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Bound states in the pion-nucleus velocity-dependent potential
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The possibility of bound states in a velocity-dependent potential of the Kisslinger type,
such as that used to describe the low-energy pion-nucleus interaction, is discussed. It is
shown in a specific example that, for a real potential, the number of bound states is finite
and their binding energies are real, in contradiction with general results claimed by other au-
thors.

~ NUCLEAR REACTIONS Pion-nucleus optical potential; nuclear
bound states of pions in nuclei; velocity-dependent potential.

The interaction of pions with nuclei at low ener-
gies is very commonly described by means of a
Schrodinger equation with an optical potential of
the Kisslinger type'

ence in the ~-nucleus system.
Velocity-dependent potentials of the form

2pP (r)=V a(r)V (2)

2pP"(r)= V.a(r) V+0(r),

where a( r ) and B(r ) are complex functions closely
related to the nuclear density and p represents the
reduced mass of the pion-nucleus system. Four
years ago, Ericson and Myhrer (EM) raised the
question of the possible existence of pion-nuclear
strongly bound states. By using an oversimplified
model for a(r) and B(r), namely constant values
for a particle confined in a spherical box, they
showed that an infinity of bound states, of indefi-
nitely high binding energy, does exist. By qualita-
tive considerations, they concluded that the same re-
sult should be obtained for any real function a(r),
provided a(r) ) 1 in some region. Moreover, in the
case of a(r) varying with r in such a manner that
a( r ) can be considered linear in the neighborhood of
the critical point ro where a(ro) = 1, they found that
the wave function presents a logarithmic singularity
at ro and the binding energies have a nonvanishing
imaginary part, even in the limit of a purely real po-
tential. These features of velocity-dependent poten-
tials have been discussed by Ericson in connection
with several n.-nuclear effects.

The possibility of observing those bound states,
due to the velocity-dependent part of the m-nucleus
optical potential, has been considered by Friedman,
Gal, and Mandelzweig. The same authors have
analyzed the anomalies of velocity-dependent poten-
tials and suggested procedures to avoid their influ-

present peculiarities that are far from being under-
stood, in spite of the attention they had deserved in
the past and recently. In particular, the results
reported by EM establish the puzzling problem of a
Hermitian (Hamiltonian) operator having nonreal
eigenvalues. These eigenvalues (under the denom-
ination of non-Hermitian solutions) have been inves-
tigated by Mandelzweig, Gal, and Friedman (MGF)
by considering two simple models for a(r) which
make the Schrodinger equation analytically solvable.
The first model corresponds to a spherically sym-
metric step shape

a( r )=a08(R r), —

with Reao&1. In this case, the infinity of bound
states can be shown explicitly, their binding energies
being given by the zeros of a certain combination of
Bessel functions, but the imaginary part of these en-
ergies vanishes as Imao tends to zero. The case of
purely real ao does not present anomalies either in
the wave function or in the eigenvalues. Non-
Hermitian solutions do not occur, but this fact does
not invalidate the results of EM because in this
model there is no critical point ro where a(ro) =1.
The second model makes use of a spherically sym-
metric parabolic shape,

for which the solution of the Schrodinger equation
can be obtained analytically in terms of Legendre
functions. For real a( r), an infinity of bound states
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FIG. 1, S-wave poles of the S matrix for a velocity-dependent potential of finite-range parabolic shape. The continuous
lines indicate the trajectories of the poles as the intensity A of the potential &see the text} goes from 0 to 1. The dashed lines

give the limit position, as ImA ~0, of the trajectories followed by the poles for complex A, with ReA increasing from l.
The dotted lines indicate the motion of the poles when A takes the values shown (with a dotted line also) in Fig. 2. The ar-
rows indicate the motion of the poles as ReA increases.

with real binding energies appears, but a non-
Hermitian solution does not appear, in contrast with
the predictions of EM. Furthermore, if one consid-
ers complex a(r ) by allowing ro to become complex
or by introducing a complex global factor
Az+iAI, Az &1, all bound states suddenly disap-
pear.

In order to disentangle this confused situation, we
consider in this paper a third model for a(r ), name-

ly a finite-range spherically symmetric parabolic
shape,

a(r)=A(1 r lR )—8(R r)—
This model presents, with respect to the first model
of MGF, the advantage of showing at

the criticality condition a(ro) =1 discussed by EM.
Also, the finite range of our potential makes it much
more realistic than the second model of MGF.

The Schrodinger equation with the potential of
Eq. (2) with its shape given by Eq. (3) can be analyt-
ically solved in the S-wave case. For a particle of
energy E and wave number k =(2yE)'~, the radial

wave function inside the potential well can be writ-
ten

g(r) =F(a,b;c;z),

z=Ar l(A —1)R, r &R, (4)

dF(a, b;c;z) Idz
2z +1—rkR =0

F(a,b;c;z) s=w/(a —&)

As is well known, the relation also gives the poles, in
the complex k plane, of the I =0 component of the S

where F represents the hypergeometric function' of
3

parameters a,b, c, such that a +b = —,,
ah = (kR) /4A, c = —,, and outside the potential well

P(r) cc r 'exp(ikr), r & R.

The eigenvalues E of the Hamiltonian are obtained
by matching the inside and the outside wave func-
tions, Eqs. (4) and (5), according to the continuity
condition of

[1 a(r)](d Pldr) lf—(«)

At the edge, r =R, of the potential well that condi-
tion reads
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FIG. 2. Values of the intensity of the velocity-

dependent potential whose S matrix poles have been

shown in Fig. 1.
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FIG. 3. Binding energy of bound states in the
velocity-dependent potential of finite-range parabolic
shape as a function of the intensity A of the potential. On
the vertical axis the square root of the binding energy, in
units of {2p) ' R ' {p is the mass of the particle and 8
is the range of the potential), has been represented.

matrix for the potential under consideration.
The hypergeometric function and its derivative

are one-valued analytic functions in the z plane cut
along the real axis from 1 to 00. Therefore, the solu-
tion of Eq. (6) does not present any difficulty in the
case of complex A. Our interest, however, lies in
analyzing the anomalies of real velocity-dependent
potentials reported by EM. For this reason we con-
centrate on real values of A.

Negative values of A are of no interest, as they
correspond to repulsive potentials which do not
represent the peculiarities we are investigating. For
0&2 & 1, Eq. (6) has an infinity of complex solu-
tions for k, some of which have been represented in
Fig. 1. As far as they occur in the lower half-plane,
all of them correspond to unnormalizable states.
They are located symmetrically with respect to the
imaginary axis, one of the solutions being precisely
on the imaginary axis. For very small A they lie in
the infinity of the lower half-plane. As A increases

towards 1, they approach the real axis. Obviously,
solutions near and below the real axis can be inter-
preted as resonances. So, our potential produces an
infinity of S-wave resonances, the narrower the
nearer 2 is to 1. As 3 reaches the value 1, all solu-
tions in the right and left half-planes concentrate at

3 3
the points kR = —, and kR = ——,, respectively. The
solution on the imaginary axis is at kR = —2i

Values of A larger than 1 require a careful treat-
ment. The first term in Eq. (6) is no longer uniquely
defined, as the value of z lies on the cut of the hy-

pergeometric function. This corresponds to the fact
that we are trying to match the internal and external
wave functions at a point (the edge of the potential)
on the cut of the internal wave function introduced
by its logarithmic bj..anch point at ro. So, a suitable
prescription for determining the internal wave func-
tion is needed.

One possibility is to modify A by adding to it a
small positive imaginary part, as shown in Fig. 2,
then evaluate the first term of Eq. (6), and finally
adopt its limit value as ImA —+0. This corresponds
to selecting for the internal wave function its value

just above the cut. By doing that one obtains the
solutions shown in Fig. 1. Those in the upper half-
plane could be interpreted as decaying bound states,
and that infinity of bound states of complex binding
energies even in the limit ImA ~0 seems to confirm
the predictions of EM. However, this manner of
circumventing the problem is quite artificial. Had
we added to A a small negative imaginary part, we
would have obtained, by the same procedure, the
complex conjugate values for the binding energies.
Instead of decaying bound states, we would have
growing ones.

There exists nevertheless another more natural
possibility of solving the problem. It consists in tak-
ing for the wave function the mean of its values just
above and below the cut. This is the usual manner
of defining special functions like, for instance,
Legendre functions on their cuts. It has been adopt-
ed by MGF in the treatment of their second model,
in order to ensure the reality of the wave function,
and by King and Rohrlich" in the solution of the
Schrodinger equation that arises in the relativistic
two-body problem with momentum-dependent in-
teractions. If the wave function is defined in this
natural way, no bound states appear in our model
unless the intensity parameter A becomes larger than
a threshold value A2-62. 4. At this value, Eq. (6)
has a double solution for pure imaginary k. As A

increases, the two solutions separate and move along
the imaginary axis as shown in Fig. 3. So two bound
states occur, their binding energies being obviously
real. A new double solution of Eq. (6) occurs if A

increases further and reaches the value A4-255. 7.
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For A above this value, four bound states are found.
If A becomes larger than As-559, six bound states
occur. And so on.

These results, namely a finite number of bound
states of purely real binding energies for real a(r),
manifestly contradict the predictions of EM. More-
over, it turns out from our precedent analysis that a
drastic quantitative change in the spectrum of the
Hamiltonian occurs when the real a(r) acquires an
infinitesimal imaginary part.

It is not difficult to understand why the results of
EM, valid for a nonvamshing (even infinitesimal)
imaginary part of n(r ), are not correct in the limit
of real a( r ). They obtain a nonvanishing absorption
(complex expectation values of the Hamiltonian)
even in the limit of a purely real potential. This
conclusion is reached starting from their Eq. (5).
This equation is obtained from their Eq. (1) by
means of a partial integration which is not justified
in the limit Ima —+0, because the wave function
presents a branch point in the integration path. In
other words, the differential operator V cannot be
transferred, in the calculation of the expectation
value

(f!V (1 a(r))V—! f),
to '. he bra (f!,as it does not belong to the domain
of V.

In the solution of the Schrodinger equation with a
conventional potential, the question of the domain
of definition of the Hamiltonian does not play a
relevant role and is usually ignored. For velocity-
dependent potentials, however, it becomes crucial, as
can be seen in our precedent example. As is well
known, ' the Schrodinger Hamiltonian with a real
conventional potential is a symmetric operator in its
natural domain of definition, D(H)=CO (R ) (in-
finitely differentiable functions with compact sup-
port), but it is not self-adjoint because the domain of
definition of its adjoint is larger. It can admit,
nevertheless, only one or a family of self-adjoint ex-
tensions (according to the common value of its two
deficiency indices) and one of them is to be selected
by imposing the boundary conditions. In the case of
a velocity-dependent potential as given in Eq. (3),
the Hamiltonian is also symmetric in Co (R ) for
real A and admits self-adjoint extensions. However,
solving the Schrodinger equation with complex A
and then making ImA —+0 gives the spectrum of an
extension of H but, as it is obvious from the fact
that the eigenvalues are not real, not of a self-adjoint
one. This explains the great differences between the
spectra obtained by making IrnA ~0+ or ImA ~0
or taking for the wave function on the cut the mean
of its values above and below it. This last procedure
guarantees the reality of the eigenvalues and allows
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us to ensure that we are dealing with a self-adjoint
extension of the Hamiltonian.

In order to understand why the spectra of the
Hamiltonians considered by MGF in their two ex-
amples are so different from that obtained in the
model we are considering, it is interesting to per-
form a transformation that was proven to be useful
to relate a velocity-dependent potential to an
"equivalent" energy-dependent one, in the S-wave
case. The transformation consists in replacing the
radial wave function f(r) by another related func-
t1on
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FIG. 4. Energy-dependent potentials "equivalent" to
the velocity-dependent ones mentioned in the text of
shapes:

(a) a(r) =1.80(R —r),

(b) a(r)=1.8(1—r /R ),

(c) a(r) =1.8(1—r2/R2)0(R —'r).

The value of the energy to which they correspond is indi-
cated by a horizontal dotted line.
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X(r)=[ l a—(r)]d f(r) /dr,

which has essentially the same asymptotic behavior
as g(r) and gives, therefore, the same information as

i'(r) about bound states and phase shifts. That
function obeys the Schrodinger-type equation

d X(r)/dr +(2lr)dX(r)/dr + [k —U(r)]X(r) =0,

with the energy-dependent potential

U(r) =2lr ka(—r)/[ l —ct(r)].

We have represented in Fig. 4 the three potentials
U(r) equivalent, respectively, to the velocity-
dependent ones considered by MGF and by us. In
the first case it can be seen that, if the binding ener-

gy increases, the intensity of the (attractive) poten-

tial increases even more, it being possible in this
manner to have an infinity of bound states. In the
second case, increasing the binding energy results in
a more attractive potential for 0&r &ro, more
repulsive in the range ro ~ r &R and more attractive
for r & R. The repulsive part is overcompensated by
the attractive one and an infinity of bound states re-
sults also in this case. For the third case, however,
the equivalent potential does not change with the
binding energy for r & R, where it remains repulsive.
Bound states of indefinitely high energy cannot be
found for a given intensity A of the velocity-
dependent potential.
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