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Weak nuclear interactions in a hybrid baryon-quark model: p-p asymmetry
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The hybrid multi-baryon-quark shell model of nuclei is developed for the study of weak

interactions in nuclei. Application to the parity violating asymmetry in p-p elastic scattering
is carried out.

NUCLEAR REACTIONS Weak asymmetry in elastic pp scattering.
Energies up to 800 MeV. Quark model of weak interactions in nuclei.

Quark structure of nuclei.

I. INTRODUCTION

For many years boson exchange models have been
used to provide a theoretical description of weak in-
teractions in nuclei. Included in these studies is the
parity violating asymmetry in pp elastic scattering.
Experiments on the total asymmetries have been
carried out' at 15, 45, and 6000 MeV. The theoreti-
cal values at the lower energies are not in obvious
disagreement with the data, while at 6 GeV the cal-
culations are an order of magnitude too small. '

From a fundamental point of view these boson ex-
change models for weak nuclear interactions are not
satisfactory. The physics of short distance plays a
crucial role in many of the weak processes, such as
the pp asymmetry. In the traditional boson ex-
change model the short-range weak interaction is de-
rived by using p and co exchange from essentially
structureless nucleons. This picture has not been
justified in light of modern views that nucleons are
composite quark structures with a radius of about 1

fm. Even as a phenomenological model this theory
is cumbersome, since six parameters are needed in
the weak Hamiltonian for p, co exchange.

Recently, there has been a great deal of interest in

developing a quark description of nuclear physics at
short distance. There is now an extensive body of
work on the N-N interaction, and a number of stud-
ies of quark structure using various reactions. Dur-
ing the past year a hybrid multi-baryon-quark shell
model, based on projection operators in coordinate
space, has been introduced. This model potentially
could provide the basis for a quantitative description
of the short-distance (quark) structure of nuclei.
However, it has phenomenological aspects which re-
quire that a number of processes be studied and
compared to experiment in order to complete its

development. During the past year, applications
have been made to electromagnetic processes in the
deuteron, pionic absorption, and the lifetime of A' s
in nuclei. There also has been significant develop-
ment of the theory.

In the present paper we develop the hybrid model
for the treatment of weak interactions in nuclei, and

apply this model to the pp parity violating asym-
metry. In Sec. II the general model for weak pro-
cesses is given. The theoretical treatment of the pp
asymmetry is given in Sec. III, and the results for a
specific model are discussed in Sec. IV.

II. EFFECTIVE %EAK INTERACTION
IN THE HYBRID MODEL

In this section we briefly review the traditional
meson exchange model and the hybrid model for
weak interactions in nuclei, and discuss their rela-
tionship.

H„,d ——V~+ Vp (la)

with V arising from pion and V& from p and co

exchange, and

A. Traditional model of weak interactions
in nuclei

The traditional weak interaction model used in
nuclear physics is a boson exchange model. In the
version which is generally used the form of the ef-
fective weak potential is taken from exchange of m,

p, and to mesons as illustrated in Fig. 1(a), with the
coupling constants as essentially free parameters for
the p, co terms. The potential has the general form
of
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V' = V (dd = l, b S =O,S =1)e Ir,
V&~

——IV~(M=0 I =1,bS =1)+V2(M=O, AS =1)+V3(bI =l,bS =0 S=1))e " /r (lb)

where V, V&, V2, and V3 are momentum dependent
operators. There are also contributions from inter-
mediate N excitations, as illustrated in Fig. 1(b),
but these terms are usually included as effective
weak interactions in the processes of Fig. 1(a). The
notation of Eq. (lb), e.g. , is that the parit violating
potential arising from pion exchange, V, changes
isospin by one unit, does not change the spin, and
operates in the triplet state. Often the p and co

masses are taken as m&
——m„=m„, as indicated in

Eq. (lb).
There are seven coupling constants in this model,

one for the pion term and six for the short range p, co

terms. The present program of weak interactions in

nuclei based on this traditional model involves both
the determination of the parameters of the weak
Hamiltonian as well as the calculation of the nuclear
matrix elements of this Hamiltonian. A systematic

program for the determination of the weak Hamil-

tonian parameters has begun, and considerable ef-

fort is underway in the implementation of this sys-

tematic program. '

In implementing this agenda, one takes advantage
of the fact that the coupling constants occur as

parameters for terms with different space-spin-

isospin structure. The hope is that by studying ex-

perimentally and theoretically a variety of nuclear
transitions and processes one can make use of the

great richness of quantum numbers found in nuclear

states to determine the individual coupling con-
stants. However, because of the difficulty of the ex-

periments much of the data is available for transi-

tions that require complicated nuclear structure cal-
culations.

Recently there has been progress in relating"'
this model of weak interaction based on meson ex-
change to quark quantum chromodynamics models.
In Ref. 9 it has been shown explicitly how one can
derive ranges of values for the constants needed for
the traditional model [Eq. (1)] of Fig. 1(a) from the
quark model and the standard model of electroweak
interactions. However, only the quark, gauge boson
processes involving the weak annihilation of the an-
tiquark in the meson, depicted in Figs. 2(a)—(c), are
included. Other important processes, such as that
depicted in Fig. 2(d), are not included. Most impor-
tant from our point of view is that the six-quark
processes of Fig. 2(e) are not directly included.

One should also note that the theoretical calcula-
tions in the traditional model involve short dis-
tances, for which there is a great deal of uncertainty.
Moreover, we believe that the physics of this tradi-
tional treatment at distances &1 fm is not con-
sistent with present concepts for the structure of
hadrons. This takes us to the hybrid model, where
we separate the interactions by projections in coordi-
nate space before we begin to analyze the individual
problems according to the quantum numbers in-
volved.

B. Hybrid two-baryon-quark shel1 model

In this subsection we present the hybrid model of
Refs. 4 and 7 as applied to weak interactions in nu-
clei. The method makes use of projection operators
in coordinate space to separate the multi-baryon sys-

N s N

I

I

I

I

(b)

(b)

(e)

FIG. 1. Boson exchange model of parity violating
nucleon-nucleon potential. S(F) means that the boson-
nucleon interaction is strong (weak). (a) one boson ex-
change, (b) two boson exchange.

FIG. 2. (a)—(d) Quark models of the weak boson-
nucleon interaction. The wiggly line represents a 8'{Z)
exchange, the dashed line a gluon exchange. (e) Six quark
weak interaction process.
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tern into an interior region where quark coordinates
are explicitly used and an exterior region in which
the quarks are confined to hadrons. Here we only
consider the two-nucleon system, but the generaliza-
tion to many-baryon systems can easily be done.

1. Effective weak interaction Hamiltonian

Using the projection operators P& and P& we
project the weak Hamiltonian into the exterior (had-
ronic) region and interior (quark) region

(~) (m)
+hadronic (2a)

(2b)

The projection operators are defined by the relative

I

separation, r, of the center of the two nucleons,
which is a well-defined variable either in terms of a
quark model description of the nucleons or a tradi-
tional description. The hadronic parts of the weak
interaction is to be used for r ~ ro, and the six-quark
part for r &ro, where ro is expected to be =0.8 fm
from the earlier work.

The exterior weak interaction must include pion
exchange and effects of two pion exchange, illustrat-
ed in Figs. 1(a) and (b). There might also be "tails"
of heavy meson contributions, but we do not consid-
er this here. Also, we include the two-pion contribu-
tions to the weak potentials, which involve E*inter-
mediate state excitations, as effective boson ex-
change contributions. Thus our model for the weak
interaction is

+6q~ r (ro

H =i(f /M)(r~Xr2)p(o']+0'2) [p,e /4nr]

(3)

(4)

and the H6 effective Hamiltonian is to be taken from the electroweak theory for quarks. We now discuss this
interior Hamiltonian, which is illustrated in Fig. 2(e).

The weak interaction between quarks arising from gauge boson exchange as illustrated in Fig. 3(a) has the
form

H' ' '= g Id x—Dr(x, M )T[J+(x)J"(0)]

where J&(x) is the quark current, DF the gauge boson propagator, and g the electroweak coupling constant.
Restricting ourselves to the b,S =0 sector, at low and medium energies the effective interaction for u and d
quarks, with the neglect of gluonic corrections, is given by the Weinberg-Salam model, ' ' with a neutral
current part,

HNc
' —— (1——, sin 8 )uy„u[uy"y5u dy"y5d]+ — (1——, sin 8 )dy„d[dyt'y5d —uy"y, u]

corresponding to the exchange of Z gauge bosons,
and a charge current part

Hcc = ~ Idy&uuy y5d+dy&ysuuy dIV2

0/, Z

I

I

l

I

I

I

corresponding to the exchange of 8' mesons. This
effective Hamiltonian is derived by using the W, Z
exchange mechanism between quarks, illustrated in
Fig. 3(a), and taking the limit as
M~ =M, &gmomentum transfer involved in the
calculation. The two parameters, 6
(1.03 X 10 '/M ) and sin 0~ (0.22) are well known.

However, this Hamiltonian, which is taken direct-
ly from the %einberg-Salam model for leptons, ' is

(e) (&)
FIG. 3. Weak quark-quark interaction. Wiggly line

H, Z; dashed line, gluon.
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sion is carried out for the time ordered product of
currents

T[J+(x)J"(0)]=QF(X .)8
J

where FJ (x ) are c-number functions and 8t are four
quark operators. Working at q2=M 2, where QCD
perturbation theory is accurate, the effective weak
Hamiltonian with all one-gluon loops, some of
which are illustrated in Figs. 4(b)—(f), is calculated.
The resulting Hamiltonian has the form

0
200 400

E, (Mev)
600 800

FIG. 4. Quark probabilities, Pt.q as a function of pro-
ton laboratory kinetic energy, E~. Here rp =0.8 fm.

not sufficiently accurate for application to hadronic
and riuclear weak interactions. This is quite evident

1

from the failure of the model to satisfy the EI = —,

rule in the hS =1 processes. The strong interaction
(gluon) corrections which are necessary to account
for this discrepancy can be carried out using renor-
malization group methods. ' Recently there has
been a good deal of effort to develop these methods
for the M=1 processes, ' and the resulting weak
interaction when used in the hybrid model seems to
give an accurate description of A decay in nuclear
matter. The M=O processes are more difficult,
but several theoretical efforts ' have now provided
effective weak Hamiltonians. We briefly review this
work to show how it applies to the hybrid model.

Returning to Eq. (5), an operator product expan-

The coefficients CJ satisfy renormalization group
(Callan-Symanzik) equations. These can be readily
integrated to obtain the final result:

Gr 16 a(IrI )H"= 'g C8, (9)
2 i 1 a(p) J J

where a(p) is the QCD running coupling constant,
p is the subtraction point (taken as 1 GeV, charac-
teristic of the masses with which we deal), the d~ are
anomalous dimensions, and 8t are the fully-dressed
quark operators. If the quark model which one has
available is a correct representation of the system,
then the HJ are just four-quark operators in that rep-
resentation. Thus to the extent that our hybrid
model is a good representation of the two-baryon in-
terior region, Eq. (9) provides an effective weak
Hamiltonian.

We use the results of Preston and Goldman' for
the CJ and dt and find that the effective weak Ham-
iltonian which is given in the lowest order given by
Eqs. (6) and (7), corrected for gluon processes, be-
comes

Hqq
' ' [u yt'u [0 4——02uy„y. su —0.185dy„y5d]+0. 333d y "dd y„y,d —0. 129u y "ud y„d I2

Hqq 1 562(uyuddyuy5u+uyuysddyuu)
2

' (10)

In summary, Eqs. (3), (4), and (10) complete our
current version for the effective weak nuclear in-
teraction in the hybrid model.

2. Wave functions

Using the same projection operators, I'& and I'),
as in the previous subsection, the two nucleon wave
function in channel a with energy E is given as

+NN(+) +NN (r) r & ro

where

g ' '(r)=p, p, c' ' '(r),
with pN being the internal 3q internal nucleon wave
function and 4NN'(r) the wave function describing
the relative motion of the two nucleons. Since the
nucleonic polarization is not explicit, fN'N'(r) is in
essence a conventional two-nucleon wave function.
The six-quark part of the wave function

=q~ {r,), r (r0,a(E) w (z)q (13)
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+ij,(k„r, )[z,x]J„
j (k r )[Y'IX].

&X~„[I'i&]J)

Xb„[y'I&]JI

where k are determined by the boundary condition

[' 1'+i'm 4v]su—race =0

giving color confinement. Note that the upper and
lower components are wave functions for a particle
in a uniform well. The functions P„are normalized
to unity over the volume of the bag. The bag radius
is also taken as ro.

The bag wave functions of Eq. (14) are simply a
convenient representation. The crucial parameters
are the C„and M (E) For the l.ow energy applica-
tions, such as in Ref. 4, there are only a few coeffi-
cients, which can be determined from experiment,
allowing one to calculate various low energy results
and make predictions. However, for scattering
problems over a wide range of energies one must
make use of theoretical models, such as that of Ref.
7. This is discussed further in the next section.

with

'Cq =Q C.q'6q

where V&(r;) are six-quark configurations com-
posed of products of single-quark bag wave func-
tions, P„(r;), C„are (energy-independent) relative
spectroscopic amplitudes for the nth configuration
in the channel a, and M (E) are the spectroscopic
amplitudes which give the probability and phase of
the six-quark part of the wave function in channel
a. The constant of proportionality is defined in Eq.
(21). The single-quark wave functions P„(r;) are
taken as MIT bag wave functions, '

~E(8)+—oE(8)
Ag(8) =

(rE(8)++Ox(8)
(15)

where OE(8)+' ' are the differential cross sections
at energy E with the beam proton helicity positive
(negative). The total p-p asymmetry defined as in
Eq. (15) with total cross sections has been measured'
at energies of 15, 45, and 6000 MeV. Theoretical
calculations using the traditional model at the lower
energies' are not in disagreement' with these re-
sults; however, the theoretical results at 6 GeV are
about an order of magnitude too small within the
range of consistent parameters in the traditional
model.

The hybrid model of the weak interaction has a
simple form for the p-p system. This is because the
long-range pionic weak contribution vanishes in this
application, as can be seen from Eqs. (lb) or (4).
Therefore the weak interaction Hamiltonian is

IIw(PV)(pp) ~w

entirely within ro, the interior quark region. Thus
in comparison to the traditional model' in which
there appeared unknown p and ~ coupling con-
stants, the effective Hamiltonian is given in a
parameter-free form by Eq. (10). Therefore, we can
concentrate on the development of the model for the
wave functions. In doing so we make use of the re-
sults of Ref. 7.

The asymmetry defined in Eq. (15) is given by'

III.p-p ASYMMETRY

The parity-violating asymmetry in p-p scattering
associated with the dependence of the cross section
on the helicity of the proton beam is an excellent
process for the application of the hybrid model de-
fined in the previous section. The asymmetry is de-
fined as

AE(8) =
Re[«011'100&*&00

I
&

I
10&+g& IM.

I
~'I lo&'& 1M. If 100&]

(16)

where (SM, IF'ISM, & is the strong scattering amplitude (parity-conserving) and (S'M,
I
f"ISM, & is the

weak (parity-violating) amplitude, with S being the channel spin. Since we wish to carry out the most accurate
calculations possible within our model, we avoid the calculation of the strong amplitude. As can be seen from
Eq. (lb), AE(8) depends upon an interference between strong and weak amplitudes, and there is a great deal of
structure in the E and 8 dependence of I'. A strong qq interaction which is known to comparable accuracy as
Eq. (10) for the weak qq interaction is not available. Therefore, we restrict ourselves in the present work to the
energy region E & 800 MeV, and use a phase shift analysis ' to obtain I".

For the determination of the parity violating weak amplitude we must introduce scattering states for the pp
system, g'&z' ', and calculate the matrix element of the weak Hamiltonian, with
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f (0) (y( —)

~

H
~

y(+))

We use a 5-function normalization for the plane waves

yPW( ) ei k ~ r
k (2~)3/2

and the standard representation of the scattering states

l'[I'«»']I&'".MI" «)dl' I;J',k( )4N 0N,
I, I's'JmM

(17)

(18)

where 4 „I is a Clebsch-Gordan coefficient, and [I'(r)X']M is a vector spherical harmonic with the spin
state ~s' vector coupled to the spherical harmonic Fl'

In order for us to define the scattering states for the inside as well as the outside region, we must normalize
the scattering states consistently. Moreover, we would like to introduce the concept of probability, which is
generally not required for scattering states. To do this, define the probabilities of the inside and outside parts
of the wave function in a given channel a(E) [see Eq. (11)]with respect to the interaction region given by the
long-range pion exchange force. Note that in the absence of any long-range interaction, from Eq. (18) the
baryon probability in the exterior interaction region R & r & 0, with R =m, is given by

P'"'=Vli l(2m), Vl( = R~ (20)

Therefore we define our inside probabihty by using scattering wave functions of the form of Eq. (19) but with
the normalization of the interior wave function for channel a

f gd'r, ~%„'"(r,) ~'=V„~W (E) ~'gC„'=V„P. , (21)

where we use the definitions in Eqs. (11) and (13). Thus P~ can be interpreted as a 6q probability in the in-
teraction region. The constant of proportionality of Eq. (13) is just Vl( . Then from Eqs. (17) and (18), and

this normalization we obtain for the weak matrix elements needed in Eqs. (16) and (17)
1/2

XW (E)M '(E)(L'ML'S=O~(Hs
~

LMLS =1 M, =O)

1/2

(1M
~ f ~00)=Vs g( —1) *i SM', MO

LL'
I'M, (k')

XM ' (E)M (E)(L'ML, S =1M, ~H (,LMIS=0) (23)

The six-quark probability in each channel o,', I',
one of the important concepts of the hybrid model,
is discussed in detail in Ref. 7. Using the interac-
tion volume as the volume for normalization, one
can compare the internal six-quark probability to
the exterior two-baryon probability. It is this rela-
tive probability which gives a measure of the impor-
tance of short-range six-quark phenomena for each
channel. These probabilities, of course, are model
dependent. The W (E), taken from Ref. 7, are ob-
tained by probability current conservation and con-
tinuity. The

PLJ(E)=
~
w„(E) (

'
are taken from Ref. 7, and shown in Fig. 4. The
Reid soft core potential is used in these computa-
tions. ' Calculations with the Paris potential" give
about 50% larger values of the 'So quark probabili-
ty. With this potential we would obtain larger
asymmetries (Figs. 5 and 6).

Finally, the matrix elements in Eqs. (22) and (23)
are calculated in the quark sector using Eqs. (11),
(13), and (14), with H given by Eq. (10). These are
readily reduced to two-quark matrix elements. The
basic two-quark matrix element needed is
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FIG. 5. A„, (E~ ) as a function of ro. FIG. 6. Angular distributions of AE(8) for E (proton

laboratory kinetic energy) of 100, 400, and 800 MeV.

ro ——0.9 fm.

[(2l i + 1)(2l2+ 1)(2li + 1 )(2l2 + 1)/(2L + 1)(2L '+ 1)'l2Ã~q g ~0'

S'O~S1~L'J@000 fd»» (gt /t, +g b,g b, )(+b,g,,—g, ,gb, )

+ S'1 SO~LE 000 Jd» (Xt Eb ~ gb jt )(gt gt ++b gb )

(24)

In Eq. (24) the l; are the orbital angular momenta of
the upper components of the single quark wave
functions, and g b and g t are radial forms defined
in Eq. (14)

This completes the formalism needed for the com-
putation of the asymmetry for E & 800 MeV.

IV. RESULTS AND DISCUSSION

The theoretical calculation of the pp parity violat-

ing asymmetry follows from Eq. (16), with the
strong amplitude I" obtained from pp phase shifts

I

l

and the weak amplitude f" from Eqs. (22}—(24).
All of the quantities needed for this latter calcula-
tion have been determined except the configuration
choices, C„, of Eq. (13) and certain phases. These
choices complete the model.

In the present work we choose the simplest con-
figurations consistent with current information
about bag models. For the 'So channel, which is the
most important channel in the E & 800 MeV region
under consideration, we take an admixture of six
quarks in the s~~z single-quark state and p s con-
figurations, i.e.,

's
I Az (@}&=+I'z~ '(&)[Co lsil2&+Ci lp3l2 sil2 &+C2 lpil2 si/2'&l (25)

where g, C~ ——1. We have taken C2 /C, = PO

probability divided by P~ probability. The results
turned out to be insensitive to the choice of C2 vs

Ci. For the other channels we simply take (lj }'sil2
configurations. Therefore, the only parameter of the
theory is the energy independent value of C& +C2
which we take as 0.3 from the studies of p2s vs s

l

configurations in quark models for the XN force.
The parameters Co, Cj, and C2 are chosen to be in
phase. With these choices we achieve a wave func-
tion with approximate projection of the center of
mass. There are two other wave functions which
can be constructed from these configurations, one an
excited state and the second a state involving mainly
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spurious center of mass motion. With the values of
M~ (E) given by the theory of Ref. 7, the only
parameter available for the fit of the theory to the
data is the choice of the matching radius, ro. Note
that the phase of W (E) is just the phase shift 5 (E)
for the channel a and energy E

The computations involve the evaluation of ma-
trix elements in six-quark states. Although this re-
quires a considerably larger effort than traditional
weak interaction N-N calculations, the computations
are essentially the same as in the standard nuclear
shell model. The use of Dirac single-particle states
is only a complication, not an essential difficulty.
Having prepared a computer code, subsequent calcu-
lations will be relatively routine. Note also that the
six-quark part will be no more complicated for com-
plex nuclei than for the two-baryon problem being
treated in the present paper. Furthermore, these
complications in comparison with the traditional
weak model reflect a new level of information being
sought —the quark structure of nuclear systems.

The results for the total asymmetry, A„, defined
as the angular integral of Az(e), are shown in Fig. 5.
The theory is in reasonable agreement in comparison
with experiment. There is considerable sensitivity to
ro. For ro=0.9 fm, the best value for the fit to the
electrodisintegration of the deuteron in Ref. 4, the
theoretical calculation is just within the experimen-
tal errors. Note that there is little freedom for us,
except to use a different extrapolating NN potential
(the Reid soft core is used here), and extend the
choice of configurations. The overall results are

similar to the old p, co exchange calculations, ' but
our A„, shows more structure. Since the old calcu-
lations had great freedom in the choice of parame-
ters, a comparison of the magnitude cannot help us
judge the possible differences in these two ap-
proaches. Note that at 800 MeV the A„, is chang-
ing sign. It would be most interesting to see if the
theory could account for the large positive asym-
metry (A„,=2.65&& 10 ) at 6 GeV, ' but we must
develop the strong interaction aspects of the model
in order to attempt this.

Typical angular distributions are shown in Fig. 6
for ro 0 9——fm. . At low energy there is a striking
structure in A (9) which is not seen in the traditional
model. ' It would be most important to explore this
experimentally, as well as theoretically.

We conclude that the hybrid model can give a
satisfactory description of the pp parity violating
asymmetry, with the weak interaction being given
entirely within the quark sector. Systematic experi-
mental studies could be most valuable for the study
of the quark structure of nuclei.
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