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Pion single and double charge exchange in the resonance region: Dynamical corrections
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We consider pion-nucleus elastic scattering and single- and double-charge-exchange

scattering to isobaric analog states near the (3,3) resonance within an isospin invariant

framework. We extend previous theories by introducing terms into the optical potential U
that are quadratic in density and consistent with isospin invariance of the strong interaction.
We study the sensitivity of single and double charge exchange angular distributions to
parameters of the second-order potential both numerically, by integrating the Klein-Gordon
equation, and analytically, by using semiclassical approximations that explicate the depen-

dence of the exact numerical results to the parameters of U. The magnitude and shape of
double charge exchange angular distributions are more sensitive to the isotensor term in U

than has been hitherto appreciated. An examination of recent experimental data shows that
puzzles in the shape of the ' Q(m+, m )' Ne angular distribution at 164 MeV and in the 3
dependence of the forward double charge exchange scattering on "0, Mg, Ca, and Ca
at the same energy may be resolved by adding an isotensor term in U.

NUCLEAR REACTIONS Scattering theory for elastic, single-, and"

double-charge-exchange scattering to IAS in the region of the P33 reso-

.nance. Second-order effects on charge-exchange calculations of 0(A, 9).

I. INTRODUCTION

Pion elastic scattering and single- (SCX) and
double-charge-exchange (DCX) scattering to the iso-
bar analog states are related in a simple way by the
isospin symmetry of the underlying strong interac-
tions. The meson factories are now beginning to ac-
quire complete sets of data of this type for a variety
of nuclear targets. In order to interpret these data,
an optical potential theory which deals correctly
with isospin at a fundamental level is needed. Al-
though previous work' on charge exchange has in-
corporated many of the necessary elements of the
basic theory, it has been tied closely to theoretical
models which deal only partially with the pion-
nucleus dynamics. What is needed, rather, is a
framework which incorporates the well-known
theoretical elements of pion-nucleus scattering, and
includes adjustable parameters to fit the remaining
discrepancies in the data. With a sufficiently care-
ful, theoretically motivated parametrization of the
optical potential U, the values for the parameters fit-
ted to the data will carry significant and presumably

interpretable information about the unknown
dynamics of the pion-nucleus interaction and the
structure of the nuclear target.

In a previous paper (hereafter referred to as I),
analytic approximations were developed for angular
distributions of SCX and DCX scattering to isobaric
analog states near the (3,3) resonance. A special
case was examined in detail, namely that in which U
includes only terms of lowest order in the nuclear
density. In this model the analytic results explicated
the dependence of the angular distribution on the
geometrical properties of the nucleus —the depen-
dence on a radius R, diffuseness of neutron and pro-
ton distributions, and the relative nucleon density at
R. The simple theory reasonably described the rela-
tive A and N —Z dependence of the empirical zero
degree SCX scattering ' throughout the periodic
table and also that for DCX at 292 MeV. Howev-
er, the theory failed to reproduce the empirical
values of the absolute magnitude of the SCX and
DCX angular distributions at 0. It also failed to
reproduce the shape of the known DCX angular dis-
tribution at 164 MeV. The shortcomings found in
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the analytical theory are also found in computer
solutions of the Klein-Gordon equation with
lowest-order potentials.

The failure of the theory lies presumably in the
fact that the reaction theory implicit in the lowest-
order optical potential is too naive. The second-
order optical potential is discussed in detail in a pre-
vious paper, where its dependence on the nuclear
isospin and on the density distributions is derived.
The goal of the present paper is to extend existent
theories of U for scattering near the (3,3) resonance
by including the second-order potential of Ref. 5
and to obtain a physical understanding of the
variety of physics embodied in the theory by extend-
ing the analytic results of I.

In Sec. II we propose an isospin invariant theory
for the first- plus second-order optical model poten-
tial. Analytic expressions for SCX and DCX cross
sections are derived in Sec. III. In Sec. IV we use
the analytic theory in conjunction with the numeri-
cal solution of the Klein-Gordon equation to explore
the systematics of charge exchange scattering at res-
onance in our theory, and in Sec. V we discuss ex-
perimental implications of the theory.

II. BASIC THEORY

In this paper we assume that the optical potential
has the form

and

g=gp+g')(P T) (2.2a)

~k=~ko+~kt(0'»+~4((t '»'
where T the nuclear isospin operator. Isospin in-
variance requires that the terms linear in density
have the following form:

higher-order terms in the optical potential, and it
was found that the optical potential given in Eqs.
(2.1) adequately described elastic scattering provided
such terms were included. However, the isospin
dependence in these works was treated too crudely
for the purpose of describing charge exchange.

Because our main interest is SCX and DCX to
isobaric analog states, we choose to describe the
scattering by an optical potential that couples expli-
citly the ground state, single- and double-analog
states. To the extent that intermediate excitations to
nonanalog states are important and that higher-
order dynamical effects contribute, U must include
terms of second order (and higher) in density. The
most general dependence of U on the pion isospin P
that accomplishes this is easily obtained, assuming
that the underlying interactions are isospin invari-
ant. There is no strong empirical evidence that iso-
spin invariance is significantly violated in strong in-
teractions, and thus we write for both S and P waves

U= V [g(r)+bg(r)]V —k [g'(r)+kg(r)]

——,(p~ —1)V g(r) ——,(p2 —1)V bg(r), (2.la) 2T
(2.3)

1+a
1+@/A

'

1+a/2
I+a/A '

(2.1b)

(2.1c)

where g(r) and g(r) are, respectively, the S- and P-
wave contributions to the lowest-order optical poten-
tial; bg(r) and hg(r) refer, similarly, to the higher-
order contributions. The form chosen is basically
the same as originally proposed by Kisslinger and
subsequently modified as in Refs. 7—12. The quan-
tities p~ and pq are kinematical factors that result
from a frame transformation, which we take as

4m
Ap = Cp,

p&
(2.4c)

where A,o and A, ~ are complex parameters, T is the([) (&)

isospin of the target nucleus, and p (bp) is the sum
(difference) of neutron and proton densities. The
parameters A,

"' are related to the free pion-nucleon
phase shifts. The relationship is expressed in Refs.
11 and 12 in terms of parameters bo, b~, cp, and c&,
which are in turn related to the A,

"' of our paper by

X,"'=4~p, bo/'k, (2.4a)

A, I"=Sop,b, /k', (2.4b)

where
8'

C)
Pi

(2.4d)

(2.1d)

co is the pion total energy in the pion-nucleus center
of mass system, and M is the nucleon mass
(A'=c= 1). This form for U was used recently in an
extensive theoretical study of pion-nucleus elastic
and inelastic scattering from low energy" (50 MeV)
through the region of the (3,3) resonance. '~ The
focus of attention in this work was the role of

In Refs. 8—12 the pion-nucleon phase shifts are
evaluated at a center-of-mass energy equal to the
center-of-mass pion-nucleus energy. This is a bad
approximation in the resonance region where the
pion-nucleon amplitude varies rapidly as a function
of energy. Corrections arising from the recoil of the
pion-nucleon system can be described approximately
as: (1) a shift in the energy at which the pion-
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nucleon amplitude is evaluated in the medium' and
(2) an increase in the width of the (3,3) resonance. '

We fix the amount of the energy shift by including a
parameter hE which moves the energy at which the
pion-nucleon phase shifts are evaluated. Theory'
and phenomenological analysis' ' suggest that
AE —20 to —30 MeV, i.e., the pion-nucleon am-
plitude is to be evaluated at an energy less than the
incident energy by this amount. As there are no
corresponding quantitative theoretical or
phenomenological estimates for the Fermi broaden-
ing, we have not made any adjustment of the
lowest-order parameters for this effect. We believe
that this oinission will not affect the qualitative con-
clusions of this work.

As for the higher-order terms, we have derived in
a previous paper the dependence of b,g on T, p, and
bp. For zero-ranged pion-nucleon form factors the
S- and P-wave pieces of b,g have the same form,

and DCX in the absence of Coulomb mixing in the
nuclear wave function. The corrections for
Coulomb mixing have been studied in Ref. 20. It is
argued there that at least for the SCX reaction, hp
should be reinterpreted as the valence neutron densi-
ty. Thus, to a first approximation the effects of the
Coulomb interaction may be handled in our isospin
invariant framework. The corrections arising from
the approximate handling of Coulomb effects may
presumably be included by adding small isospin
breaking terms to U, whose effect can be evaluated
perturbatively in practice.

To obtain the appropriate pion-nucleus scattering
amplitudes that result from U given in Eqs.
(2.1}—(2.5), it is useful to project U onto channels of
total isospin r =(){)+T, where the optical potential
becomes diagonal. In this case we find

U, = & [g,(r)+ hg, (r)]V kg, (r)—k26f (r—)

~g, =~,")~+~',"~p—2 2
1 2

po po 2T —1 po
——,

'
(p —1)7'[g,(r)+ hg, (r)], (2.6a)

(2) (2)

~k= pQp p gp+2T po 2T(2T —1) po

(2.5a)

(2.5b)

gp2 ~4 gp2~4= + 2T(2T 1) po —T2 p()
(2.5c)

where po ——0.16 fm is the central density of heavy
nuclei and is introduced so that the first- and
second-order parameters A,

'" and A,
' ' have the same

units. As shown in Ref. 5, the r dependence of A,
( '

is weak, and we therefore assume that all the r
dependence occurs through the factors of p and hp.
The constraints imposed by isospin invariance have
resulted in the quadratic terms b,g being described
by five complex parameters, four of which are
theoretically uncertain. As a phenomenological
form for the second-order optical potential, the im-
portant characteristics of Eq. (2.5) are the follow-
ing: (1) one set of parameters characterizes elastic,
SCX, and DCX scattering fram a given target at a
given energy; (2) nontrivial models of the pion-
nucleus interaction exist for which the parameter set
may be evaluated; (3) the parameters are indepen-
dent of N —Z and only weakly dependent on A of
the target nucleus; and (4) the parameters can be ex-
pected to be strongly energy dependent.

The Coulomb interaction is not included in our
above description of charge exchange. The argu-
ments for omitting it are the following. In Refs.
17—19 it was shown that the net effect of the
Coulomb interaction is close to zero far both SCX

where

(4)( )g(2)+g(2)] P
2

po
' (2.6c)

y(~)(r) =—[1—y("(~}+(2T —1)y( )(6],
T

(2.6d}

and where y" '(r) and y' '(v) are given in Table I.
We have written a computer program PIESDEX,

using a modified version of the program PIRK, ' to
enable us to find the exact numerical solution of the
Klein-Gordon equation. Our pracedure in PIESDEX
is to first obtain pion-nucleus scattering amplitudes
on total isospin channels that result from U, given
by Eqs. (2.6). Then we construct the elastic, SCX,
and DCX amplitudes by taking the appropriate
linear combinations of the total isospin amplitudes.
In Sec. IV we will study these solutions in detail.

where we have introduced a compact notation for
the factors of pi and p2 of Eq. (2.1): The quantity p
is p] whenever it multiplies A.

"' arid p2 whenever it
multiplies A,(2). The projection of g is easily accom-
plished [see Eq. (5) of I] and the results for g, ob-
tained from Eqs. (2.2), (2.3), and (2.5) are

g,(r) =Ao"p(r)+y'"(r)A, )"bp(r), (2.6b)

hg (r) =A,"'~+y"'(7.)id"
2

'
po

'
po

2

+y{2)(T)A, ',"'
po
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TABLE I. Values for y"'{~).

T+1
2T

1

2T
1

2

2T +T+1
2T{2T—1)

1

2T
1

2

III. EIKONAL THEORY

In the region of the (3,3) resonance, strong pion
absorption causes pion-nucleus scattering to be dif-
fractive. This diffractive behavior lends itself to a
semiclassical treatment of the scattering, and such
an approach can yield simple analytic formulas that
are qualitatively successful, especially for elastic
scattering. Such formulas have been very useful in
understanding more complicated calculations, as
well as systematics of data. We are therefore
motivated to find analogous analytic results for

I

SCX and DCX reactions for the theory which in-
cludes terms quadratic in density.

In this section we develop analytic formulas for
SCX and DCX by extending the techniques used in
Refs. 2, 22, and 23. Our objective in obtaining these
results is to explicate their dependence on the A,

' '

parameters of Eq. (2.5). The manipulations involved
are somewhat lengthy, so for the case of presenta-
tion we have relegated most of the details to the ap-
pendices. The present section is basically a sketch of
our procedures, with a display in Eqs. (3.17) and
(3.18) of our analytic formulas for SCX and DCX.
The more casual reader may wish to simply observe
Eqs. (3.17) and (3.18) and proceed ahead to the next
section. The details in the appendices are necessary,
however, to trace the coefficients characterizing the
scattering amplitude back to the parameters in U.

In order to apply the analytic eikonal theory of
Refs. 22 and 23, U must be local. The U in Eq. (2.6)
is nonlocal, and the transformation discussed in Ap-
pendix A must be performed. Once the local poten-
tial is obtained, the eikonal phase function X(b) may
be calculated from

T

b dX,(b) = „J U, (~)+ 2 U, '(b)+
2 „U,'(b) dz .

2k —~ 4k2 r2 dr
(3.1)

„,=Ao p+A) ~p) (r)()) (() ())
k (2napb)'

+A(2)g +A(2)P P ())(r)
Po Po

2 2

+A (2) P ~(2)( ) +A (2) P (4)(

Po Po
2

+A (2) P [~(1)( )]2
Po

(3.2)

The terms in the square brackets in Eq. (3.1) are the
lowest-order corrections in k derived by Wal-
lace. These terms are needed to compare the
eikonal theory to the solution of the Klein-Gordon
equation. We consider the lowest-order Wallace
corrections because they contain terms of order p
and are therefore of the same order in density as the
second-order terms in U. We ignore the remaining
Wallace corrections because they are higher order in
density and k and are therefore presumably less
important.

In Ref 22 an a.pproximation to X,(b) was derived
that worked well when the impact parameter b was
comparable to the nuclear radius, and when U(r)
was linear in density. In Appendix A we derive a
result for X(b) valid when U contains second-order
terms. The result is

2k'p(b)+p) V p(b)

2k'p'(b)+p) V'p'(b)
(3.3)

The amplitude for scattering in an uncoupled
channel of total isospin r is, according to the theory
of Refs. 22 and 23,

F,(B)=F(8,R„A,)

J)(qR, )
=ikR, +A,RQO(qR, ), (3.4a)

qR,

where

A, =ika, [C+ln(ln2)+ —,In(1+ Y, )]

+ka, tan 'Y, , (3.4b)

with C 0.5772 being Euler's constant and the J's
Bessel functions. The quantities E.„a„and Y are
related directly to U through X(b):

Y,=ReX,(R )/ImX, (R ), (3.4c)

a, = —ImX,(R )/ImX,'(R ) .

The radius R, is determined from the equation

(3.4d)

where in Appendix A the coefficients A"' and A' '

are given explicitly in terms of the A,
") and A,

(2)

parameters of Eq. (2.6), and
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ImX(R, )=ln2, (3.4e)

and R is an appropriate average of R„defined
below. In Ref. 23 corrections to Eq. (3.4a) were ob-
tained, the most important of which is an overall
multiplicative factor I'(1—a,q) (the so-called Inopin
factor) which gives F the correct average rate of fall-

I

off in angle. Here I' is the gamma (factorial) func-
tion.

In I, expressions for the charge-exchange ampli-
tudes valid through second order in density were ob-
tained. The results of that paper for the SCX and
DCX amplitudes are

BFF +'(g)= — S' +' (8 R)+P + (8 R)
v T 2T+1 T+1 gR aR'

(3.5a)

and

F( —+)(g)
1/2

S' +' (8,R)+P' +' (8,R)
T T+1 2T+1 BR ()R

(3.5b)

where the S and P coefficients are expressed as
differences of the strong absorption radii R„deter-
mined by Eq. (3.4e),

S' +'=(2T' 1)(RT —RT ) )+—T(RT+) RT)—
+ T(RT+1—RT —1)

P' +'= T(RT+1 RT ()(RT—+, RT), —
(3.6a)

=ikRJ0(qR ) +A [J0(qR ) qRJ1(qR )],—
BR

(T+ )(RT RT —1) T(RT+1 RT) ~

(3.6c)
1P' +'= —
2 (2T+1)(RT+( RT)(RT —RT 1) . —

(3.6d)

Here F(8,R) is the elastic scattering amplitude in
the eikonal theory. Equations (3.5) and (3.6) were
obtained in I from Eq. (3.4e), neglecting the depen-
dence of A, on the quantum number z, i.e., A, and

Y, in Eq. (34b) were replaced by average values,

(a, ) and ( Y„). In this case we found

F(0+ )(g) F(0+ )(g) ~ iI) F(0+ )(g)

F(—+)(g) F(—+)(g)+~(—+)(g)

(3.8a)

(3.8b)

Expressions for hF are derived in Appendix 8, and
the main results for M( +' are given in Eq. (84) in

terms of

bS( +'=(2T 1)(AT—AT 1)—

A =ik(a, ) [C+ln(ln2)+ —,ln(1+ ( Y, ) )]

+k(a, )tan '(Y, ) . (3.7c)

The %allace corrections to X are expressed in
Eqs. (A9) and (A10) in terms of the quantity )M; of
Eq. (A10b). The )u; are large even for a medium-
heavy nucleus because the ratio R/az is a large
number. At resonance, where the pion-nucleon
scattering amplitude is purely imaginary, the %'al-
lace correction to X is purely real, enhancing the
contribution of A, in Eq. (3.4b). It is therefore
necessary to add correction terms to the results of I
arising from the dependence of F,(8) on A, . This
results in modifications to the F' +' and F' + ' of I,
as follows:

a'F
M

=ik[J0(qT) qRJ, (qR )]—

Aq[J) (qR )+—qRJ0(qR )],

where

(3.7a)

(3.7b)

+ T(2AT ~1 AT AT 1), — —(3.9a)

(3.9b)

aP "+'= ,'(R, R, ,)-—
&& [(2T —1)(AT+AT 1

—2AT+1)

—T(AT AT 1)] . —

R =(RT+RT 1)/2

for SCX,

R =(RT+)+RT 1)/2

for DCX, and

The results for bF' +' are given in Eq. (88) in
terms of

ES =(T+1)(AT—AT —1)—T(AT+1 —AT) ~

(3.10a)
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bP +i= —
2 (RT+i —Rz —i}[(T+1)(Az'—Ar —i}

+T(Ar+i Ar—)] .

(3.10b)

By combining the expression for F' +' and F' +'
of I with the expressions for bF' +' and bE' +' of

I

Appendix B, we find that the SCX and DCX ampli-
tudes have the form, within our approximation
scheme, of a linear combination of Jo(qR ) and

Jo(qR) qR—J&(qR) .

The coefficients are worked out easily and the result
18

F' +'(0)= J ( R)[ikS' +'+bS' +']+ '[Jo(qR ) qRJ—i(qR
v T 2T+1 T+1

X [AS"+'+ikP"+'+ bP"+'] (3.11)

' 1/2

F( +)(g) 2T —1

T J,(qR)[ ks'-+i+bs' +i]+ [Jo(qR —qRJ&(qR

7+1 2T+l.

X [AS' +'+is P-~ +i+bP~-+i]- (3.12)

Through the coefficients S, P, bS, and bP, these ex-
pressions for the charge-exchange amplitudes de-
pend upon the differences

(1)8 i ImA0 8'("=
w, w, '~w, p,

and

AR":—R —RlJ l J

L4ij ——3;—Aj .

2ImA,"' ImA', "~
8'0 8'0 Po

'

ImA'" ImA'"

w.

(3.13e)

(3.13f)

Thus, within the eikonal theory the physics of SCX
and DCX reduces to an understanding of these
differences, which may be expressed in terms of
quantities that appear in Eq. (3.2). The details are
worked out in Appendix C where we obtain the fol-
lowing results. For hR we have

I'

(i) ~P (2)
ARlJ ——a Ct I,j + C2I,J

P PPo

and

Wo ——ImAo" +ImA o '~,
po

8"i——ImAI" +ImA |'~,
Po

ImA1' ImA ' 8'
'o Wo 8'0

'

(3.13g)

(3.13h)

(3.13i)

where

2
2

C r(3) ~P C r(.4)
3 ij + 4 ij2 p ppo

(3.13a)

For rhA we have

(i) ~P' (2)
iJ. ——ka D1I; + D2I,J

P PPo

lJ T . lJ

and where

(3.13b)

(3.13c) where

P D I (3)+ P D P(4)

. p. '"
. Pp. '"

(3.14a)

C2 ——
ImA,'" ImA,'"

8'0 8'0
(3.13d)

ImAo
D] ——

2 3'j —3'0 ~1+/0 0 0
(3.14b)
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D2 ——

and

ReA 2
—yoImA 2 ImAo(2) (2) (1)

~,(1+y,')
ImA'"m

D3 ———
Wo

8') 8')
3'1 —Po ~0 0

ReA 5
—yoImA 5

(2) (2)

Po 8'o

ReA &
—yoImA 4 ImAo(2) (2) (1)

Wo(1+yo ) II 0

(3.14c)

1

. &+So
(3.14d}

(3.14e)

~0+~ (2T+1}(T+1}. bp
4T P

(3.15a)

aP('+) =O, (3.15b)

where hP' +' has been set to zero because it is
second order in the small parameters relative to the
results of I. For DCX the results are

r '2
( +) (2T+1)(T+ 1) bp

8T p

parameters.
Consider first P and b,P. For SCX we evaluate

Eqs. (3.5a) and (3.9b) using Eqs. (3.11) and Table II.
We find

2

Po=
Red,"+ReA,"'p/p,

8'o

ReAi" +ReA i 'p/po

W()

(3.14f)

(3.14g)
and

x Ci +CiC3
p 4T

(3.15c}

The I",1' coefficients are given in Table II.
Since we are primarily interested in understanding

the sensitivity of the cross sections to the higher-
order dynamical terms in U, we have assumed that
the neutrons and protons fall off at the same rate in
the nuclear surface. While this is not a good as-
sumption in the case of realistic nuclear densities, it
does simplify the treatment of second-order terms
and allows us to arrive at the semiquantitative
understanding we are after.

Now we want to evaluate F' +' and F' +' in
terms of the C and D coefficients. In the resonance
region the real part of the phase function X is small,
so we may regard the D coefficients, which depend
on the real part of X, as a small parameter and omit
terms quadratic and higher order in D. Also in
what follows we regard hp/p and p/po as small

'2

~P( +) k
(2T+1)(T+1) bp" '=-"p

4T P
1 1

(3.15d)

The corresponding results for S and hS are

S(p+) (2T+ 1)(T+1) hp 1 bp
1+4 3

(3.16a)

(o+) k
(2T+1)(T+1) bp 1 bpAS + =kap

p & p
1 3

(3.16b)

TABLE II. Differences of y"', y"', and y' '.2

I (0)

y(1)()) y(&)(J)

1

2

I (1)

y"'(i) —y"'(j)
1 2T+3
2 2T —1

I (&)

y(&) ()) y(1) (J )

1 T+2
4 T

T+1
2T

T+1
2T

2T+1
2T

1 2T+1
2T 2T —1

2T+1
4T
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r

( +) (2T+1)(T+I) lip
8T p

and

r

C3 — ~Cq —8~Cq, (3.16c)
2T —1 pp pp

X D, + ~D, +4~D,4T
2T —1 pp pp

(3.16d)

Finally, combining the results in Eqs. (3.11),
(3.15), and (3.16) we find for SCX

I" +'(8)= —
a& Jo(qR) i Ci+ —,C3 +Di —,D3

1 kR hp — . i 4p hp

[Jo(qR) qRJi(q—R)] C, +— C3 + C,
R kap 4 p 2T p

(3.17a)

R = —,(Rz +Rz i) (3.17b)

3 =Ay. +( .

For DCX we obtain

(3.17c)

(+e)=—-2T —1

T

2' 1/2
kR bp, J(R) i C

8T
C, e 8pc

8T p
P 2T 1 p p

L

T

—2 D3+ Dp~+4~Dg
2T —1 pp pp

ap 8T+ [Jo(qR ) qRJ i(qR )] C3 — c z
—8 C4

R ka& 2T —1 pp pp

C' CC ~P T+—l 1 + 1 3
P

—2C,D, (3.18a)

1

R = , (Rr ~i+Rr, )—, (3.18b)

(3.18c)

These results express the charge exchange amplitudes in a form suitable for studying the sensitivity to the
second-order terms in the optical potential, which we do in the next section.

IV. NUMERICAL RESULTS AND DISCUSSION

Our main interest in this paper is to study the ef-
fects of the second-order optical potential on single
and double charge exchange. In practice, elastic

scattering will also be affected by U' ', but to a
much lesser extent than charge exchange. The
reason is that the location of the diffractive minima
of the elastic cross section and the depths of these
minima are determined primarily by U(r) near
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r =R, where

p(R )/p(0)=0. 1 .

For a given model of the density, these properties of
do/dQ will therefore be most sensitive to the Fermi
broadening and energy shift which characterize U" '.
However, the isoscalar term in U' ' may have an ap-
preciable effect on the slope of U near r =R, which
determines the height of the secondary maxima of
the angular distribution through the Inopin factor
[see below Eq. (3.4e}]. Therefore in practice, the en-

ergy shift, Fermi broadening, and Ao
' coefficients

will be fixed by elastic scattering; charge exchange
will be most useful for determining the remaining
)(,' ' coefficients.

In order to appreciate the sensitivity of SCX and
DCX angular distributions to the second-order
terms in U, we next show the result of numerical
solutions of the Klein-Gordon equation for various
choices of the parameters A,

' '. In Sec. II we gave
some general characteristics of the A,

' ' parameters,
which we now use for guidance in our calculations.
Because A,

'2' are presumably strongly energy depen-
dent but weakly dependent on N and Z, we are able
to study in some detail the systematics of the nu-

cleus dependence of the SCX and DCX. Some of
the results depend on the A,

' ' parameters in an intri-
cate way, but the results can be easily understood on
the basis of the analytic theory. For displaying the
sensitivity of the results to the parameters of the
second-order potential, we consider ranges bounded
by the conditions

fA, ';'f & )A,';"f fori=0, 1,
[

A,I
'

/
&

)
A,('P

/

for i =2,4 .

(4.1a}

(4.1b)

Equation (4.1) guarantees that the second-order
terms never dominate the linear terms in Eq. (3.1) in
nuclei. The magnitudes are also consistent with the
model calculations in Ref. 5. We do not investigate
the sensitivity to k3

' because in realistic situations
its effects are probably masked by the term A,o

' in
Eq. (3.1).

In this section we demonstrate the serisitivity to
the P-wave terms in U only. The reason is that the
amplitudes F' +' and F++' in Eqs. (3.17) and (3.18)
depend in the same way on the A,

' ' and A,
' ', i.e.,

through the same coefficients C; and D; However, .
the amplitudes are much more sensitive to k' ' than
X' '. This is seen in Appendix A [see Eq. (A6)],
where it is shown that the former is multiplied by
moderately large coefficients which depend on the
Laplacian of the nuclear density.

In most examples below, the densities are of
Woods-Saxon form with radius parameter
c= i.1A ' and diffuseness a =0.56 fm. Unless

l.2—
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FIG. 1. Angular distribution at 0' for SCX from nuclei
throughout the periodic table at 180 MeV obtained with
PIESDEX. The solid curve corresponds to no quadratic
terms in U. The long-dashed curve is calculated with
A, '~

' ——0.5i Imi, '~", the dotted-dashed curve with
A, '~

' ——0.5i Imk, '~" and A,o(2)= —0.5i ImA, O", and the short-
dashed curve with A,q

' ——i ImA, O".

specifically stated, the proton and neutron shapes
will be taken to be the same. This schematic model
for the densities it not a realistic choice for charge
exchange (see I and Ref. 3), but it is adequate for
studying sensitivities to higher-order terms. The A,

"'
coefficients are obtained froin free pion-nucleon
scattering as discussed in Sec. II, with a 20-MeV en-

ergy shift.
Consider first SCX. We show in Fig. 1 the depen-

dence of the 0' cross section on A for ' 0, Ca, sNi,

Zr, ' Sn, and Pb at T =180 MeV. The results
shown are numerical solutions with PIESDEX. The
solid curve is the result with no second-order optical
potential. The long dashed curve is the result of
turning on the second-order isovector interaction
with A, 'i

' ——0.5i Iml, 'i". The effect is to increase the
0' cross section uniformly throughout the periodic
table. Such an effect is expected from an examina-
tion of the coefficient Ci in Eq. (3.17a), which is the
dominant term in the SCX angular distribution.
Equation (3.13c) shows that Ci is determined, essen-
tially, by the ratio of the isovector to isoscalar in-
teraction, (Wi/Wo)lmAO"/Wo. This ratio is very
weakly dependent on the target, because the depen-
dence on the target romes only through p/po [see
Eqs. (3.13g), (3.13h), (A6), and (A9)], R, and the
quantities pi, p2, and pi [see Eqs. (A10)], which
arise from the Wallace corrections. Equation (3.13c)
also shows that a decrease in the isoscalar poteritial
should be approximately as effective as increasing
the isovector interaction. Indeed, we see by compar-

in~ the dotted-dashed curve in Fig. 1

(Ao
' —— 0 5i Im—)(o." and A'i '=0 5i Iml, 'i.") to the

long-dashed curve that the magnitude of the SCX
cross section is somewhat more sensitive to the iso-
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scalar than the isovector second-order potential.
However, since elastic scattering determines A,o ', in
practice one will not have the freedom to vary A,o '.
To the level of approximation we are considering
here, the SCX angular distribution is independent of
the isotensor coefficients in U [see Eq. (3.17)], which
enter only into C2 and D2. The short-dashed curve
in Fig. 1 is the PIESDEX solution with A,2

' ——i Imi, o",
which verifies that SCX is insensitive to this term.

We have chosen to illustrate the sensitivity of the
single-charge-exchange cross section to A,o

'
by tak-

ing its imaginary part to be opposite in sign to
Imago". The reason for this choice deserves some
comment. In Ref. 5,

1m','"/1m',"'
was evaluated to be positive and large, =0.6. The
main contribution to this term arose from the Pauli
correction. The Pauli effect is expected to enhance
the imaginary part of the isoscalar potential in the
vicinity of the resonance because it suppresses the
imaginary part of the isobar self-energy. On the
other hand, collision broadening terms, which arise
from multiple reflections and true absorption, in-
crease the imaginary part of the isobar self-energy
and decrease the optical potential. The competition
between these two effects thus determines the sign
of the imaginary part of Xo '. The density depen-
dence of collision broadening effects was estimated
in Ref. 27 using the self-consistent theory of Ref.
25. These results compare favorably to phenomeno-
logical determinations of collision broadening.
There it was shown that at low density in nuclear
matter the optical potential has the behavior

in Eq. (3.17) are weakly dependent on the target
mass. For a given Z the dependence of the cross
section on N —Z is displayed explicitly in Eq. (3.17)
through bp/p and T. The major variation arises
from the leading (geometrical) factors

Ap 1

p Vr'
Thus, the magnitude of the cross section of SCX de-
pends on having the correct amount of second order-
effect, but the variation of the cross section
throughout an isotopic series reflects most strongly
the geometrical aspects of the nucleus, i.e., the neu-
tron and proton distributions. This aspect of the
scattering has been verified experimentally. The
most significant correction to the dependence on
N —Z is the term Cz in Eq. (3.17). To obtain the
correct ratio of C~ to C3 it is necessary to know
both the isoscalar and isovector interactions
separately, but the sensitivity of the cross section to
C3 is weak due to the fact that it is multiplied by

1 hp
4 p

To determine empirically the isoscalar and isovector
terms, careful phenomenological studies of both
elastic and SCX scattering are needed.

Consider next the variation of the zero degree an-
gular distribution for DCX throughout the periodic
table. In our schematic model we can understand
the nunlerical results in terms of the analytic theory
of Sec. III by dropping terms in the amplitude [Eq.
(3.18a)] proportional to a /8 and D; and taking

Ap/p=(N —Z)/A .

U = —4mp f+gi P
pc

(4.2) Retaining the remaining second-order coefficients,
we find

where f is the free pion-nucleon scattering ampli-
tude, g~ is a correction, which at 180 MeV is almost
purely imaginary and opposite in sign to Imf. The
critical density p, is po/4=0. 04 fm . Comparing
to the notation of Ref. 5 and using the value of gi in
Table I of Ref. 27 we deduce

do, (N Z)(N —Z —1—)

2
4y(N —Z)
X —Z —1

(4.5)

ImA, p
(2)

Img&po
~ &~

(collision broadening)
Imz,'" Imfp,

=—1.07 .

(4.3)

where

C4g=8
C3Po

' (4.6a)

Thus, the net effect of collision broadening plus
Pauli principle would give

C2

C3 Po
(4.6b)

ImA, ' '/Inly, ' ' —0.4, (4 4)

which is close to our actual choice.
We have remarked that the C and D coefficients

We show in Fig. 2 the 0' cross section at 180 MeV
as calculated by PIESDEX for the same set of nuclei
as shown in Fig. 1. The solid curve is calculated
with the second-order potential set equal to zero,
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IO I l i l l change from the lowest-order calculation (solid line)

by adding the isotensor te~ A,(42) as given in Eq
(4.2a) and

3—0 . 6—2i .fm (4.7b)

which contains only the direct and exchange pieces
of the sequential scattering process as determined in
Ref. 5. Note that the effect of the isotensor interac-
tion is to modify significantly the lowest-order cal-
culation. With A4

' properly chosen, the rate of fall-
off of the DCX cross section is faster than that
given by the lowest-order calculation by the factor

N —Z
S—Z —1

lo

I l I I 1 I

I OO 200

consistent with the double dotted-dashed curve in
Fig. 2. The net effect of the A,

' ' in Eqs. (4.2) is to
increase the DCX cross section ' 0 and Ni by
about a factor of 2 and to decrease the cross section
in nuclei with a large neutron excess.

The dashed curve in Fig. 2 shows the effect of
changing A,2(2& according to

and therefore corresponds to the theory of I and
may be described by Eq. (4.5} setting y=g=0. In
contrast to SCX, the DCX cross section depends
sensitively on the isotensor terms of U. According
to Eq. (2.5c) there are two parameters characterizing
this component. The parameter A,z ', which contains
among other things the sequential scattering of the
pion from two correlated nucleons, enters into the
DCX amplitude in Eq. (3.18a) through Ci. The
sequential process includes all nonanalog intermedi-
ate states as well as the single analog route. To
prevent double counting of the single analog route,
the coefficient A,4' subtracts the iteration of the
lowest-order optical potential, implying2 g —1

in Eq. (4.5}. For our numerical examples we choose
A,4

' to be fixed by the model of Ref. 5. Including
the 20-MeV energy shift, we evaluate

A4
' 3.0+4.5i fm—— (4.7a)

The double dotted-dashed curve in Fig. 2 shows the

FIG. 2. Angular distribution at 0' for DCX from nu-
clei throughout the periodic table at 180 MeV obtained
with PIESDEX. The solid curve corresponds to no qua-
dratic terms in U. The double-dotted-dashed curve can-
tains the isotensor potential given in Eq. (4.7). The
dotted-dashed curve corresponds to the isotensor potential
of Eq. (4.7) and in addition A, '&

' ——0.5i Iink, &", and
A,o =—0.5i Imi, o". The dashed curve corresponds to the
isotensor potential of Eq. (4.2) and in addition
h, A,~

' ——0.5i Imk, o".

A, ~2
'~ —3.0—6.2i fm'+ LA, 2 ',

where we take

(4.8a}

(4.8b)

We see that there is a uniform decrease in the for-
ward angular distribution throughout the periodic
table. The reason for this is that at resonance Imk, p"
is positive leadin to a reduction of ii in Eq. (4.5).
Note that once A,&

' has been fixed, further variation
in the isotcnsor potential through changes in A,z do
not affect the relative magnitudes of the zero-degree
cross sections.

Consider next the effect of an isoscalar and iso-
vector second-order potential in addition to the iso-
tensor terms of Eq. (4.7). By taking A,I

'

=0.5i ImA, (" and Ao
' ———0.5i Imago', we obtain the

result given by the dotted-dashed curve in Fig. 2.
As compared to the calculation without A,p and A,I

'

(double-dotted-dashed}, there is a uniform upward
shift by about a factor of 5. To understand the ef-
fect of the second-order isovector and isoscalar
terms in the analytic model we must study the term
Cs in Eq. (3.18a), which is given in Eq. (3.13e). The
dominant term is ( Wi/Wp) ImAp"/8'p, which is a
number close to 1 at resonance and in the absence of
second-order terms. The fact that this is quadratic
in the ratio of isovector to isoscalar potentials is the
reason why DCX is so much morc sensitive to the
second-order effects than is SCX. The increase
throughout the periodic table is uniform because the
terms contributing to C3 do not have a strong
dependence on the nuclear mass, for the same
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reasons discussed in connection with the sensitivity
of SCX to isoscalar and isovector second-order
terms.

To summarize, the shape of the 3 and T depen-
dence of the zero degree d(TldQ for DCX is rela-

tively insensitive to the amount of second-order op-
tical potential, once the correction for the nonanalog
route in the sequential process has been applied.
The overall scale for the variation is set by the rela-
tive amount of A,o ', A, ') ', and A, z

'. The interplay be-

tween those terms can be quite intricate, but the net
result is easily understood in terms of the analytic
theory.

Figure 3 shows angular distributions for DCX
from ' 0 at T = 180 MeV that result from calcula-
tions with PIESDEX. The solid curve corresponds to
the case of all A,

( ' coefficients of Eq. (2.5) set equal
to zero and is therefore what one would calculate
from the lowest-order optical potential. The
double-dotted-dashed curve corresponds, in addition
to the lowest-order potential, to including the isoten-
sor potential of Eqs. (4.7) and (4.8) with EA2

' ——0.
The magnitude of the 0' cross section has increased

by about a factor of 2, in accordance with the calcu-
lation in Fig. 2, but the shape of the cross section

Al
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FIG. 3. Angular distributions for DCX on ' 0 at 180
MeV obtained with PIESDEX. The solid curve corre-
sponds to no quadratic terms in U. The double-dotted-
dashed curve contains the isotensor potential given in Eq.
(4.7). The long-dashed curve contains, in addition,
dkA, z

' ——i Imi, o ~ The short-dashed curve is obtained by
using the more realistic valence neutron wave functions of
Ref. 29 and the isotensor potential used for the long-
dashed curve.

remains unchanged except for an enhancement of its
diffractive character. The long-dashed curve corre-
sponds to the choice hA, q

' ——i Imi, o". Note that the
magnitude of the 0' cross section has decreased and
that the position of the first minimum has moved to
smaller angles by nearly 12', to 24'. The short-
dashed curve results from using a more realistic
description of the valence neutrons than our
schematic model in which the proton and neutron
densities have the same shape. For this calculation
we kept the )(,( ' parameters fixed to the values used
for the long-dashed curve, but now, in accordance
with the discussion in Sec. I, we take Ap=p„,&,

where p„~ is the valence neutron density calculated
from the valence neutron wave functions of Negele
and Vautherin.

The sensitivity of the shape of the DCX angular
distribution to b,Az

' can be easily understood from
the analytic results in Eqs. (3.13) and (3.18a). When
A,z '-0, the cancellation implied by g= —1 dis-
cussed in connection with Fig. 2 suppresses the con-
tribution of Jo(qR) relative to Jo(qR) qRJ—)(qR)
The former function has a zero near 40' and dom-
inates the solid curve in Fig. 3. The latter function
has its first zero near 20', and the shift of the
minimum of the dashed curve in Fig. 3 reflects the
increased importance of this term. For the value of
b, l,z

' corresponding to the dashed curve, the coeffi-
cient of Jo(qR) is negative, causing Jo(qR) to add in
coherently at larger angles with the consequence
that the position of the minimum is shifted to a
smaller angle, 8;„=24'. The isotensor term in U
affects the Jo(qR) term differently from the term
Jo(qR) —qRJ)(qR) because it has a different range
from the iterated lowest-order optical potential.
Thus, the shifting of the minimum is due to an in-
terference between two amplitudes of different
ranges: (1) the second-order isotensor potential and
(2) the iteration of the lowest-order optical potential
to all orders. As suggested by all analytic results,
the magnitude of the zero degree cross section can
be scaled by appropriate choice of A,o(2), A, (12), and )(,(22)

while maintaining minimum at a given angle.
To obtain a feeling for the extent of validity of

the analytic theory when second-order effects are in-
cluded, we have compared the results in Eqs. (3.13),
(3.14), (3.17), and (3.18), and Appendix A to the cor-
responding solution of the Klein-Gordon equation.
We have found that the analytic theory faithfully
reproduces the sensitivity of the exact calculations
to variations of the parameters of U' ', but does not
reproduce the absolute magnitude of the cross sec-
tions. The degree of discrepancy in the magnitude
over the energy range 130—190 MeV is roughly the
same as shown in Figs. 4(a) and (b). These figures

give the angular distributions for 180 MeV SCX and
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FIG. 4. Comparison of analytic angular distributions (dashed curves) to PIESDEX results (solid curves) for SCX on Ca
[part (a)j, and for DCX on Ca [part (b}] at 180 MeV. Units are mb/sr.

DCX from Ca with the A,
' ' parameters set to zero.

In these figures, the solid curves are the results of
pIEsDEx calculations and the dashed curves result

, from the analytic theory. The angular distribution
of SCX is shown in Fig. 4(a). Note that the analytic
theory is in good agreement with the model exact
calculat'ion. The improvement (over the results of I)
in the height of the secondary maximum is due to
the inclusion of the Inopin factor [see below Eq.
(3.4e)], and improvement in the depth of the
minimum is the result of a better treatment of ReX.
For the minimum to occur at the proper location, it
is necessary to have the correct diffractive radius R

as well as the correct linear combination of the
Bessel functions Jn(qR) and Jo(qR) qRJ, (qR} in-
Eqs. (3.17}and (3.18). The result for DCX is shown
in Fig. 4(b). Generally speaking, DCX is more sens-
itive to small corrections than is SCX, and agree-
ment with the computer solution is correspondingly
less good than in the case of SCX.

Finally, we remark that because the eikonal
theory is a semiquantitative theory, one should use
the actual computer solution of the IGein-Gordon
equation to calculate cross sections. However, we
found that the analytic theory sufficiently accurately
reflects the systematics of the underlying optical
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model to be useful in understanding our results, and
thus we have devoted so much attention to the ana-
lytic theory.

V. EXPERIMENTAL IMPLICATIONS
AND SUMMARY

Pion elastic scattering, and SCX and DCX
scattering to analog states contain two types of in-
formation which one would like to be able to deter-
mine separately. One is nuclear structure and the
other pion- and isobar-nucleus reaction dynamics.

In order to use charge exchange reactions to probe
this information, it is necessary that the distinction
between nuclear structure and reaction dynamics be
clearly made in the optical potential. This distinc-
tion is manifest in the form chosen in Eq. (2.5), in
which the reaction dynamics is contained entirely in
the parameters A,

"' and A,
' '. We demonstrated in

Sec. IV using our schematic model that the reaction
dynamics and nuclear structure information mani-
fest themselves differently in the cross sections. In
particular, the relative magnitudes of the zero degree
cross sections are dominated by the geometrical
properties of the nucleus, i.e., the valence neutron
density Ap and the target isospin T. The reaction
dynamics, on the other hand, determines primarily
the overall scale, which involves an intricate inter-

play between the A,0
' (isoscalar) and A, 'i

' (isovector)
coefficient for SCX and in addition the A, z

' (isoten-
sor) coefficient for DCX. At the present time, the
valence neutron densities are probably better known
than the reaction theory, so that one can test this
prediction by comparing the relative magnitudes of
the theoretical cross sections calculated from realis-
tic densities to experiment. If these predictions are
verified, one will then presumably also obtain a sig-
nificant measure of the reaction dynamics through
the value of the overall scale factors. Eventually,
the charge exchange measurements may provide a
means for studying experimentally the neutron halo
in detail. In this section, we are concerned with cal-
culating from our theory the relative zero degree
cross sections using DME densities and also with
comparing these results to the schematic model of
Sec. V.

Consider first the location of the minimum of the
differential cross section for double charge exchange
from ' O. The experimental angular distribu-
tion is anomalous in that the position of the
first minimum occurs at 8;„=22', whereas most
theoretical calculations with lowest-order U give
8;„=35'—40'. In a theory that includes the isoten-
sor interaction, such a shift can occur naturally as a
consequence of the reaction dynamics. It was shown
explicitly in Sec. IV that the minirnurn can move, in

a direction to agree with experiment, as a result of
an interference of two amplitudes of slightly dif-
ferent ranges. The fact that a strong interference
occurs between a relatively well-known component
of the interaction and a relatively poo'ly known iso-
tensor term means that the angular distribution
gives a clean measure of the sign and magnitude of

In our theory this interference occurs through
a contribution AA, 2

' to A,z
' such that Imhk. z

' has
the same sign as ImA, 0". Our results in Fig. 3 of
Ref. 5 give an isotensor interaction of the opposite
sign to this, and therefore we can exclude the Pauli
principle and the excitation of nonanalog intermedi-
ate states as explanations. Other possibilities include
interactions with the spin density of ' O and interac-
tions of isobars with the nucleus, which are now
under investigation. There may be many other pos-
sibilities, but we emphasize that our theory requires
the phase and magnitude of Immi, 2

' be such that
[see Eq. (4.3b)] Imb, i,z '/Imi0"-1. With this value
of EA,z ', the angular distribution shown in Fig. 3
(short-dashed curve) has a shape very similar to the
experimental data at 164 MeV. ' Although the
curve shown is a factor of 2 below the data, we re-
mind the reader that the cross section is easily scaled
upward without a change in shape by an appropriate
choice of A0 ', X'i ', and A,z

'. An example of a fit to
the data by adjusting these parameters appears else-
where. By comparing the short-dashed and long-
dashed curves in Fig. 3, we see that the effect of us-

ing realistic densities is to increase the overall mag-
nitude of the cross section without appreciably af-
fecting the shape. Similar effects of adding an iso-
tensor potential were recently reported by Liu.

Consider next the zero-degree cross sections for
SCX and DCX throughout the periodic table at 180
MeV. We show in Tables III and IV the results of
three calculations with pIEsDEx, each including the
lowest-order potential described in Sec. I. Otherwise
the calculations correspond to: (a) the schematic
model with no isotensor potential, (b) the schematic
model with iLz

' and A,4
' from Eqs. (4.7a) and (4.7b),

and (c) DME densities with the isotensor potential
from Eqs. (4.7a) and (4.7b).

From these tables, the following points are to be
observed. The results for SCX in the schematic
model scale as (N —Z)A ' ~, as expected from the
results of I (see column 1 of Table IV). It is amus-
ing that the results of calculation (c) with realistic
densities also scale in approximately the same way
(see column 2 of Table IV). The overall scale factor
is different, however, reflecting the fact that for
realistic densities hp/p & (N —Z)/3 for most cases.
In cases where comparison to experiment is possible,
it is found that the experiment follows the law
(N —Z)A ~, but that the scale is about a factor of
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TABLE III. Zero degree SCX and DCX differential cross sections at 180 MeV as calculat-
ed with PIESDEX.

Target

18O

Mg
Ca
Ca
Ni

~Zr
120Sn

208Pb

SCX'
(mb/sr)

0.751
0.423
0.195
0.679
0.116
0.301
0.395
0.366

DCX'
(pb/sr)

0.631
0.187
0.035
0.622
0.011
0.102
0.151
0.103

SCXb

(mb/sr)

0.731
0.416
0.193
0.652
0.115
0.294
0.381
0.349

DCXb
(pb/sr)

1.02
0.296
0.055
0.339
0.017
0.055
0.074
0.048

SCX'
(mb/sr)

1.84
0.694
0.598
1.73
0.603
0.843
1.64
1.58

DCX'
(pb/sr)

1.86
0.581
0.236
1.29
1.03
0.317
0.595
0.514

'Schematic model for p„,1, A,2
' ——A,4

' ——0.
Schematic model for p„,l, A4 ', and A, ~

' from Eq. (4.7).
'DME model for p„,1, A,2", and A,4

' from Eq. (4.7).

2 greater than that given by the lowest-order theory.
We saw in Sec. IV that if Imlo '/Imlo" (0 and
Imk, I '/ImA, I")0, then the scale factor may be in-
creased. We have seen that a combination of col-
lision broadening and the Pauli principle gives a
second-order potential with these properties, but un-
til a more detailed theoretical analysis of these and
other second-order processes, one cannot say with
certainty that the reaction dynamics is understood
theoretically.

In the case of double charge exchange, we note
from column 3 of Table IV that the schematic
model with no isotensor potential scales (approxi-
mately) as (N Z)(N —Z ——l)A ', which is ex-
pected from I. When the isotensor potential is ad-
ded, this law is violated, as can be verified by com-
paring columns 4 and 5 of Table IV. The reasons
for this were discussed in detail in Sec. V. We
reiterate that the physics of the additional depen-
dence on (N —Z) arises from careful consideration
of the nonanalog intermediate states in DCX. These
effects have been studied in Ref. 36 for
'sO(m+, m )' Ne, and our findings are consistent
with this paper.

Finally, we consider the effect of using realistic
densities for DCX, shown in the last column of
Table III. Remarkably, these results scale to within
factors of 2 as (N Z)(N ——Z —l)A ', except
for the case of Ni and Ca. One should not con-
clude that the physics is uninteresting just because a
relatively simple formula parametrizes the results.
We also point out that the magnitudes of the cross
sections for ' 0, Mg, Ca, and Ca fall very close
to the measurements as quoted in Ref. 30. As em-
phasized in Ref. 30, it has been difficult to under-
stand the ratio of DCX in Ca compared to Ca in
models without an isotensor interaction, but in our
model the ratio is 5.4, which is the same as the mea-
surement. This ratio has been interpreted in Ref.
38 as an effect of an interference between an analog
and nonanalog amplitude in DCX in a less explicit
model than ours.

Preliminary comparisons have shown that our
theory agrees favorably with the experimental data
on the relative variation of the zero-degree cross sec-
tion for SCX and DCX throughout the periodic
table. If these results are upheld when more com-

TABLE IV. Various ratios of zero degree cross sections given in Table III.

SCX' SCX' DCX'/10 DCX' DCXb DCX'
Target (x —z)~-'i' (Ã —z) -'i' (x —z)(x —z —1)a-"" ~("o) ~("o) ~("o)

18O

'Mg
4'Ca
4'Ca

Ni
~zr
120Sr

208Pb

17.9
16.3
13.3
14.8
12.9
12.0
11.6
10.2

43.4
26.7
43.7
37.7
67.7
34.0
48.5
44.3

4.82
4.87
4.51
4.46
4.15
3.70
3.39
2.90

1 1 1

0.296 0.290 0.312
0.055 0.054 0.127
0.986 0.332 0.694
0.017 0.017 0.554
0.162 0.054 0.170
0.239 0.073 0.320
0.163 0.047 0.276
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piete sets of data become available, we will have an
empirical confirmation of the separation between
nuclear structure and reaction dynamics given in
Eq. (2.2) for U. We can then determine the A{2)

parameters from the absolute magnitude of the cross
sections. Elastic scattering and SCX determine the
isoscalar and isovector parameters A,o

' and A, i '. Our
results suggest that these would increase the DCX
cross sections above those given in Table III. How-
ever, the experimental angular distribution for
' O(1r+, n. )' Ne requires that a large isotensor po-
tential b,k,z

' is also needed and the sign is such to
uniformly scale the zero-degree cross sections back
down. Thus, this choice of parameters would
achieve a consistency between the measurements of
zero-degree cross sections for SCX and DCX and
the DCX angular distribution for 'sO(m+, n. )' Ne.
Detailed comparisons between experiment and
theory will be made in a subsequent publication.
Angular distributions for DCX on a variety of ele-
ments of various isospin at 164 MeV would be help-
ful in confirming the ideas suggested here. k-'u")(~g, ~g) = —[~g+SgF",~g, (A5c)

needed. Furthermore, g has terms linear and qua-
dratic in density, which we make explicit by letting
g~g+b, g, where now g has all terms linear and b,g
all terms quadratic in density. Therefore, through
order p we obtain from Eqs. (A2) and (A3)

U(4+~'k 0+~0)=u"'(k 0)+u"'(~k ~k)

+u {2)(gg), (A4)

and we see that the terms quadratic in the density
are due to u")(ig) and u' )(g). We shall refer to
those terms resulting from u{"(4g) as dynamical
contributions, whereas those resulting from u' )(g)
are geometrical contributions. Using Eq. (A3), mak-
ing use of the definition ofp [see Eq. (2.6)], we find

k-2u{ "(u)=-u+&F)&], (A5a)

k -'u {2)(g,g) = —[g+('F,g'+(1 —2p{)(g')'],

(A5b)

This work was supported by the U. S. Department
of Energy.

where iff is an arbitrary function

Q2
Ff=1+

2k' f (A5d)

APPENDIX A:
EXPLICIT EXPRESSIONS
FOR A ' ' COEFFICIENTS

U= g u{")(g,g) .
n=1

By using the binomial expansion we obtain

peal
—1

k —2u(n)(g g) gn —1+gn+ b V2g
2

(A2)

( gl )2' —2

4k
(A3)

We are interested here in terms up to order p,
and therefore only the terms u"' and u' ' will be

Given the form of the optical potential defined by
Eq. (2.6), we follow the procedure outlined in Ap-
pendix B of I to obtain a phase shift equivalent local
potential for each total isospin channel

I 2

U= k'g+k'(+P V'g +
1 —g 2 4( 1+()

(Ala)

The transformation used to obtain Eq. (Al) is well
defined provided (&1. In addition to this condi-
tion, we will also assume that we may expand Eq.
(Al) in powers of g

k u "'(g, g) =A()"p(1)~y' "A'1"p(2),
k 'u "'(b,g, b,g) =AI)~jp(3)+ y" )AId'p(4)

+y(2)A(2) (5)+y{4)A(&) (5)

(A6a)

(A6b)

k —2u(2)(g g) Ap(&)p(3)+y{1)A(2)p(4)

+(y"))'A,",'p(5), (A6c)

where we have defined, respectively, for i =1, 2, 3, 4,
and 5

(A6d)p(i)=p, bp. . . and
Po Po Po

A' = f~ ' +){I Flp(i)] for i = 1,2,( &) ( &) (]) (A

A,'d'= —[XI '+A, '; 'F2p(i)] for i =1,2,4, (A

A' ':——[A,
' '+A, ' 'p(5)/p(3)

+XI) 'Fgp(3)+A3 'F2p(5)], (A6

A( ) [g( )g( )+(g( ))2F ( )]

A)& ———pp[A p A{ +A 1 Ap +2Ap A1 F3(pkp)]

(A6h)

(A6i)

By using the expressions for g and hg given in Eqs.
(2.6b) and (2.6c), and assuming similar forms for g
and b,g, we have
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A(,',) = —p, [X(,"X',"+(X',")2F",(~ap)],
where

(A6j) A5 ——A gal — (A) ) ((4) — A)(2) (2) 1 (1) 2 1 (2)
g 2 2

P1 V P~Pb
2

F3(p,pb)= 1+
4k PgPb

r

PoPb1 —F1
4k PaPb

(A6k)

Next, we insert the potential given in Eqs. (A4)
and (A6) into the following expression for the eikon-
al phase

and

X 2A(11)P +A(2) LP--

J= 1 —2 Ao P2+Ao P3
(1) (2)

2 po po

(A9e)

X(b)= f dz U+
2

U

where

(A7a)
and

" 1/2
po 2

Pm —1= mb

a
(A lob)

b2 ()B=1+ =1+
p2df Z BZ

%e obtain

y(b) y (1)+y (2)+y(1)y (2)+y(2)y (2)

(4)y (2)+( (1))2y (2)

where

(A7b)

(ASa) p(r) p(b)exp
2ab

(Al 1)

In Eq. (A9) we have used

i = id ig

for i=0,1. We have further used the approxima-
tion

X"'=k(2~ab)'" &'"+&'" p(b),

2—( Q (
X' '=k(2mab)'

po

(ASc)

and employed the integrals

f dz p~(r) =2p~(b)(2mab/m)'

b 8f dz p™(r)

(A12a)

2

~ (2) k(2 b)1/2 ( P) A(2)

Po
2

g (2) k (2 b)1/2 ( P) A (2)

po

with

A (2) A(2)x (A(())2 (A(2))2p P

p (2) p(2)~ 2 p(1) p(1) +p(2)
1 1 r 1 0 I 1 012

2
" "p.

A 4 ——A4dX,(2) (2)

(ASd)

(A98)

(A9b)

(A9c)

(A9d)

2p~(b) (2—nab lm)'/, (A12b)

to do the integral in Eq. (3.7) with Eqs. (A4)—(A6).

APPENDIX 8:
DETAILS ON DETERMINING DEPENDENCE

OF F, ONA,

We extend Eq. (22) of I by writing the expansion
of F about A and R

F(8,RT,AT) =F(8,R,A)

+(RT—R ) (O,R,A )
BR

B I'
+ (RT R)2 (H, R—,A )+—&Fr,

M

(Bla)
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where

~T——(AT —A ) (H, R,A )
—BE

Ba

+(AT A)—(RT R)— (8,R,A) .
BRBA

(8lb)

There are no second derivatives with respect to A be-
cause F is linear in A, [see Eq. (3.4a)].

For SCX we need to calculate the correction

~(p+) 1 1 1

v T 2T+1 T+1

X [(2T —1)(AFT —~T I )

+T(2~T+ I ~T ~T I)J-
(82a)

[see Eq. (14a) of I]. The single difference in Eq.
(82a) is, from Eq. (81),

BE BE~T ~T 1(AT A—T I) —+ 2—( T RT 1)(AT+AT—I—
Ba BR' ' (82b)

where we have used the definition of R, Eq. (3.17b) [also see Eq. (27d) of I]. Now consider the double differ-
ence in Eq. (82a),

BE2~T~I —~T—EFT 1=(2AT I
—AT —AT I) +[(AT+I —A)(2RT+I —RT —RT I)

a

1 BE
, (AT A—T I)—(RT RT I)—]-

BRBA

The expression is simplified if we choose'A =AT+ ~ and we find

dd;{0+) 1 1 1
d,s(0+) BE+2,I (0+) B'F

~T 2T+»+1 aA aE aA

where

bS' +'=[(2T l)(AT AT—I)+T(—2AT+I —AT —AT I)],
5PIO+I = , (RT RT,—)[(2T—1)(A +A—, 2A +—, ) T(A —A,—)] .

For DCX we need the correction

' 1/2

[(T+1)(~T ~T I ) T(~T+I ~—T)]T 7+1 2T+1

The quantity ~T AFT I was ev—aluated in Eq. (82), but now we need it for
1

R = , (RT+ I+RT—I),
Eq. (3.18b) [see also Eq. (28d) of I]. We find

'dF BE~T ~T I —(AT AT I) —— (A T I AT)(—T I— T+ I )—
BA BRB&

where we have defined A =AT. Next we evaluate

BE BE~T+I ~T (AT+I AT) —+ 2 (RT+I RT —1)(AT+I AT)
aA

'
aÃaA

'

where we have used

R= —,(RT+I+RT I)

and 3 =A~. Therefore,

(83)

(84a)

(84b)

(84c)

(85)

(86)

(87)
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2T —1

T T+1 2T+1 BA 2RBA
(88a)

bS( +)=(T+1)(AzA' —zi' )— T—(Ar+i A—z)'
( —+) , (Rz—+i Rr—, )[(T+1)(Az —i —Az ) —T(Ar+i Az.—)] .

(88b)

(88c)

The derivatives in these formulas are obtained from
Eq. (3.4a}

I

where the quantity a;J is
1

Q(J 2 (Qi +QJ ) (Clb}

—=RJo(qR } ~

A

a'r =Jp(qR ) —qRJi (qR ) .
(}RBA

(89a)

(89b)

The main results of this appendix are Eqs. (84},
(88), and (89).

ImX; (R )—ImXJ (R )

ImX;(R )+ImXJ(R )
(Cla)

APPENDIX C:
EXPLICIT EXPRESSION

FOR hRij AND Mij

Our goal is now to express AR,J and M,J in the
form given in Eqs. (3.13a) and (3.14a). Consider
first hR;J. In I it was shown how to solve Eq. (3.4e)
for the differences of radii appearing in Eqs. (3.5),
(3.6), (3.9), and (3.10). These differences were ex-
pressed in terms of three quantities b,R;J(1},M;J(2),
and b,R;~(3}. The quantity b,R;~(3) is zero in the
present work, because we assume that the neutrons
and protons have the same diffuseness. It is more
convenient to combine b,R,&(1) and M(J(2}, and the
result is

Rg —RJ =ERE.

Wo=Ao +Ao p/po
(1) (2)

Wi ——Ai +A i p/pp.(1) (2)

(C2a)

(C2b)

We will expand Eq. (Cl) and keep all corrections to
the C and D coefficients in Eqs. (3.11) and (3.12)
linear in A' ', Wp, and Wi. The final expressions
will be expressed in terms of ratios of the A J" and
W. For example, substitution of Eq. (3.2) into Eq.
(Cla} and expanding to the required order in density
yields

with a; and aj given by E(I. (3.4d). There are six

As ', specifying X,(b) in Eq. (3.1). The quantity
hR; depends only on the imaginary parts of these
quantities, and in what follows we simplify the
equations by taking AJ" to mean ImA&' unless speci-
fied otherwise. The terms Ao"p and Ap'p /pp
naturally belong together, as do

A')"b py" '(i )

and

A (2) P~P (i)( )
po

so we define two auxiliary quantities,

The quantity a,J. is worked out in Appendix D and yields

A(&)
0

lJ P
0

p p [~( )(i)+~( )(J)]$
2 p po

&p 1.(g) 4 hp I (4) hp s ~ 1W A"' A' '

"p ~o" popo" popo" p W, p, 2
(3)rIJ ~ (C3)

(C4)

and combining this with Eq. (C3)

(1)Wi A()
~fJ' —QP

' r]J
p o o

r")
fJ AP

2 p

(1) (2) (1) (2)
Ao A2 Ap (2) Ao A4 dp (4)+ 8. 8 IJ+ 8 8 "lJ

2 (1)
Wi Ap Wi ~ Ap As(1) (2)

+2
8'0 8'0 8'o Po 8'0 Wo Po

(CS}
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3o=

ReAi" +ReA i 'p/po

0

In terms ofyo andyi we write Y; as

P

8") gP (, )
ReA2 ' —yoA2

'

8'0 P 8'0 PPo

The quantity (() is defined in Eq. (D9b). The C coefficients, defined in Eq. (3.13a), may now be read off from
Eq. (C5); they are listed in Eq. (3.13).

We next evaluate M,J to obtain the D coefficients. The quantity 3; is defined in Eq. (3.4b) in terms of Y;,
given in Eq. (3.4c). Because Y; in.volves the real part of U, we will characterize Y, in terms of the two quanti-
tiesyo andyi, defined as

ReA()"+ReA () 'p/p()
(C6)8'0

ReA4 —y()A4 gp ~ ReA5 —y()A5
(2) (2) (2) (2)

y")(()+~0, PP0 po 8'0
8'i 8'(

3'i —P'0 ~0 0

2
~p (1)2( )
P

(CS)

where we have retained only lowest-order terms in they and A2 parameters. An expression for 2; follows from
straightforward algebra, which we omit. The result is, to lowest order in y; and A ' ',

3;=ka; Itan 'yo+i[C+lnln2+ —,ln(1+yo )])

ryl y(i)(l) b,p (bp)2 ReA2(2) —yoA(22)
+kQP ' g( —go 2 +

1+yo' p ppo, ~o(1+y,')

(2) (2)

y (i) +- —,y (()
(Qp)i ReA &

—yoA 4 (4)

ppo 8'o(1+yo )

hp

P

'2
ReA 5

—yoA s
(2) (2)

Po 8'0
y""(i)

3't —3'0 ~o o +3'0
(C9)

p(1)
0

Qi Qp
0

(C10)

so, from Eqs. (C9), (C10), and the definitions in Eq.
(3.14a), we read off the D coefficients. They are hat-
ed in Eq. (3.14).

APPENDIX D:
EXPRESSIONS FOR a; AND a;J.

Recall that a;(R) is defined by

ImX;(R)
a)(R)=-

ImX I (R)

fimng u;(') and u;( ) as tlm ~m~g~~~ry parts of

In order to find A( to lowest order in y; and A' ', we
keep a; to lowest order in A' '. We see from Eqs.
(D7) and (D9)

u (i)'/u ( i ) 2u (2)/u (1) (D4)

which is only approximatdy true for realistic
choices of densities. Equation (D3) may now be
written

I

linear and quadratic terms in X, in Eq (3.3a), .Eq.
(Dl) may be written

(a) (2)
i
(2) (D2)

ui +ui

Dividing numerator and denominator by u ", we
find

1+u' '/u'"
I i
(2) (i)1+2u; /u;

(D3)

where we assume that u' ' falls off exactly twice as
fast as u"',
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where

Vo()}+ V)()}

V()(i }+2V1 (i)+ V2(i)

Vp ——IVop+ W) y'"(i )Ap,

(D5)

(D6a)

a;+aj ——2ap —ap
Vi(i)+ V2(i)

Vo(&)

V, (j)+V,(j)
V()(j)

(D8)

V A(2) P (2)( )+A(2) P (4)( )

2 g (2)

Po Po
2

+p(2) P (1)2(
)

Po
(D6b)

In order to evaluate Eq. (D7) we no:d an expres-
sion for

V((i)+ V2(i)

Vp(i )

2
A(2) p +g (2) P P (1)(()

Po Po
(D6c)

Dividing numerator and denominator in Eq. (D5) by
Vp(i) we find

1+V1 (i)/Vp(i )

1+2V, (i)/V()(i)+ V2(i ) V()(i)

From Eq. (D6) we have

Vi(i)+ V2(i) AI)
' ~ (, ) i((p+y"'(i)

Vo(i} IVp pp pp

where

Wo Wo Wo

(D9a)

(D9b)

Thus,

Vi(1)+ V2(1)
P P V (1)

The quantity (2;+aj is needed only to first order in
density since b,R;~ in Eq. (C3} contains an overall
factor of hp/p. Thus we write

(2)

Wo po Po
(D10)
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