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A six-quark model is used to estimate short distance contributions to the pp ~de+ ampli-

tude. Substantial corrections to typical calculations are obtained.

NUCLEAR REACTIONS Calculated cross sections for m.+dip. En-

ergies near the (3,3) resonance. Application of quark models to nuclear

physics.

I. INTRODUCTION
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FIG. 1. Kinematics for the pp~m+ process. The
numbers are the momenta {in MeV/c) of the protons or
virtual bosons. Solid lines are nucleons, dashed lines are
mesons, and the wiggly line is the delta.

The recent successes of quark and quantum chro-
modynamic concepts have led many physicists (e.g.,
Refs. 1 —10}to ask how these new ideas might influ-
ence the understanding of atomic nuclei. In particu-
lar, it is reasonable to expect that quarks might play
a role in high momentum transfer processes involv-

ing nuclei.
The m+d~pp reaction is an interesting candidate

case for which the role of quarks could be explicit.
If a pion of kinetic energy 180 MeV is absorbed on a
deuteron (see Fig. 1}, energy conservation requires
that each outgoing nucleon has a momentum of
about 550 MeV/'e. As the deuteron is a weakly
bound system, the sr+d~pp process involves a
momentum transfer of magnitude 550 MeVic to
each nucleon. Thus the relevant distance scale, as
computed from the uncertainty principle, is about
0.4 fm. This is smaller than the radius of a nucleon
(-1 fm}, so that nucleons are expected to overlap

during the m+2 —+pp process. If the composite na-
ture of baryons is relevant, it is natural to invoke
quark degrees of freedom.

A completely fundamental description of the per-
tinent quark and gluon degrees of freedom of an
overlapping two baryon system is very difficult to
achieve at present. Therefore, we apply and general-
ize a phenomenological method developed earlier by
one of us. ' The idea is simple; whenever two
baryons overlap treat them as six quarks in a spheri-
cal bag of radius ro, to be determined phenomeno-
logically (ro ——0.8 fm from Ref. 10). For radial
separations greater than ro, conventional baryon-
baryon wave functions are to be used.

On the other hand, it is necessary to recall that
calculations in which the momentum transfer is ac-
complished by the exchange of a virtual m or p
meson have enjoyed a good deal of success" ' in ex-
plaining many features of the srd~pp data, especial-

ly at energies near the pion-nucleon (3,3) resonance.
However, there are large sensitivities to poorly
known aspects of the calculations such as virtual
meson-nucleon delta coupling constants. Further-
more, at, for example, 600 MeV, the differences be-
tween theory and experiment are at about the 20go
level and are not easily reduced. ' There are aiso
some serious theoretical difficulties. " Therefore, it
is necessary to investigate possible corrections to this
conventional approach.

Our aim in this work is to estimate a new short
distance contribution to the sr+d ~pp reaction am-

plitude. As shown in Fig. 2, the basic feature of our
mechanism is that the formation of a b, occurs at
large separations and the momentum transfer is ac-
complished by a quark-quark interaction which
occurs within a six-quark confinement region (bag)
formed when two baryons overlap. The entire pro-
cess is described as follows. A m.+ in its encounter
with a nucleon is absorbed and a delta isobar (5) is
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formed. (For simplicity we work in an energy re-
gime in which this 5 formation is the dominant
pion-nucleon interaction. ) The relevant short-
distance part of the 5-nucleon (N) wave function is
described, following Ref. 10, as six quarks in a bag.
Two of the quarks interact, changing the six-quark
5Ã wave function to the short distance, six-quark
part of the proton-proton one. The escape of the
two protons is achieved simply by using the exterior,
or ordinary, part of the proton wave function, which
has proper asymptotic behavior.

The amplitude corresponding to Fig. 2 is found,
by itself, to account for about one-third of the exper-
imental cross section. The details of the computa-
tion are presented in Sec. II, and numerical results
are presented in Sec. III. A brief discussion and
summary is also included in Sec. III. The present
work serves as an improvement, based on an im-
proved procedure' for determining six-quark wave
functions, of earlier brief reports. "

II. FORMALISM

The matrix elements of the transition operator T
for the pp~dm+ process are described in a channel

N

(jcoRE(4q)g

FIG. 2. m+d~pp in the hybrid madel.

spin representation' as follows:

T, ,=(L~,;JM
~

T ~L,S,;JM),
where the orbital angular momentum and spin of
the protons are L~ and S~ (we include no coupled
prot'on-proton states in this calculation); J, M are the
total angular momentum and z projection of the
channel; L~ is the pion angular momentum; and JD
is the total angular momentum of the deuteron
(JD ——1). The cross section for the pion production
process, doldQ, is given in terms of the T-matrix
elements as

p(E)4+ T, ,T', (2J+1)(2J)+1)(—1)'+ pI CC

I
ClC )

'L J JD Lp J SpX'J (2)

where U is the relative velocity of the two protons

2p

(p 2+M 2 )
1/2 (3)

p(E) =kE,
where k is the pion's c.m. momentum and

cokEp(k)

ED +cok

(4)

The pion (cok) and deuteron [E~(k)] total energies
are defined in the usual way as the square root of
the sum of the squares of k and the appropriate
mass. In (2) 8 is the angle between the outgoing

p is the magnitude of the proton's momentum in the
center of mass (c.m. ) frame, and M is the proton
mass. The density of states factor p(E) is given by

pion and the incident proton; the reduced matrix ele-
ments of the spherical harmonics are found, e.g., on
page 443 of Ref. 17. The result (2) follows from a
straightforward application of Fermi's golden rule.
Our matrix elements, T, „are related in a simple
way to those (P~~ ) of Niskanen:

C i(l. —L )

(2L +1)'" (2L +1)' '

where C is a kinematic factor independent of chan-
nel quantum numbers.

A simple application of perturbation theory gives
an expression for the T-matrix element for the
@@~de+process of Fig. 2. Since we are concerned
with obtaining a simple estimate, Fig. 2 is the only
term to be included in T, , Then
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(I&Jl v lf (p ))
d'pa

' ~I.,s,i«s) (6q ~N
I

V I6q'L S ~~}&L s J(E) .
c,s,z, E+ E—a(Ps. ) PPPpp

The quantity aL s z(E) is the "probability" (see Ref.
p p

14) that two protons of c.m. energy E, with quan-
tum numbers Lz, Sz, and Jz, can fuse into a six-
quark spherical bag. The ket

l 6q;LqSqJp )

is the six-quark part of the proton-proton wave
function, normalized to unity. We take the quark-
quark interaction of Isgur and Karl' as the operator
V. The quantity

Wr. s J(Es}(6q,b,N
l

is the six-quark wave function describing the short
separation distance part (r & ro) of the AN system of
angular momentum quantum numbers [La (orbital)
and Sa (spin)] and energy Es, . Here

l 6q, 6N ) is the
six-quark part of the b,N system (quantum numbers

LsSaandJs) normalized to unity. The wave func-
L~s~

tion ps~ (p~) describes the exterior and interior
(to ro) parts of the 5N system (a plane wave repre-
sentation is used); V ~ ~ converts a b, into a nucleon
and a pion. (Only the exterior part of fsN is used in
the V z~ matrix element. }Finally

l
1 Jn,JM) is the

wave function of a free pion (of angular momentum
L ) times the deuteron wave function, coupled to a
total angular momentum J. The remainder of this
section contains specific details regarding the quan-
tities appearing in Eq. (7).

A. aL, g g(E)
p p

A formalism invented by Wigner, ' which he used
to study the fusing of two colliding nuclei into one
compound nucleus, is applied in Ref. 14 to obtain
six-quark probabilities. The basic idea is that for ra-
dial separations less than ro the ordinary radial wave
functions

UI sJ (kl')
4m

r

(where P;P~ are the product of the internal nucleon
wave functions} are replaced by

+LSJ(E) PLSJ(r)

where r is described in terms of quark coordinates
and /Lsd(r) is normalized to 1 and is independent of
energy. (Only the relative coordinate r is made ex-
plicit here. ) The assumption of the continuity of the
wave function and its derivative across the boundary

B. Delta-nucleon wave function

It is convenient to define a quantity XL s qz(r)
by

+L~S~J,E(r) d Ps

X&I, s g (Ea) .
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FIG. 3. Six-quark probabilities versus proton-proton
center of mass energy.

for a theory based on the Schrodinger equation (or
continuity of current for a theory based on the Dirac
equation) leads to constraints on arsJ(E). Because
aLgq(E) has units of fm ~, it is useful to define a
probability PIsj(E) via

LSJ
PL,sz(E) = 0 (8)

where Q is some chosen volume. Thus PI.ai(e)
represents the relative probability for the six-quark
wave function compared with that of a plane wave
in a volume Q. The values of Prsj(E) determined in
Ref. 14 are shown in Fig. 3. In obtaining those re-
sults the Reid soft core wave function is used to
obtain UIsJ(kr), and

4m ~3
3

with R =1.4 fm (a pion Compton wavelength) and

ro ——0.8 fm. The physical interpretation of these re-
sults is discussed in Ref. 14.
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We wish to simplify Eq. (9) so that it can be easily
used in Eq. (7). To do this we first note that

~L,S,J,(Ea)&6q, ~N
I

is the six-quark wave function describing the short-
distance part of the 4N system. From this defini-
tion [or directly from Eq (.7)] we may write

~L s J (Ea)=f d r(fajv
'

I
&& I

q'~N& (10a)

=f „dr&4atv Ir&aLs J(t)L s J(r) (lob)

where pL s J (r) is the wave function describing the separation between quark clusters in the internal region4 4 4
r (rp and KL s J is the six-quark probability amplitude of the b,N system as described below. Note that we

shall not need any detailed properties of P(r) in this paper, only its existence. In this regard it is important to
keep in mind that our hybrid model can be defined entirely in quark coordinates, and that the relative variable
r is introduced only for convenience.

The use of (10b) in (9) gives

XL,S,J(r)=ctL,S,Jfd'r'GaJ'J ' (r r ')NL, S,J,(r '»
LdS4J

where GaN (r, r ') is the Green's function (for the given quantum numbers) of the nonoverlapping hN sys-
tern. To obtain G~N we neglect 6Ã nucleon interactions so that

, q (,) I SUMS & (SaMs
I

Ga)v(r, r ')=,e'"" (12)(2~)' ir(E)
nN R+

2M'

where M~ is a renormalized 6 mass given by
r

Ma=Ma/ 1+—
2 aE (13)

The mass and width parameters Ma and I (E) are given in Ref. 21. The quantity E N is

E ~ co(k)+(k/2——) /2M .

A simple contour integration transforms (12) into

—2M'
Q Q & „L,sJM()rJL(Q (r) hL(Q )r»L S JM(r'»

LdS4 JM
(15)

where jL (x) and hL"(x) are spherical Bessel functions, 5' is the usual spin-angle function, and the d;N relative
momentum, Q is

2M'Q'= «JJ EJ(+&r« ~)/—2) (16)

LdSd J
The quantity Q varies rapidly with energy. Observe that Ga)v (r, r ') is obtained by applying the relevant an-
gular momentum projection operators on Ga)v(r, r ') of Eq. (15).

From (11) we realize that the pertinent values of r and r' obey r & r' since r' refers to variables within the
six-quark bag. The use of (15) in (11) then gives

XL~s~J( r ) =cx L~s~J

where

2MaiQ —
t ()

fi
+L S JMhL"(Qr)jj(Qrp)~L S J' (17)

, , jL(Qr')
S J d ~ +L S JM( )PL S J

jL ro
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The quantity 1 =jL (Qro)lj L(Qro) is inserted in (17) to render the d r matrix element less dependent on ener-

gy. [Since ro is small (-0.8 fm) jL(Qr') jL(Qro) is expected to vary slowly with energy for r' & ro ].
As a final step define

LSJLSJ
d d

so that

(19)

XLSJ(}LSJ 2M—piQ
iL(Qro)+L S JM(r)hL"(Qr) . (20)

This is the simplification of (9) that we seek. For the hN system, the quantity aL s / plays the role that

aL s z does for the pp system, and could be obtained from calculations analogous to Ref. 14. However, it isPPP
possible to use the pp results to constrain aL s /, and this is sufficient for the present estimate. Calculations

show (see below) that terms of T«with La Ogive——the dominant contributions. For the pp system P( So)
(Fig. 3) is independent of energy except, of course, for energies near the virtual state. Because no such state is
known to exist for the La 0, hN——system we take aL s J to be independent of energy. Indeed we assume that

Pa(La ——0)=
I aL s 1 I

IQ is 0.10. This is about equal to (but somewhat larger than) the value of P for the
'So pp system for energies greater than about 100 MeV.

The use of (9}and (19) in (7) leads to

T, ,= y C(l JD,'J I
V /a IXaN )aL s JaL s J(E)(6q;bN

I
V I6q;LpSp, J),

LdSd Jd
(21a)

where

2Mai—Q
J'L, (Qro ) (21b)

and

&r l&~' &=hL"(Qr—»L s /M(r") (21c)

Equation (20} is the main result of this subsection.

C. Interior matrix element:

(6q;hN I V
I 6q;NN(LrS~;J) &

Although the "probability amplitudes" o,'L, q J
and aL, g J can be constrained by applying Wigner's

P P
ideas of 1946, the normalized wave functions

gs (hN) and %'s (NN, LzSzJ) are not. We employ
the following model for the 'D2 state, which is most
important' for the pp~vnd reaction: Configura-
tions with a core of six quarks in the Si/2 state and
two valence quarks are used. The minimum number
of configurations to represent orthogonal NN and
hN states is two. However, there is also a spurious
state representing pure center-of-mass motion. For
this reason we use three configurations, and write

I
6q;NN, 'D2) =Ni[ I(p )gS )+ai I

(sd)2S )

+a2 I(d )iS )], (22)

where (p )z, (sd)2, and (d )2 represent a quark pair
of color 3, coupled to spin 0 and angular momentum

la)=, /2 [ l(sd)S

)+El�(p

)2S )],
( 1 +~2) 1 /2

(23a)

I
b ) = z, /z [ I (p )iS ) —e

I
(sd)S")],

( 1 +e2) 1/2

and calculate (a
I

V
I
b) using the Isgur-Karl in-

teraction, ' we find that the matrix element coupling
states la ) and lb ) vanishes for e= —I/~2, i.e.,

&b
I V la& I,= i/&2=0 (24)

with the matrix elements leading to this result given
in Eq. (27). Thus the spurious state is determined to
be

2. The labels s, d, and p represent the lowest-energy
single-quark state of the given angular momentum.
The factor S is our notation for four quarks cou-
pled to orbital and spin angular momentum of zero.

In order to approximately account for the redun-
dant center-of-mass variable, we project out of the
first two configurations in Eq. (22) the spurious
state corresponding to center-of-mass motion. This
is done by making use of the fact that our potential,
defined in the relative coordinates, will not couple
the spurious center-of-mass state to the physical
state. Thus if we write
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~

'D2, spurious) = — (sd)2S ) — (p )2S &

3/2 2

From this we choose a i ——I/P2 in Eq. (22). The effect of center-of-mass motion is thereby greatly reduced for
the wave function (22).

The wave function for the bN state is written as

~
6q;», D2) =N2

~
1(p )2S )+ai

~

(sd)2S )+a2
~

(d )2S ), (26)

with the orthogonality condition a2a2 ——(1+a i ). For spin singlet states only the spin-spin part (V„)of the
Isgur-Karl force contributes:

2&s SmV„(r)= S, S25(r),3'
where

4a, =300 MeV .
3 2nm b

(27b)

Note that only the S =0 component of the 6q-hN wave function (allowed in our model) contributes with this
force for the 'D2 state. When one computes the matrix elements of (27a) the term on the left-hand side of
(27b) appears as the only dimensional factor, so that the quark mass, m, and the oscillator parameter, b, need
not be specified. The matrix element of V in the pure configurations are

((sd)2 (
V

~
(sd)2) = —37.5 MeV, ((d'),

(
V

(
(d'), ) = —56, 25 MeV,

({p')21 V
I
{p')2&=—75 Mev, ((d'), [ V

~

(p'), &=57.5 MeV,

((sd)2
)

V
) {p )2) =—53 MeV, ((d )z )

V
)
(sd)2) =41 MeV .

From (22), (24), and (27) we find

(6q;»
~

V
~
6q;NN D2) =[—84.4+(a2+a2 )86.5]/[( —, +a2 )]' (28)

3
where ai ——I/~2 and aiaz ————, has been used.

Taking a2 ——0.9 and a2 ———1.667 we obtain

(6q;»
~

V
~
6q;NN D2 ) =48 MeV . (29)

Note that the result (29) would also be obtained by
using

( a) and
(
b ) of Eq. (23) as

~

NN) and
~
»)

states with @=0.25. Using this simpler form for So
and P~ channels, which are less important in the
calculation, we find

(6q»
~

V
~
6q;N¹'So ) =59.9 MeV,

«q»
I

V
I
6q'

(30a)

(30b)

The matrix elements (29) and (30) are the only ones
we include in the sum of Eq. (2).

D. Exterior matrix elements:

(I.~.;~ I V.» I e.' '
&

The matrix element for pion absorption on a
deuteron leading to a hX state has been computed
many times (e.g., Ref. 17). The only difference be-

+S2 V'g'+'(r2)T2), (31)

where g is the DNA coupling constant

[g =—
2I (4m. )(0.08)]; S„and T„convert the nth 6 to

a nucleon by converting spin (isospin) —, to spin
(isospin) —,; P'+'(r„) is that part of the pion field
operator that creates a pion field at r„; and, u (k) is
the form factor. %e follow the cloudy bag model
and use

3ji(kR)
u(k)= (32)

with bag radius R =0.8 fm.
The use of (31) and (2lc) leads to the result

tween our computation and others is that the radial
integral starts at ro ——0.8 fm, not at the origin. In
the interest of completeness we display the relevant
formulae.

The 6—+Nm operator is given by

V ~a= u(k){Si VPp+'(ri)T,
m.
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( +(+)
m ~ 2cok

LD ——0,2

CI ( —1) I r drjL, uL, (r)hL, '(Qr)
Po 2 D

- )/2 Lg) 1 1

X~~Sg — X L 1 l~ LDL

LD Sg J

3 1

2 2

X (Lg) OL 0
i La0) '

1 —, Sg
(33)

where

I +1
CL ———

21 +1
l

2l +1

1/2

if L =-I +1

if L=l —1, (34)

III. NUMERICAL RESULTS
AND DISCUSSION

and J:—(2J+1)'~2. The quantities uo z(r) stand for
the radial deuteron wave functions of orbital angular
momentum 0 and 2. In making our computations
the Reid soft core potential is used [but only the s
state is kept since that contribution is known to
dominate the low momentum transfer integral of
(33)].

The formulae of the present section, along with
the various stated approximations, completely speci-
fy the calculation. Key results are (2), (7), (20), (28),
and (33).

400
l5

Ep ( MPV)
500 600 700 800

I l 1

md pp.

That short distance contributions have large influ-
ences on computed pp~dm. + cross sections is well
known in the conventional picture of color zero had-
ron interactions. Rho meson exchanges, E /ho
off-shell field-theoretic corrections, as well as form
factors arising from the relative time dependence of
the relativistic deuteron wave function all yield, in
appropriate contexts, sizable short-distance correc-
tions, all of the order of the six-quark amplitudes
which we have calculated. In our view the hybrid
model gives a better representation of the short-
distance nuclear behavior. Moreover, it is more
economical to compute all short-distance effects in
terms of quark degrees of freedom. The present

Our results are shown in Figs. 4 and 5. The ener-

gy dependence of the total cross section as well as
the shape of the angular distribution are fairly well
reproduced. However, the cross section results are
too small by a factor of about 3. This undershoot is
not surprising, since the one-pion exchange term
(Fig. 1) can give a large contribution for proton-
proton separation distances greater than r =ro
(=0.8 fm).

Even though the computed cross sections are too
small, the six-quark contributions are not at all
negligible. A factor of 3 in the cross section is a fac-
tor of 1.7 in the amplitude. Thus if the one pion
amplitude squared were of the size of the data o,„~,
the coherent inclusion of the quark contributions
could, depending on relative phases, make the full
result anything between 0.18a,„~ and 2.480.e p.

lo—

~ ~

0 l I i «& I

I 2

q=p /m
'lr

FIG. 4. Computer total cross sections for n.+dip@.
Our theoretical result is multiplied by a factor of 4.
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FIG. 5. Angular distributions for pp~dm. . E~ is the
proton laboratory energy.

work represents the first such attempt.
Important improvements upon this work are

needed. Methods for computing the parameters
aL ~ z and e must be developed. The quark ampli-

tude must be added coherently to the pion-exchange
contribution. If these steps could be taken reliably
one might be able to sort out some of the puzzles in
understanding the pp —+In.+ process.
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