brief outline of the vari-
ous approaches, as well as extensive references to the
literature. A fairly receiit, and very thorough, dis-
cussion of the pion-nucleon interaction is given in
the review article of Thomas and Landau.
Relevant articles that have appeared even more re-
cently are given in Refs. 3—11.

The purpose of the present work is not to develop
a realistic model of the pion-nucleon interaction, but
rather to illuminate the connection between the field
theory for this interaction and the potential descrip-
tion. For simplicity the field theory that we shall
consider is the well-known Chew-Low' ' model.
The inverse scattering problem for this model will

be solved and the solution will be used to construct
three possible off-shell extensions of the on-shell
scattering amplitude. The three possibilities differ
in the treatment of the nucleon pole and the left
hand or crossing cut. Each off-shell T matrix is
written in the standard N/D form. The first case is
the original Chew-Low' ' T matrix in which the D
function carries the nucleon pole, the unitarity cut,
and the crossing cut. The N function is essentially
determined by the cutoff function of the field
theory. ' ' For the second possibility the crossing
cut is transferred to the N function. This form is

appropriate to the P» channel, since the nucleon
pole remains as a zero in the D function. In the

third form the nucleon pole and the crossing cut ap-
pear in the N function, while the D function carries
only the unitarity cut. It will be shown that this
off-shell extension of the T matrix can be derived

from a separable potential of the type introduced by
Londergan et al. ,

' in which inelasticity effects are
accounted for by an energy dependent potential
strength. The inversion formulas for this strength
and for the potential form factors are of the same
structure as they have obtained.

II. THE INVERSE PROBLEM
AND THE T MATRIX

We write the on-shell T matrix in the form

T (p,p;coy+is)= — h (cop+i@),pu(p)
7TNp

where p is the magnitude of the pion's three momen-
tum and co& is its energy given by

( 2+ 2)1/2 (2)

with p the pion mass. The function u(p) is a cutoff
function normalized to one at p=O. The index a la-
bels the four p-wave channels distinguished by the
total isospin T and total angular momentum J ac-
cording to

a = 1,2, 3,4; 2T,2J = 11,13,31,33 . (3)

The function ha(z) is a real, analytic function of
the complex variable z and has the representa-
tion' '

h (z)= +—f dcorp~u (p)z 2r y r
2) (p)

where

[h (cop+is) [' 1 (hP(cor+ie) ['
+ A p

co& —z p 2)p (P) co&+z
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( —4, —1,—1,2) for a =(1,2, 3,4),2
3 p

with f the renormalized coupling constant. The
parameter ri (p} is the ratio of the elastic to the to-
tal cross section in the channel a. The matrix A is
given by

1 —4 —4 16
—2 —1 8 4
—2 8 —1 4
4 2 2 1

is convenient for parametrizing data. ' Below the
inelastic threshold g is equal to one and 5 be-
comes the usual phase shift. According to (11), (8),
(7), (1), and (12), we can determine the other phase
b,, from

gA i)re) (p)e s ~ sin5~(co~)
2ih (co ) Pe

QA~rgr(p)e " ' sin5r(co&)

(13)

By writing a dispersion relation for in[g (z) /g ( 0o ) ]
and using (9) to eliminate g (0() ), it is straightfor-
ward to show that

and appears in the crossing relation

4

h (z)= g A phd( —z) .
P=1

(7)

r

z dco
g~(z}=exp

77 0 N N —Z

6, (r0)

ga( ) —
h (

Assuming h~(z) has no zeros, we see that g~(z) is a
real, analytic function of z whose only singularities
are a RHC and a LHC beginning at z=p and
z = —p, respectively. Furthermore,

g (0)=1, (9)

and g~( Oo ) is finite. From (4) and (8), it follows that

I mg~( az)+ie)=—,co& &)((, . (10)p 3U 2(p )

~, n(p)'
We can write

+i5 (co)
g.(~+ie)= Ig (~+ie)le, ~&p,

(11)
Ti&~()

g ( ro+ie)=—lg ( —co ie)
I
e—, (0&(M,

We see from (4) that h (z) has a simple pole at
z=0 with residue A,~, a right hand cut (RHC) begin-
ning at z =p, and a left hand cut (LHC) beginning
atz= —p.

We introduce in the usual way the denominator
function g (z) defined by

T()) 1 pu (p) ~a qU (q)
' 2 zg (z)P ~ e

(15)

Here the nucleon pole, the unitarity cut (RHC), and
the crossing cut (LHC) all appear in the variable z.
This separation of the variables can lead to a viola-
tion of unitarity in the treatment of pion scattering
from a system of more than one nucleon. '

Using (14), we see that another possibility is

1 pwl(p) A, qw~(q)
Ta (p~rq }z) (y2 ) gp & (16)

1T Qj ZG~ Z Qj

(14)

The cutoff function U (p) can be obtained from (10).
According to (11) and (5), we must have 5~ &0 for
a=1, 2, 3, and 54&0, in order that U(p) be real.
This form for the solution of the inverse problem is
similar to that obtained previously' for a separable
potential model of the m-i)i interaction. It differs
from the solution obtained by Ernst and Johnson'
in that they have to solve nonlinear equations in or-
der to account for the crossing relation given by (7).

We now consider three possible off-shell exten-
sions of the T matrix. The original analysis of
Chew and Low' ' suggests the form

where the fact that the phases have opposite signs
above and below the cuts follows from the real, ana-
lytic nature of g (z}. From (1), (8), (10), and (11), it
follows that

'ga p is~(cu&) .
T~(p,p;roq+ie)= — e ~ sin5~(a)q) .

7TPNP

(12)

and

z d~5()
g~(z) =exp

77 IJ N N —Z

Cg Ixl de) lhI~ (CO )

P

(17)

This form for the on-shell T matrix has been used
previously in the inverse scattering problem' ' and

In this form the nucleon pole and the unitarity cut
are in the variable z, while the crossing cut has been
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transferred to the variables p and q. This type of
off-shell extension was found' to arise naturally in
the derivation of three-particle equations from a
crossing-symmetric extension of the Lee model. In
three particle models of the 7r-N system this off-
shell form is appropriate for the Pi &

channel. ' '

From (10), (14), and (17) it follows that

p~w~ (p)
I mG~(co& +i@)=—,co& &p . (19)

According to this relation and (17), the form factors
w (p} can be determined directly from a knowledge
of 5~ and 7)~. There is no need to deal with the
crossing relation (7). Since G (z) has only a RHC
and G (0)= 1, we can write

G~(z) = 1 ——A~
7/~ (p) co& —z

where

u (p)=pw (p)/co~ . (22)

pu~ (p)
G~(ao)=1+ f dcoz &0,

7r P 7]~(p)
(23)

where the fact that this is positive follows from rep-
resentation (17). By solving for the one in (23) and
putting it into (20), it is easy to show that

T' '(p, q;z)=u (p) u (q),
Q Z

where

(24)

D (z)=G (z)/G (oo)

Here the nucleon pole has been transferred to the
variables p and q. Only the unitarity cut resides in
the variable z. From (20) and (22) we find

(20)

Thus T~
' looks like a Chew-Low T matrix' ' with

neglect of the crossing cut in the denominator func-
tion. Here crossing manifests itself by making the
form factors w (p) channel dependent.

A third possibility for the off-shell T matrix is

and

=1—g
oo dp p2 u~ (p)

7I~(p) z —cop

7rG~( oo )

(25)

(26)

T~ '(p, q;z) = —u~(p) u~(q),
7T Q Z

(21) This T matrix can be obtained as the solution of
the Lippmann-Schwinger equation

k dkT"'(p,q;z)= V (p, q;z)+ f V (p, k;z) T"'(k,q;z),
Z —COk

(27)

where the energy-dependent potential is given by

V (p, q;z) =u (p)g y (z)u, (q),

with

(2g)

co dcopcoppu~ (p)=1+(
1 ~ (z) 2P. Ci)p

—Z

1 —1
n (p)

From (25) and (17) it follows that

g u (p)
ImD~(cop+le ) =7rpcop

7I (P)

and

(29)

(30)

5 (co)
D~(z) =exp ——f Cko

P CO —Z
(31)

We see that this off-shell extension of the T ma-

trix is essentially the same as the one arising from
the separable potential model of Londergan et al. '~

Thus the present work provides a partial justifica-
tion for the application of their approach to the 7rN-
system.

In conclusion we note that the three form factors
considered, v(p), w (p), and u (p), have quite dif-
ferent singularity structures. In addition to whatev-
er singularities v(p) might have, we see from (18)
that w~(p) also has a LHC in the variable co& begin-
ning at co& ———p. Besides this cut, the potential
model form factor given by (22} also has a pole at
co~ =0. For a reasonable cutoff function' v (p), v (p)
should lead to the shortest range in configuration
space, while u~(p) should produce the longest range.
The question of the range of the 7rN interaction, and
the related analytic structure of the T matrix, has
been discussed by several authors. ' ' ' ' ' It is
hoped that the analysis given here will clarify the is-
sue.
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