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The angular distribution and the excitation function of the reaction "O(m+, ~ )"Ne (dou-

ble isobaric analog state) can be well understood in the framework of a coupled-channel dif-

fractive scattering theory provided we include higher-order processes. Use of a scaling

theory a11ows an essentially parameter-free calculation of these processes and makes possible

the study of effects arising from finer aspects of nuclear structure such as the core excita-

tion of ' O.

NUCLEAR REACTIONS "O(m.+,m )"Ne (DIAS) at T =50—300
MeV; excitation functions; elastic and double-charge-exchange differen-

tial cross sections; effects of two-nucleon processes and nuclear structure.

I. INTRODUCTION

Pion-nucleus double-charge-exchange (DCE) reac-
tions are of special interest in that the leading
dynamical process involves the scattering of the
pion by two nucleons. An understanding of pion
DCE reactions may therefore give us new informa-
tion about the two-nucleon aspect of nuclear dynam-
ics. Several pion DCE experiments leading to dou-
ble isobaric analog states (DIAS) have been per-
formed at the Clinton P. Anderson Meson Physics
Facility (LAMPF). ' In the case of
' O(m+, n )' Ne (DIAS), differential cross sections
were measured between 5' and 40' for pion energies
of 164 and 292 MeV. Since the initial and final nu-
clei are analogs, this DCE process is a coherent one
and should be well explained by diffractive scatter-
ing theories. The simplest consequence is that the
first minimum in the angular distribution, 8;„,
should normally occur at a smaller angle for higher
incident pion energy. But inspection of the data in
Figs. 1(a) and (b) shows just the opposite, well out-
side of experimental error. This paradox has puz-
zled many researchers. For T =164 MeV, the ex-
perimental 8;„is found to be at -20'. However,
nearly all published calculations using a realistic size
for ' 0 give 8;„=30'—40', quite independent of
whether the calculation is made with on1y the ana-

log intermediate state or with the inclusion of non-

analog intermediate states. ' Oset et al. examined
'

nuclear structure effects by using sd-shell configura-
tion mixing for the valence neutrons while assuming
an inert ' 0 core. They found that 8m;„was insensi-
tive to the various admixtures used. One may ask,

therefore, is the DCE reaction diffractive? In this
work we show that the DCE data can be accounted
for by diffractive scattering theory, provided the re-
action mechanism and the nuclear structure are
treated properly.

In the next section, we develop the basic theory
for DCE reactions leading to DIAS. We introduce
into our theory a generalized second-order pion-
nucleus interaction. By the construction of model
space, the diagonal matrix elements of this interac-
tion are the second-order pion-nucleus optical poten-
tials in the corresponding elastic channels, while the
off-diagonal elements are irreducible two-nucleon
processes involving pion single-charge exchanges
(SCE) and double-charge exchanges. From the ana-
lytic structure of the theory, we see that these two-
nucleon processes, interfering with the conventional
sequential one-nucleon-SCE processes which involve
only valence nucleons, can have important effects on
calculated DCE cross sections. Owing to the lack of
systematic pion-' 0 elastic scattering data at pion
energies between SO and 300 MeV, we use an isospin
scaling model to construct the second-order pion-
nucleus interaction for n+ '0 and .its-analog sys-
tems from a knowledge of the previously determined
pion-' 0 second-order optical potentials. The basic
dynamical assumption in the scaling model is that
true pion absorption represents the dominant two-
nucleon reaction mechanism across the (3,3) reso-
nance region. Theoretical results are given in Sec.
III. We see that our theory gives a satisfactory
description of both the 5'-excitation function and
the angular distributions of the DCE reaction
' O(sr+, m )' Ne (DIAS) at various energies. Our
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FIG. 1. (a) Angular distributions of the reaction ' O(m. +,m )&sNe (DIAS) at 164 Me&. Data are from Ref. 1 (0) and
Ref. 3 (O). The data of Ref. 1 were transformed into the laboratory system. The dashed curve represents theoretical re-
sults obtained without the inclusion of the p'-dependent interaction. Results obtained with the inclusion of the p'-
dependent interaction based on true pion absorption alone are shown, respectively, as the dotted-dashed curve when the
inert-core nuclear model ls used and as the solid curve when the core excitation model ls used (b) Angular dlstributlons of
the reaction ' O(e.+,e )' Ne (DIAS) at 292 MeV. Data are from Ref. 3 (0). Notation for curves is the same as for pig.
1(a).

theory is equally able to describe the available m +-
' 0 elastic scattering differential cross section data.
It is noteworthy that no adjustable parameter was
used in these calculations. We also discuss, in par-
ticular, effects arising from the inclusion of the
two-nucleon reaction mechanism and from nuclear

'

structure details such as the core excitation in ' O.
Finally, we summarize our findings in Sec. IV.

II. BASIC THEORY

We use a momentum-space coupled-channel for-
malism. For this study, we define a model space
containing three elastic channels: (a) rr+ '0 (g.s.);-
(1) m

-' F (IAS); (c) n 'Ne (DIAS-). Forrnal elim-
ination of other channels leads to three coupled in-

tegral equations of the form

y +y Go(+)~

where ~ and P are, respectively, the scattering
operator and an effective interaction. We decom-
pose P into its strong and Coulomb interaction
components P"= V, + V, . In the model space, the

isospin-conserving V, is complex and energy-
dependent, while V, is real and breaks the isospin
symmetry. We can identify the diagonal matrix ele-
ments of V, with the tr-nucleus optical potentials in
the corresponding elastic channels. s The off-
diagonal matrix elements of V, are the various SCE
and DCE interactions coupling the elastic channels.
Once the interaction P" is determined, we solve the
coupled equations with appropriate boundary condi-
tions to obtain the elastic and charge-exchange cross
sections.

For nuclei with isospin T & 1, the strong interac-
tion has the general form

Vg
——Vp+(I T)V)+(I T) V2

in the isospin space. Here I and I are, respectively,
the pion and nuclear isospin operator. In the litera-
ture, Vp, Vt, and V2 are, respectively, referred to as
the isoscalar, isovector, and isotensor interactions.
For the Coulomb interaction, we use the expression

V, = IsZ;u, —(T—2 +T)(sT T+s)hb

+(T+T3)(T 1+T3)4 l2,
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where I3 and T3 are the third component of I and
T. Z is the nuclear charge operator having the
property Z ~i)=z; ~i), where z; is the nuclear
charge in the channel i. We have z, =8, zb ——9, and
z, =10. The u, is a unit Coulomb potential taken to
be the potential between a m+ and a positive charge
distributed uniformly on a sphere of radius R, . We
take R, =3.6 fm. The quantities ibb and 5, denote,
respectively, the mass differences, corrected for the
excitation energy of channels b and c with respect to
channel a. In the present case hb ———1.92 MeV and
b„=6.1 MeV. It is easy to show that in the isospin
space the matrix elements of the full interaction P"
are given by:

~aa= Vo —V~+2V2+»c ~

&bb ——Vo+ 2 V2+ Ab,

cc = Vo Vi +2 V2 —10u +kc,

F',b=P b,
——V( —Vz,

~bc= ~cb = Vi —V2

and

P ac=I „=V2 .

We now proceed to show how the quantities Vo,
V~, and Vz, and whence the full interaction P, can
be determined from a knowledge of the pion-nucleus
optical potentials. We introduce the optical poten-
tials for the n"-' 0 systems (i =+,0, —) by using the
relations

V,p, , = (8, ' O(g.s. }
~

V,
~
H, ' O(g. s. ) ) .

Standard angular momentum algebra calculations
lead to the simple result

r

Vp
1

T (2T 1)—
TT(2T—+ 1) TVop—~, +

1—T —1 T Vopt o

1 —2 1 V,
J

V2
I

where T is the nuclear isospin. (T=1 for ' O.) It is
useful to expand both sides of Eq. (2} by defining

Vop, g
——g Vo~pI g. (i =+,0, —)

and

Vi ——g Vi~"' (j=0,1,2) .

Here V,'~', ; denotes the nth order m'-' 0 optical po-
tential. The linearity of Eq. (2) suggests that the re-
lations between Vp, V&, V2, and the optical poten-
tials hold at each order of the expansion. We em-
phasize that for optical potentials we are using an
expansion in the number of target nucleons that in-
teract with the projectile. The second-order optical
potential refers, therefore, to that part of the optical
potential which involves the pion interaction with
two nucleons and which cannot be reduced to one-
nucleon processes.

Although we solve the coupled integral equations
to all orders, we can gain insight into the DCE reac-
tion by examining the leading terms in the iteration
of Eq. (1). We write, therefore, the DCE amplitude
in the form

(2)

Consequently,

( p (2)+p (1;2)GO(+)p (2)ac=( ac aa a

+~(2)GO(+ )~(1;2) y (1)GQ(+)~(2)
ac c cc + ah b bc

+y (2)GO(+)~(&)+ ~(2)GO(+)y (2) y
ab b bc+ ab b bc j

+y (&)60(+)y (&)
ab b bc+ '

where

(4)

I

for V',z', , that are proportional to tp where t is the
mN scattering amplitude and p the nuclear density.
Consequently, when only the V,"~', ; are present in
the theory, the leadin~ contribution to the DCE re-
action comes from P,b Gb P b, or two sequential

—1) o(+) —(1)

one-nucleon SCE processes via the analog channel b.
However, analyses of vr-nucleus elastic scattering" '
have shown the importance of second-order optical
potentials. The V',„', ; will lead to Vo', V'~ ', and
V2

' which are, in general, not equal to zero. Thus,
when two-nucleon processes are included in. the
dynamical calculation,

One can show' that

(3) The sum of the amplitudes inside the curly brackets
can be of strength comparable to &,be Fb, .
By construction, P „represents the DCE processes

(2)

on two valence nucleons via nonanalog intermediate
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states. On the other hand, P,~ and P ~, are the(&) (2)

two-nucleon SCE processes involving nonanalog in-
termediate states in which valence as well as core
nucleons participate. The discussion above shows
the connection between pion charge exchanges on
core nucleons and the pion-nucleus second-order op-
tical potential. Conversely, the observed importance
of the second-order optical potential in the analysis
of elastic scattering is a strong indication that any
realistic DCE theory Inust take into account pion
charge exchanges on core nucleons.

As we can see from Eq. (2), a complete knowledge
of the set of potentials V,~, ; (i =+,0, —) leads to a
unique set of values for Vo, Vi, and Vz, and, hence,
to a definite prediction of the DCE cross sections.
Accordingly, we start our analysis with the deter-
mination of the V,p, ;. Our approach differs from
the snore commonly used one in which the p-
dependent Vo', V'i ', and V2' are treated as three
complex quantities, determined by fitting simultane-

ously the elastic and charge-exchange differential
cross sections. Clearly this latter approach can no
longer be used to predict DCE reactions, and it ob-
scures nuclear structure effects. In the present
study, we calculate the Voz', using a microscopic
theory' and determine the V,~', ; from a knowledge
of the m- 6 second-order optical potential by

means of an isospin scaling model. (The need of a
scaling model is due solely to the lack of systematic
experimental information on ~ '-0 elastic scatter-
ing. ) A brief description of the scaling model is in
order.

In most studies the phenom enological
momentum-space pion-nucleus second-order optical
potential has been expressed in the form

V,'p', (E;k', k)=KM(E, 8) g p~p2(q),
a,P+a

where E is a kinematic factor and E, 8, and q are
the energy of the system, the pion scattering angle,
and the momentum transfer, respectively. The nu-
clear structure information is contained in the form
factor p~is ( q ), which is the Fourier transform of the
product p (r)pir(r) of the single-nucleon density dis-
tributions of the nucleons a and P. The function
M(E, 8) has the meaning of an auerage interaction
strength between the pion and a nucleon pair. A
standard parametrization is

M(E, 8) =B(E)+k 'kC(E),

where 8 and C are complex quantities determined
from a fit to elastic scattering data. For ' 0, we
separate the second-order potential into three terms:

V,'p', , (E;k', k)=K M;„(E8) g p~ p (q)+M(~(E, 8) g p~ p (q)+Mi„„(E,8) g pe p (q)
a»+a ac»u a„,P„~a„

where i (=+,0, —) denotes the pion charge state.
%e have used the subscripts U and c to label the
valences and core nucleons. For example, M;„,
represents the interaction strength between ~' and a
valence-core nucleon pair averaged over all possible
isospin states associated with the pair. In our scal-
ing model we take Mi „to be given by the M func-
tion of vr-' 0 scattering, and assume that

Mg vc =q; „,(E)Mi „(E,8)

Mi, vv ="li, (Ev)Mvic(E~c8) .
,

Here the q; are the scaling factors. Using the nota-
tion of Ref. 8, we can write

ri; „,(E):S(m'(nv Ec ) )/S(ri(N—

chic

)).
rl;, „„(E)—:S(1T'(nn))/S(n. (N, N, )) .

The 5 and S are the energy-dependent strength func-
tions in isospin space. They are functionals of ele-
mentary pion-nucleon amplitudes, and can be deter-
mined once a specific reaction mechanism is de-
fined. We refer to Appendix A for detailed discus-
sion and notation. We can see that the use of the
scaling method is facilitated by the separation of the
nuclear form factor from the interaction strength in
the par ametrization of the second-order pion-
nucleus optical potential. %e emphasize that the
scaling method allows us to obtain the second-order
optical potentials for m'-' 0 systems (i =+,0, —)
from a knowledge of the second-order pion-' 0 opti-
cal potential, and thus, through the use of Eq. (2),
the p -dependent lsoscalar, isovector, and isot;ensor
components of the pion-nucleus interaction.

We have noted that two different reaction
mechanisms can contribute to the p term of the
pion-nucleus potential, namely, the absorption and
reemission of a pion by a pair of nucleons, and the
scattering of the pion by two short-range-correlated
nucleons. Thus, more generally, we have
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g;(E)=[1—X(E)]q";(E)+X(E)rP(E).

Here g; and g; are, respectively, the scaling factors
calculated according to true pion absorption and
short-range correlations processes. The quantity
X(E) [0&X(E)& 1] takes into account the relative
importance of these two reaction mechanisms. Con-
sequently, when only the true pion absorption con-
tributes, we have, by definition, X =0. The analysis
of electron scattering data and the study of high-
energy pion-nucleus elastic scattering indicate that
short-range correlation effects may become impar-
tant only at momentum transfer q & 2.5 fm ' (Ref.
13). Since this large q value cannot be reached in
pion scattering from ' 0 at pion energies below 180
MeV, we can assume that contributions to the
phenomenological pion-' 0 second-order optical po-
tential at T & 180 MeV arise from true pion absorp-
tion alone, i.e., X =0. The value of X at higher en-

ergies cannot be set unambiguously, since the report-
ed quantitative effects of short-range correlations on
calculated electron-nucleus and hadron-nucleus elas-
tic scattering cross sections are strongly model
dependent. We therefore use X =0 at all energies in
our calculations and look for qualitative evidence
for short-range correlations by comparing theoreti-
cal calculations based on true pion absorption alone

with the experimental DCE differential cross sec-
tions at 292 MeV.

In addition to the usual inert-core approximation,
we have examined nuclear structure effects by as-
suming that ' 0 core is not inert. We use a coex-
istence model and write':

+b
I (2sinb=o )+c I q'oo) .

where %pp is a collective state containing the excita-
tion of core protons. Again, for the purpose of test-
ing our reaction theory and the scaling model, we do
not vary the coefficients in Eq. (6) and we use the
wave function determined in Ref. 14, which corre-
sponds to a =0.842, tp =0.440, and c = —0.313.
We have used harmonic oscillator wave functions
for (ldq~q) and (2s&&z) and as the spherical basis
for expanding the intrinsic deformed wave functions
in the coexistence model. For the other nucleons,
we used the DME Hartree-Fock (HF) wave func-
tion. ' The harmonic oscillator parameter was
chosen to give for ' 0 a root mean square (rms) ra-
dius r, = 28 5fm for the neutron distribution. '

80th the Vppt p
and V,'p', , were calculated with these

wave functions. When the inert-core assumption
was used, we employed DME HF wave functions
for all the nucleons.
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FIG. 2. The m+-"0 elastic differential cross sections at
50, 164, and 292 MeV. Data at 164 MeV are from Ref.
17. Theoretical curves are obtained with the inclusion of
the p -dependent interaction based on true pion absorption
and the inert-core nuclear model.

III. RESULTS AND DISCUSSION

The m+-' 0 elastic cross sections predicted by the
scaling model based on the true pion absorption
mechanism and the inert-core nuclear model are
shown in Fig. 2 for pion energies 50, 164, and 292
MeV. Inclusion of core excitations gives very simi-
lar elastic cross sections that cannot be distinguished
from the curves of Fig. 2. The second-order pion-
' 0 optical potential parameters were obtained from
a smooth interpolation between the values deter-
mined in Ref. 12. The interpolation procedure is
outlined in Appendix B. It is of interest to check
whether the parameters determined by interpolation
are reasonable. For this purpose, we further com-
pare the theoretical cross sections with experimental
m+-' 0 elastic scattering cross sections at 230 MeV
(Fig. 3). Here, the solid curve represents the theoret-
ical cross sections calculated with the same assump-
tions of reaction mechanism and nuclear model as
those used in obtaining the curves of Fig. 2. Again,
theoretical results corresponding to the inclusion of
core excitation are not shown, since they are very
similar to the ones represented by the solid curve.
Although the calculated elastic cross sections are in-
sensitive to this finer aspect of the nuclear structure
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FIG. 3. The m+-"0 elastic differential cross sections at
230 MeV. Data are from Ref. 18. Notation for curves is

the same as for Fig. 1.

model used, they do depend appreciably on whether
or not the V p$ f are included in the theory. To illus-
trate this dependence, we also present in Fig. 3
theoretical cross sections calculated with V,"~', ;
(dashed curve). The good agreement of available
data' ' at 164 and 230 MeV with the calculations
based on the scaling model provides some support
for the latter. It would be of interest to see if our
predictions could be confirmed by measurements at
other energies.

In Fig. 1(a) we have represented the inert-core
model DCE cross sections obtained with and
without the p term by dotted-dashed and dashed
curves. The most remarkable effect of the p term is
to move the 8;„at 164 MeV from -30' to -23'.
However, both these curves underestimates the mag-
nitude of the experimental differential cross sec-
tions. The coexistence model gives a better result
for the forward-angle cross sections. Results ob-
tained with the true pion absorption mechanism and
with the nuclear wave function of Ref. 14 are shown
as the solid curve. We also found that using the nu-
clear wave function of Ref. 14 but with the p-
dependent interactions turned off led to a 8;„very
similar to that of the dashed curve. In other words,
the use of a nuclear wave function of the form given
by Eq (6) mainl. y affects the magnitude of DCE

cross sections, in agreement with the general find-
ings of Ref. 7 where the various trial nuclear wave
functions used correspond to the special case of
c =0. Thus, we can ascribe the drastic change in
the position of 8;„ to the inclusion of the p-
dependent interaction. The calculated DCE angular
distributions at 292 MeV are shown in Fig. 1(b).
Notation for the curve is the same as that for Fig.
l(a). Again, the theoretical results are improved by
the use of the scaling model and a nuclear wave
function with core excitation. We also note that the
solid curve already gives a reasonable description of
the differential cross sections, indicating that there
is no compelling need for including p terms based
on short-range correlations. A comment of the posi-
tion of 8;„at 292 MeV is in order. Our theory (the
solid curve) predicts a 8;„=20', wtuch is not incon-
sistent with the gross feature of the data. However,
we see the importance of experimental errors in the
differential cross section near 8=28'. lf improved
measurements in this neighborhood still led to
19;„=25', then it could be interpreted as evidence
for the need of including p -dependent short-range
correlations, which would increase the calculated
8;„.For example, with the inclusion of core excita-
tion and the use of X=0.5 (i.e., an equal admixture
of true absorption and short-range-correlation con-
tributions to the p -dependent interaction), we obtain
a good fit to the data with 8;„24'and a change of
the second maximum of the angular distribution
from -30' in Fig. 1(b) to -34'. (To avoid crowd-
ing in the figure, we present the calculated differen-
tial cross sections for X=0.5 in Table I.) Compar-
ing Table I and the solid curve in Fig. 1(b), we note
that the introduction of short-range correlations has
only a weak effect on the magnitude of small-angle
differential cross sections. Since, as discussed in
Sec. II, the value of X cannot be set unambiguously
at pion energies g 180 MeV, we believe a remeasure-
ment of the large-angle differential cross sections at
292 MeV would be of great significance in offering
an insight into the role of short-range correlations in
pion DCE reactions. In the absence of more de-
tailed data in the vicinity of the cross section
minimum, we are reluctant to attach any further
significance to the X value derived by this pro-
cedure.

Calculated 5' excitation functions are given in
Fig. 4. We observe again the important effects due
to the p term, especia1ly at low energies. The
enhancement of the cross section at -140 MeV is
due directly to the large Im V,&,] of the rr '0 sys--
tem, ' hence the large Im[ V,„',] of the m-' 0 system,
which indicates that an important portion of the
pion flux goes from the elastic channel to the DCE
channel. We find that the spin-flip part of the
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TABLE I. The differential cross sections of ' O(m+, ~ )' Ne (DIAS) at 292 MeV, calculat-

ed with the inclusion of core excitation and with X=0.5.

~lab 0' 50 10' 15' 20' 24' 30' 34' 40'

do/d0
(p,b/sr) 2.20 1.91 1.09 0.47 0.094 0.053 0.13 0.154 0.104

sequential SCE processes on valence neutrons gives
very small contributions. It has no effect on 8;„at
164 and 292 MeV and its corrections to the cross
sections represented by the dashed curve in Fig. 4
are —2%%uo, —15%%uo, and —8% at pion energies 50,
150, and 200 MeV, respectively, in qualitative agree-
ment with Ref. 19. We have included the s-, p-, d-,
and f-wave nNint. eraction in the calculations. At
292 MeV, inclusion of the nNd a.nd f waves in-
creases the calculated cross sections by -20% at
forward angles. The curves in Figs. 1—4 are ob-
tained with the CERN-TH phase shifts, which
give cross sections -4% lower than those obtained
with Rowe, Salomon, and Landau (RSL) phase
shifts at T =80—150 MeV and yield similar re-
sults at other energies.

It may be helpful to outline the connection be-
tween the theory presented in this work and the
two-amplitude parametrization of the pion-' 0 DCE
excitation function used by Greene et al. In the
latter work, the pion-' 0 DCE amplitude was
parametrized as

A (E)+B(E)= a(E)exp[i/, (—E)]

+ b (E)exp[iyb(E) ],
where the quantities a, b, P„and Pb depend on the
pion energy E The first .term represents the pion-
' 0-core DCE amplitude and the second term
represents the amplitude corresponding to pion
DCE on two valence neutrons. The authors of Ref.
3 set the quantity

~

B(E}
~

equal to the theoretical
cross section calculated in Ref. 4, which was based
solely on two subsequential SCE processes. The
magnitude of the first amplitude was determined by
requiring that (a(E}} be equal to the measured 5'
pion-' 0 DCE differential cross section at pion en-

ergy E The quantit. y P, (E)—Ps(E), denoted b,P,
was then treated as a free parameter and was deter-
mined by fitting

~

A (E)+B(E)
~

to the measured 5'

DCE differential cross section of the reaction
' O(n+, m )' Ne (DIAS) at each energy We reca. ll

that in our microscopic theory for DCE reactions
the p -dependent interaction necessarily contains
pion charge exchange on the valence as well as on
the core nucleons. In this respect our theory incor-
porates explicitly the basic physical ingredients that
underlie the parametrization of Ref. 3. Thus, it is

not surprising that the fitting procedure of Ref. 3
has yielded, for the 5' excitation function, results
similar to ours. &e note, however, that the
knowledge of the fitted value of b,P in Ref. 3 did not
lead to a quantitative prediction of the position of
8;„at 164 MeV. On the other hand, we are able to
obtain satisfactory description of the excitation
function and the angular distributions with one sin-

gle set of calculations. Since, as discussed in Sec. II,
the pion charge exchange on the valence neutrons
can equally proceed via p -dependent irreducible
two-nucleon processes which were not represented
by the theoretical amplitude of Ref. 4, the fitting
procedure of b,g(E) based on the use of B(E) inevit-

ably mixes, therefore, effects arising from the reac-
tion mechanism and from nuclear structure. By
providing a unified treatment of the p -dependent
interaction in elastic scattering and charge exchange,
our theory puts a constraint on the latter. It is pre-
cisely this aspect that makes possible quantitative
studies of nuclear structure effects such as those re-
lated to core excitations.

I10-

0
IO =

I

r

Cy
U

IO =

lo= y
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l20 l60 200 240 280 520
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FIG. 4. Excitation functions for the reaction
' O(~+,~ )"Ne (DIAS). Data are from Ref. 3. Notation
for curves is the same as for Fig. 1.

IV. SUMMARY AND CONCLUSIONS

The DCE reaction ' O(ir+, m )' Ne (DIAS) can
be explained in the framework of a diffraction
theory when two-nucleon processes and core excita-
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tion of the nucleus are included. Our study shows
the significant contributions to DCE processes from
the p -dependent interaction. Further, in contrast to
elastic scattering, the magnitude of calculated DCE
cross sections is very sensitive to the detailed com-
position of the nuclear wave function.

The isospin dependence of the pion-nucleus
second-order interaction on the ' 0 nucleus is deter-
mined through the scaling theory. Although the use
of a scaling model is necessitated solely by the lack
of systematic experimental ir-' 0 scattering data at
pion energies between 50 and 300 MeV, it does pro-
vide a test of our interpretation of the main origin of
the second-order pion-nucleus interaction. Our as-
sumption that only true pion absorption contributes
to the p terms is based on our observation that in
the (3,3) resonance region at least one third of the
pion-nucleus reaction cross sections are due to pion
absorption and that short-range correlation effects
are unimportant. The success of this dynamical
model in describing both elastic and charge-
exchange data at many different energies provides
some support for the latter. Inspection of Figs. 1

and 4 shows, in fact, no strong indication for the
need of including p terms due to short-range corre-
lation effects. On the other hand, we have pointed
out that improved large-angle differential cross sec-
tion measurements at 292 MeV can aid us in obtain-
ing more definitive information concerning such
correlation effects. Clearly, measuring DCE dif-
ferential cross sections at other higher energies, in
particular at large angles, is equally of value.

Theoretical input to this work was fixed accord-
ing to the values determined in previous stud-
ies' ' '; no adjustable parameter was used. We be-
lieve that our approach represents a useful alterna-
tive to that which treats the strength of the p-
dependent isoscalar, isovector, and isotensor terms
as adjustable complex variables. There have been a
number of discussions about the effects of pi terms
on DCE reactions, ' but in those discussions the nu-

clear structure effects arising from core excitations
have not been elucidated. The main result of this
work is the separation of the effects due to the p-
dependent reaction mechanism from those due to
nuclear structure. Further, our theory is able to
describe, in the main, both the shapes and the mag-
nitudes of the excitation function and the angular
distributions. The present approach thus provides a
useful framework in which quantitative studies of
nuclear structure can be carried out. Since the DCE
processes connecting the DIAS's involve transitions
which are absent in electron- or proton-induced re-
actions, we believe that pion DCE reactions
represent a valuable tool for nuclear structure stud-
ies. On the other hand, we are greatly encouraged

by the results of this work to carry out microscopic
calculations of second-order pion-nucleus interac-
tions based on true pion absorption. We will also
further test our model by analyzing DCE reactions
on other nuclei.

APPENDIX A

We have defined scaling factors rt in terms of ra-
tios of strength functions. In this appendix, we re-
capitulate the notation and calculational steps em-
ployed in Ref. 8 for the determination of these
quantities. We use

(NN) =
I (nn), (—np), (pn), (pp) j

to denote the four physical states that can be formed
with two nucleons in isospin space, where n stands
for a neutron and p for a proton. The combinations
(np) and (pn} are distinct since they are two orthog-
onal combinations of states of definite symmetry,
namely,

~
(pn)) =

t ~

t = I)+
~

t = 0) j/v 2

and

where t denotes the total isospin of the pair. One
defines four basic strength functions according to

S(n'(nn)}= (H(nn)
i S,» i

n'(nn)),

S(m~(np) }=g (n'(np)
~
S,» ~

m'(np)),

(Al)

(A2)

S(ir'(pn)}= g (m'(pn)
~
S,» ~

m'(pn)),

and

S(n"(pp)}=( '(pp) ~S.
~

'(pp))

In these equations, i denotes the pion charge
(i =+,0, —) and S,» the interaction between n' and
two nucleons. The omission of t'&t transitions in
Eqs. (A3) and (A4) is justified by the very small con-
tributions of these transitions to nuclear reactions,
as was shown in Sec. III of Ref. 8. Further, in cal-
culating the matrix elements of S,», we have found
it convenient to work with states defined by

~
[nn]) =

~
(nn)),

[[np]) =~2 /(np)),

and

I [pp] &
=—

I (pp) &

It is easy to see that

This work was performed under the auspices of
the U. S. Department of Energy.
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S(m'(nn)) =S(m'[nn]),

S(m'(pn)) =S{n'(np) )=S(H[np])/2,

and

S(8(pp)) =S(H[pp]) .

Again, Eqs. (A7) and (A10) can be readily evaluated
with the aid of Tables I and II of Ref. 8. One can
easily verify that the S(H(N, N, )) do not depend on
the pion charge state, as expected, and can be simply
denoted as S(m (N, N, ) ).

S(H(N, N, ) }= —,IS(w'(nn) )+S(n'(np})

+S(~'(pn))+S(e(pp)) j, (A6)

= —, I S(e'[nn])+S(n"[np])

+S(n'[pp])) . (A7)

Similarly, we define an average strength function for
the interaction between a pion and a valence-core
nucleon pair by

S(m'(n„N, ) ):——,tS(H(n„n, ))+S(n'(n„p, ))I,
(A8)

= —, IS(m'(nn))+S(m'(np)) I, (A9)

= —, [S(n"[nn])+ —,S(m'[np])J .

(A 10)

Strength functions in this latter [ ] representation
have been determined for two-nucleon processes as-
sociated with either true pion absorption or short-
range correlation, and are given in Tables I and D of
Ref. 8. They are functions of basic pion-nucleon
scattering amplitudes which are energy dependent.

We now proceed to connect the average strength
functions S(n(N, N, )) and S{m'(n,N, )) in this work
to the basic strength functions discussed above.
Here the subscripts v and c refer, respectively, to
valence and core nucleons. Similar to (N, N, ),
which stands for a group of four physical states aris-
ing from two core nucleons, the

(n„N, )=—[(n„n, },(n„p, ) I

is an abbreviated notation for a group of two physi-
cal states associated with a valence-core nucleon
pair. The strength function averaged over all four
states of two core nucleons is therefore equal to

S(H(N, N, ))= , I S(m'(n, —n,) )+S(n'(n, p, ) )

+S(m'(p, n, ))+S(m'(p, p, ))j .

(A5)

Once the sum over all possible states of the pair is
made explicit, the presence of the subscripts v and c
is no longer necessary since, by virtue of the scaling
assumption, strength functions are independent of
nucleon orbits. We can therefore write

APPENDIX 8

In this appendix we give the formulae used for in-
terpolating between the second-order pion-oxygen
optical potential parameters determined in Ref. 12.
The energy dependence of the imaginary part of the
parameters is given by

Im[F(co)] =1m[A/(co —cos+i I'/2)],

where

F(co)=B(co)+k C(co)

or k C(co). Here co is the total pion energy, in MeV,
in the c.m. frame of the pion-' 0 system, and

I /2=2y(kR)'/[1+(kR)']

with k being the pion momentum, in fm, in the
c.m. frame of the pion-' 0 system. For

F(co)=B(co)+k C(co),

we have A =847.9X10 " fm MeV, co+ ——285.3
MeV, y=21.59 MeV, and R =1.203 fm. For
F(co)=k C(co), the parameters are A =849.3X10
fm" MeV, co+ ——285.7 MeV, y=23. 12 MeV, and
R =1.156 fm.

The energy dependence of the real part of the
second-order optical potential parameters is given by
a dispersion relation:

ReF(co)=, dco'+ background .
" Im[F(co')]

Here H stands for the principal-value integration.
Contributions to the background term are
numerous. They come from the bound states
below the threshold as well as from contributions to
Im[F(co )] in the principal-value integration at ener-
gies co' greater than 292 MeV, the maximum avail-
able pion energy in Ref. 12. These high-energy con-
tributions are not included in the form of Im[F(co)]
given above. In this work, we do not attempt to cal-
culate the background term from first principles; we
choose instead to parametrize it with a polynomial
such that it provides a smooth interpolation between
the previously determined parameter values. We
write, therefore,

background = ao+a&k+a2k +a3k

+a4k4+a, k' .
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For

F(to) =B(to)+k C(to),

ao ——0.0382 fm , at = —0. 194 fm , a2 ——0.377 fm ,
a3 ———0.342 fm, a4 ——0.145 fm, and aq ———0.232
fm . For F(to)=k C(to), we have ao ——0.0114 fm",
at =—0.0652 fm , a2 ——0. 142 fm , a3 =—0. 142

fm, aq ——0.0657 fm, and aq ———0.0110 fm . We
have noted that theoretical n.-' 0 elastic cross sec-
tions obtained with the interpolated parameters are
almost identical to those reported in Ref. 12. The
m+-' 6 elastic scattering cross sections based on the
interpolated parameters and the scaling model are
compared to available data in Figs. 2 and 3.
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