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We present in detail the description and the analysis of two independent experiments us-

ing beams of ' 0 and ' Fe. From their results it is concluded that the reaction mean free
paths of relativistic projectile fragments, 3 & Z & 26, are shorter for a few centimeters after
emission than at large distances, where they are compatible with values predicted from ex-

periments on beam nuclei. The probability that this effect is due to a statistical fluctuation
is & 10 . The effect is enhanced in later generations of fragments, the correlation between

successive generations suggesting a kind of "memory" for the anomaly. Various systematic
and spurious effects as well as conventional explanations are discussed, mainly on the basis
of direct experimental observations internal to our data, and found not to explain our re-

sults. The data can be interpreted by the relatively rare occurrence of anomalous fragments
that interact with an unexpectedly large cross section. The statistical methods used in the
analysis of the observations are fully described.

NUCLEAR REACTIONS ' 0 and ' Fe at 2A GeV on emulsion nuclei;
reaction mean free paths of primary beams and projectile

fragments measured and compared.

I. INTRODUCTION AND HISTORY

Observations in nuclear research emulsion that
have given provocative evidence for short reaction
mean free paths of relativistic projectile fragments
of high-energy heavy ions in the cosmic radiation
have been reported sporadically since 1954. The
first evidence for "anomalous" extranuclear cascad-
ing induced by heavy primary cosmic-ray nuclei
was given by Milone. ' Subsequent observations by
Yagoda and Tokunaga et al. suggested that
secondaries and later generations in the cascades
might have a mean free path (mfp) five to ten times
shorter than the value expected from a geometrical
overlap model that was in reasonable agreement
with values observed for "primary" nuclei. In 1959
Friedlander and Spirchez examined six cosmic-ray

initiated cascades and found a difference between
the mfp of "first" and "second" generation frag-
ments. The first systematic studies of the effect
were performed by Judek. On the basis of mfp
measurements of relativistic cosmic-ray primary
and secondary nuclei involving about 1000 interac-
tions, Judek concluded that a few percent of the
secondary nuclei with charges 1&z&4 interact
with anomalous mfp's of the order of 3 cm and that
the stars produced by the anomalous particles had
the characteristics of "typical" nuclear interactions
as observed in emulsion. Evidence for short mfp's
for secondary relativistic fragments was also report-
ed by Cleghorn.

Because of limited statistics, possible systematic
uncertainties, and the implausibility (even impossi-
bility) of such a nuclear component within known

27 1489 1983 The American Physical Society



1490 E. M. FRIEDI.ANDER et al.

nuclear physics, these enigmatic observations have
never been widely recognized nor accepted. In 1972
Judek exposed nuclear emulsions to the 2.1A GeV
' 0 beam of the Bevalac and obtained a partial con-
firmation of her earlier cosmic ray results. The
aim of the present collaborative Bevalac experiment
was to obtain sufficient statistics to decide whether
there is evidence for a short mfp for projectile frag-
ments (PF's) emitted from the interactions of -2A
GeV (Ref. 9) ' 0 and Fe beams with target nuclei
in nuclear track emulsions. Our results provide this
evidence.

A summary of our results, based on a total of
1460 interactions of PF's in emulsion stacks ex-
posed to Bevalac beams, independently scanned and
measured at the National Research Council (NRC)
of Canada and Lawrence Berkeley Laboratory
(LBL), is as follows': (a) Over the first few centim-
eters after emerging from a nuclear interaction
(-10 g/cm of matter traversed or, equivalently,
—10 " s proper time) the PF's exhibit significantly
shorter mfp's than those derived from "normal"
beams of the same charge Z; (b) at larger distances
from the emission point, the mfp's revert to values

compatible with those for normal beam nuclei; and

(c) the observations are not compatible with a
homogeneous lowering of the mfp and require the
presence of at least one component with an unex-

pectedly high reaction cross section.
Since our first communication on this subject, '

results of two independent experiments"' have
shown essential agreement with these conclusions.
The emulsion technique and the results derived
therefrom on primary beams are well establish-
ed. ' ' The basic method we have used is known as
the along-the-track scan, where one simply follows
each track until it either interacts or exits the detec-
tor. An interaction in such a scan is defined to be
the emission of at least one charged hadronic track,
either from the projectile or the struck target nu-

cleus in the emulsion. Preceding experiments have
yielded by this method the mfp's of primary beam
nuclei to a statistical precision of -3'. Specific to
this result, mfp's for He, ' C, ' N, and ' 0 had
been obtained at LBL (Ref. 15) and for ' 0 at
NRC. s As part of the present experiment, mfp's

for primary Ar and Fe were measured at LBL
and for He and Fe at NRC. The primary beam
mfp measurements were done in all cases at about
2A GeV, with some measurements also performed
at lower energies to obtain information on energy
dependence. We found no such dependence within
the accuracies of our measurements. As will be
shown, the 2A GeV primary beam measurements

are in good agreement with the measurements on
PF's beyond about 5 cm from their points of emis-
sion. Below this distance, we observe significant
and regular deviations from both the primary beam
measurements and the "large distance" observa-
tions. Further, the results of the two independent
observations concerning PF's from Fe at LBL and
' 0 at NRC are in agreement.

This paper is organized into six sections. In Sec.
II we discuss what one would reasonably expect to
be the reaction properties of PF's based on known
nuclear physics. Section III describes the tech-
niques used in this experiment and the systematics
they imply. In view of the potential importance of
our results it is necessary for us to examine in detail
several subsets of the data. By necessity, these sub-
sets, having qualitatively different responses to vari-
ous systematic or spurious effects, also have a dif-
ferent statistical behavior. For these reasons, Sec.
IV presents the formal statistical methods needed to
analyze the data in a cogent fashion with
mathematical details given in Appendices A and B.
Section IV also includes a discussion of the Monte
Carlo simulations used to test the formalism and its
physical approximations in light of the material
given in Secs. II and III. Section V and Appendix
C describe the results using the methods of Sec. IV,
and Sec. VI summarizes the conclusions of the in-

vestigation. A note on notations: Asterisks (*) will
refer to estimates, overbars to sample averages, and
angular brackets ( ) to expectation ualues

II. BASIC CONCEPTS AND EXPECTATIONS

To deem that an observation is anomalous, one
must first establish normality. In the present case,
we need to know the normal interaction behavior of
nuclei in emulsion, particularly nuclei of kinetic en-

ergy between 1.5 and 2A GeV. This is given in its
simplest form by the total (or inclusive) reaction
mfp, denoted by A,. While the measurement tech-
niques and the statistical properties of various esti-
mates for A, will be discussed later, the mfp has a
simple physical interpretation in terms of number
densities of target nuclei and cross sections, namely:

—1k

nioabs

Here k is the number of different nuclides in the
emulsion, n; is the number of nuclei per unit
volume of nuclide "i" (Ref. 14), and o,'» is the cross
section for the projectile to interact in a visually ob-
servable manner with component i. The cross sec-
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tion cr,&, is defined to include the detection efficien-
cy. Note that a large o,I„corresponds to a short A,.
However, because emulsion is a heterogeneous mix-
ture of elements, one necessarily measures A, , not

o,I . Nonetheless, a knowledge of the properties of
A, carries over to information about o,s,.

To an excellent approximation, the 0,'q, 's in ques-
tion are just a constant fraction of the total reaction
cross section. Two properties of heavy ion reaction
cross sections are important here: From about 0.5A

GeV to )2A GeV, (i) the o,&, are essentially con-
stant and (ii) they are well described by a geometri-
cal dependence. '

In its simplest approximation, the geometrical
dependence of the reaction cross section is expressed
in the Bradt-Peters form,

(2)

where ro and 5 are constants and A ~ and A2 are the
baryon numbers of target and projectile. If

A' ))A' —5,))
then o. ~A

Because A ~Z near the valley of stability (VOS),
one might roughly expect that cruz with the
same restriction as above. This suggests a more
general relationship of the form

(3)

In fact, Eq. (3) adequately fits the primary beam
data, w'ith b =0.4.

The equations to be solved for estimating A and b

are presented in Sec. IV. Using these, one obtains
two fits, one for NRC, the other for LBL.

At NRC: A*=28.9+2.5 cm, b*=0.43+0.04.
At LBL: A ~ =32.2+2.5 cm, b* =0.44+0.03.
While the consistency of the observations is evident,
we stress that these are measurements of beam nu-

clides limited to the VOS.
It is evident that not only VOS nuclides are

present among the PF's but also isotopes away from
the VOS, as well as various excited states with life-
times c~)1 cm. To incorporate the deviations
these effects might produce in the mfp's (which are
really a function of Z, A, and the quantum state)
one has two alternatives. The first, obviously, is to
measure empirically all these mfp's. It is equally
obvious that the logistics of such a measurement
would be intractable. The second alternative, albeit
somewhat less secure, is to obtain calculated values
of mfp's based on realistic models' that use other
experimental data, such as form factors and detec-
tion efficiency. This we have done. The results are

displayed in Fig. 1, along with the experimental ob-
servations and a power-law fit to these data.

The small circular points in Fig. 1 are the calcu-
lated values of A,(Z) for nuclei of charge Z at 2A

GeV in emulsion obtained from Karol's "soft-
spheres" model. ' The mfp measurements on pri-
mary beams at 2A GeV, indicated by the large cir-
cles and triangles, are well represented by the calcu-
lations, assuming the values of the parameters used
in the Karol formalism given in Ref. 15. In several
cases the multiple values of the mfp at the same Z
illustrate the dependences of A,(Z) on the isotopic
mass A of the projectile. The straight line is the
fit to the combined LBL-NRC data sets,
A, (Z)=30.4Z cm. While the general trend is
reproduced, there does appear to be a theoretical
prediction that the mfp's for the Z =3,4,5 isotopes
will fall below the fitted lines. ' Additionally, isoto-
pic "noise" is visible. In Sec. IVC, which concerns
the Monte Carlo simulations of the experiment, the
methodology for dealing with these aspects of the
mfp's will be examined.

III. METHOD OF OBSERVATION
AND SYSTEMATICS

20-
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FIG. 1. The mean free path A,(Z) vs Z; The large
circles with error bars are the LBL observations on pri-
mary beams; the large triangles with error bars are the
NRC primary observations. The small circles are
theoretical predictions normalized to primary beam
data; the appearance of multiple circles for the same Z
represents isotopes of different A. The straight line is
30.4Z ~ cm, which represents the average fit to both
data sets combined.

In this section, three main points will be dis-
cussed: (i) the quantities measured, (ii) how the
measurements were conducted, and (iii) the problem
of systematic errors posed by these measurements.

(i) Beams, stack characteristics, and scanning pro
cedures. Two stacks of Ilford 6-5 nuclear research
emulsion pellicles, nominally 600 JMm thick, were
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exposed at the Bevalac to relativistic heavy ion
beams parallel to the emulsion surfaces. Stack I, 50
pellicles, of size 15X30 cm2, was exposed to 2.1A

GeV ' 0 and scanned and measured at NRC. Stack
II, 42 pellicles of size 7.5)& 12 cm, was exposed to
1.883 GeV Fe and scanned and measured at LBL.
The track densities of the ' 0 and Fe beams were
-5 and -3)&10 cm, respectively. The stacks
were processed separately at LBL. A 1-mm grid
was photographed on each pellicle before the latter
was removed from its respective stack, mounted on
glass, and processed.

At both NRC and LBL, an unbiased forward
"along-the-track" scan was used. This means that a
primary track was picked up on a scan line as it en-

tered the stack; this scan line was 2 mm from and

parallel to the leading (milled) edge of each pellicle

in the Fe stack, and at 5 mm in the 0 stack. The
track was examined to ensure that it did not in-

teract before the scan line. The Fe primaries were

followed until they either interacted or left the pelli-

cle; the 0 primaries were followed until they in-

teracted or left the stack. When the primary in-

teracts, any PF produced is called a secondary.
When a secondary PF interacts, any PF produced is

a tertiary, and so on. An example of a primary-

secondary-tertiary "two-link chain" event is shown

in Fig. 2. All PF's of Z&3, regardless of genera-

tion (secondary, tertiary, . . . , ), were followed until

they interacted or left the stack. .

Table I summarizes the data base for this experi-

ment, giving the number of interactions observed
for the primary ' 0 and Fe beams and for projec-
tile fragments versus generation. Projectile frag-
ments, as indicated by their name, are nuclei pro-
duced at low velocities in the projectile frame.
Hence at y=3 they are emitted in a narrow forward
angular cone having velocities essentially that of the
projectile. The average momentum shift in the lab-

oratory frame of a PF relative to its parent is only
on the order of —150 MeV/c at =3A GeV/c, ' a
momentum, i.e., energy, loss that is smaller than
that caused by ionization in the emulsion. We shall

examine this point in the discussion of the energy
spectra of the PF's (Sec. VIB4). At the energies
used in this work, PF's of Z) 3 are confined to a
forward cone that is characterized by the Fermi
momentum of the fragments within the projectile
nucleus. ' We accepted PF's within the forward 6'

cone, with all angular measurements being correct-
ed for the shrinkage in the thickness of the pro-
cessed pellicles.

In this experiment an interaction ("star") was de-

fined as the emission of at least one (observable)

charged hadronic track at the vertex in addition to
the fragment under investigation. At LBL the dis-
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FIQ. 2. Microprojection drawing of an interaction of a 1.88A GeV Fe nucleus in emulsion. This primary star pro-

duced a two-link chain of PF interactions. The Z =9 secondary PF travels a distance X=2.6 cm before interacting,

giving rise to a Z =8 tertiary PF that interacts after traveling a distance F=0.02 cm, as well as a Z =1 PF (not fol-

lowed). The total length of the chain is S, and the potential path length T is the distance available for the complete

chain to develop. The longest chain in the data (from ' 0) included seventh generation PF's. The variables X, E; S,
and T are defined here for use in Secs. IV B and V C.
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Primary beams

Projectile fragments, Z & 3
Generation

16O

1460

609
101

16
2
1

1

5Fe
946

S90
121

18
1

Total
2506

1199
222

34
3
1

1

TABLE I. Numbers of observed interactions. ' 0
data are from NRC, ' Fe from LBL.

The measurements of charge of the PF's in this ex-
periment were greatly simplified by the persistence
of (relativistic) beam velocity, ' which enabled us to
assume that the linear density of 5 rays of the PF's
was proportional to Z .

The LBL and NRC groups utilized both 5 rays
and linear track structure to determine the charges
of tracks; their techniques differed in significant de-
tails, this difference being primarily attributable to
the much higher 5-ray densities of the fragments
Z&8 occurring in the Fe stack. For Z&5, the
LBL group estimated charge from the lacunarity L
of the track, given by

tances were estimated to 100 pm by use of the 1

mm grid imprinted on the pellicles, the grid being
checked by microscope-stage coordinates. At NRC
the stage coordinates were used directly, with a veri-
fication of distances obtained from the grid coordi-
nates.

All data at LBL were rescanned by a different
observer using a somewhat different technique from
the initial scan. Since one could imagine the poten-
tial pitfall of differential scanning efficiency (a
scanner being more observant immediately follow-
ing a vertex}, the scanners backscanned all interact-
ing PF's proceeding backward from all observed in-
teraction vertices, and forward rescanned all nonin-
teracting PF's from their emission point.

At NRC, searches for charge-changing interac-
tions missed in scanning were conducted by repeat-
ed charge measurements along the track. The
charges of all primary nuclei were determined at the
interaction vertex, or, in the case of noninteracting
tracks, at about 5 mm from the exit edge of the
stack. The charges of PF's were determined near
their emission vertex as well as at the next interac-
tion vertex, if they interacted, or at the exit point
from the stack if no interaction was detected. If
any charge change was observed, the tracks were
carefully rescanned for the missed interaction. This
naturally increased the detection efficiency for cer-
tain classes of stars at NRC relative to LBL, name-

ly stars with a small charge change to the next gen-
eration PF. In both experiments, the scanning was
done under =500)& magnification, with question-
able vertices examined under higher power, where
spatial resolution of &1 pm is obtainable. We
defer discussion of certain potential vertex misiden-
tification and background problems to Sec. VI.

(ii) Charge measurements. Because the mfp of a
nuclide is a function of its baryon number 3, and
hence Z, charge measurements via mean gap length
and 5-ray densities were carried out for PF's Z & 3.

Z~( ~inL
~

)'r2

where L is the fractional linear transparency of the
track. ' In the range 6 &Z & 26, charge was deduced
from the "lacunarity" of 5 rays, where L is defined
to be Nz/Nz, i.e., the ratio of the number of times
no 5 rays are observed in a cell length S (typically
15 pm) to the total number of cells examined. In
this technique a 5 ray is defined to be one that pro-
jects radially a minimum of —1.5 pm from the
center of the track.

To determine the reproducibility of the charge
measurements, the method of repeated observations
was used at LBL. A track was chosen at random
that had been first measured to give charge Zi, say.
Subsequent independent observations were made on
different segments of the same track, yielding mea-
surements Z2, . . . , Zz. The deviations Z~ —Zz,
Z )

—Z3, . . . , Z i
—ZN were histogrammed, and

since for the different Zi's the results of Zi —Z;
were compatible, one final histogram was produced,
Fig. 3 (LBL). This yielded an empirical charge
reproducibility of +1 charge unit from 6 & Z & 26.
These deviations were obtained at different depths
and in different plates to verify the correction for
development gradients and to test the uniformity of
the stack. Further, they were examined for a sys-
tematic shift with distance into the stack; such a
shift could indicate a change in track structure due
to a slowing of the fragment. No such shifts were
found, lending further credence to the assumption
that one was in fact dealing with relativistic PF's.

Two main procedures of 5-ray counting were em-

ployed at NRC, the counting of all 5 rays (a) with
four or more grains and (b) that extended & 1.3 pm
from the center of the track. Procedure (a) was
used in the early stages of this work. Procedure (b},
although more time consuming, gave an improved
charge resolution. A track segment of about 5 mm
was used for each count, depending on the particle's
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of velocity. At the —3 standard deviation level, the
PF would be shifted downward by —1.5 GeV/c, or
about 6%%uo of its total momentum at beam velocity.
In terms of kinetic energy, this is about an 8%%uo

degradation. Hence, even in this worst case
analysis, we conclude that the effect of kinetic
energy/nucleon loss at emission of a PF relative to
its parent is small compared to the energy losses
caused by ionization in the emulsion.

The resultant calculated energy spectra for the
PF's in the experiment utilizing this information
are displayed in Fig. 4. As can be seen, none of the
PF's would have had an energy below 1A GeV and
few below 1.5A GeV.

The important conclusion that comes from this
calculation is that, because of the near energy in-
dependence of the reaction cross section for energies
E& 1A GeV, ' we are assured that the expected
mfp's, A, (Z), of the PF's are constant, independent
of position in the emulsion detectors.

FIG. 3. Histograms of 5-ray density with an added
charge scale (NRC) and of charge reproducibility (LBL).

charge. The charge distribution obtained from 5-
ray measurements using (b) is given in Fig. 3

(NRC), showing a statistical accuracy of —, charge
I

unit for 5&Z &8 and of about —, charge unit for
Z =3 and 4. Gap-density measurements were
found to give complete charge resolution for Z =3
and Z =4 in 1 mm of track length.

(iii) Energy spectrum The only. technique avail-
able in this experiment to measure the energy spec-
trum of PF's is that deduced from the quantity pP
resulting from multiple scattering measurements.
However, at the energies involved in the current ex-
periment, such measurements are not nearly sensi-
tive enough to provide an accurate energy spectrum.
Multiple scattering measurements carried out at
NRC provide proof that the PF's were qualitatively
in excess of 1A GeV (for Z/A = —,) and entirely

consistent with the calculated energy spectrum.
To calculate the energy spectra of the interacting

beams and PF's we incorporated several pieces of
information. (i) We assumed the values given in the
literature for the specific ionization constant. ' (ii)
Spectrometer measurements have shown that the
longitudinal momentum distributions of PF's in the
laboratory frame are characteristically Gaussian
shaped, with mean shift (p~~ )=—150 MeV/c in to-
tal momentum and standard deviations typically
450 MeV/c. ' Let us consider a PF of mass A =10
that is emitted from a parent nucleus of total
momentum of 25 GeV/c, assuming the persistence

SEC0 IVDARI ES TERTIARI ES

NRC

10

2, /A GeV

ISF

/. 884 G@V

o. I, l

I.o /. 5 2.0 /. 0
E/A (GeV)

FIG. 4. The calculated distributions of kinetic ener-
gies per nucleon in the laboratory frame of PF's for the
interactions of ' 0 (NRC) and Fe (LBL) for the second'
and for the later generations.

I

2.0/. 5

IV. STATISTICS OF MEAN QREE PATH
MEASUREMENTS

From its very beginning, the problem of the
anomalously short mean free paths of projectile
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dNp

8x

—Np
(4)

Here, Np is the number of particles incident on a
target slab of thickness dx; some physical process,
characterized by A,, removes particles from the
beam. The solution of this equation is well known

fraginents has been plagued by the relatively small
statistical samples involved, which entailed, to a
certain extent, justifiably, a general mistrust about
the reality of the effect.

However, samples of arbitrary size are susceptible
to exact statistical treatment; this should enable one
to extract the maximum amount of information
from the data available. The aim of the analysis is
to test the null hypothesis (nh), which states, in
physical terms, that projectile fragments are just or-
dinary nuclei, with no exceptional physical proper-
ties. We shall return to the quantitative formula-
tion of this nh below.

The statistical problems that must be addressed
in such a treatment of the data are the following:

(i) how to estimate a mean free path in a detector
of finite dimensions (especially dimensions compar-
able to the mean free paths involved);

(ii) how to test the nh in the presence of a secon-
dary "beam" with a wide charge spectrum. Indeed,
since the mfp depends on the fragment's charge, the
test must be carried out on subsamples character-
ized by individual charges; in any experiment with
statistics comparable to ours, this necessarily im-

plies subsamples of relatively small size;
(iii) assuming that an adequately constructed test

has rejected the nh, how to extract from the data
the pertinent information about the physical param-
eters characterizing the objects responsible for the
anomaly.

This section deals with this set of problems. For-
tunately, most of the statistical tests, estimators,
and distribution laws involved in such a treatment
turn out to be of the "text book" type and only a
few variations on themes familiar from radioactive
decay have had to be derived here. This section
states definitions and results; details and/or proofs
are given in subsections A —E of Appendix A.

Definition of the mean free path The bas.ic con-

cept of this experiment is the reaction mean free
path. If the target medium is homogeneous or if it
has a length scale of inhomogeneity very small

compared to the scale of the interaction distances, '

the mean free path of a homogeneous particle beam

appears as the parameter A, in the differential equa-

tion

to be the negative exponential; specifically,
probability density for an interaction distance x is
given by

(5)

Except for the fact that we are dealing with track
lengths rather than with time intervals, this is just
the law of radioactive decay, and many well-known
results from this field (especially their application
to the spontaneous decay in flight of unstable ele-

mentary particles) can be taken over to our analysis.
The probability density, Eq. (5), leads to several

consequences. Foremost is the property that the
negative exponential "has no memory. " Physically,
this means that any infinitesimal slab dx is
equivalent to any other slab in which the particle
may suffer an interaction, irrespective of the loca-
tion of the slab. The fact that a particle has not in-
teracted up to dx has no influence on its fate in dx.

Any given sample of tracks in a detector of finite
length can be separated into two classes, viz. , (i)
those that did interact within the detector, and (ii)
those that left the detector without interacting. One
may choose to extract information on A, either by
considering tracks of type (i) and (ii) together or by
considering only the distribution of interaction dis-
tances of class (i).

A. Method A

The first method of estimation, which shall be
denoted as method A, uses a moment of the interac-
tion distance distribution as well as information
about those tracks that did not interact. The
second, which we shall denote as method B, will be
dealt with in Sec. IVB.

The concept of method A can be formulated as
follows:

(1) Assuriie A, is a constant.
(2) Follow tracks until N interactions are ob-

served, N) 1.
(3) Sum the total path lengths followed for both

the interacting and noninteracting tracks, where the
path length of a particle's track is the length from
its initial observation, i.e., either the scan line for
beam particles or the location of the parent interac-
tion for PF s, until its interaction point or its exit
from the detector. Denote this sum by S~.

(4) Define the estimate of the mfp as

A, *=S~/N .
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l D. istribution of the total path length
in an infinite detector

In order to establish that i(, ~ deviates significantly
from some expected value A, , one would like to
know the distribution law of A, *, given A, and X.
For practical reasons it is preferable to investigate
instead the distribution law of the total path length

SN, given A, and N.
In an infinite detector, all tracks must interact; if

the individual interaction length of the ith track is
x;, then by definition

(i.e., the potential path) and PT 1———e r; then N
is distributed binomially:

Xp
W(N) =

N Pr (1 PT—)

For No~ao and NOPr finite, Eq. (9) tends to-
ward a Poisson distribution and Eqs. (7) and (8)
hold.

From the known properties of the g distribu-
tion, it follows that the relative root mean square
(rms) deviation of Stt and hence of A,

* at a given N
is rigorously

N

SN= g +i
i=1

o(S&) crt g —1/2

SN A,
* (10)

Since the distribution of x;, given i(,, is known, Eq.
(5), the probability density of Sn is obtained by N
fold convolution of Eq. (5) (see Appendix A, subsec-
tion A), which yields the I distribution '

N —1

1 SN —s„/X dSf (Sit )dStv —— eI'N A,

(7)

As any I distribution of (integer) order N can be
transformed by a change of variable to a X distri-
bution (see Appendix A, subsection B), it follows
that the quantity

But, because the 7 distribution is only asymptoti-
cally normal (as N +oo) and q—uite skew at finite N,
the rms deviation [Eq. (10)j should not be converted
into "standard, " i.e., Gaussian, confidence levels un-
less the sample size is very large. In practical terms
this means that at a given A, , "upward" fluctuations,
i.e., A, *&A,, may be considerably more probable
than "downward" ones.

A final remark: Because of the linear relation-
ship between A,

~ and SN at fixed 1V, it follows that
(A, *)=A, , i.e., A,

~ is a consistent estimate for A,.

2 2SN
h =— (8)

3. Method A'

is distributed like X with 2N degrees of freedom.

2. Case of a finite detector

Having established the distribution of SN in an
infinite detector, one can now apply it to the case of
a finite detector. As long as there is an essentially
unlimited number of tracks so that in any repeat ex-

periment one can go to the Nth interaction, the dis-
tribution of SN must be the same. To establish this

fact, we invoke the no-memory property. Simply
regard each track length in an infinite detector as

being made up of noninteracting segments plus the
last segment, which terminates in the Xth interac-
tion. In an infinite detector, each track must in-

teract, musing N to be identical to the number of
tracks; in a finite detector, N is related to the flux

Np by the binomial distribution at fixed flux, so
that one in principle requires an arbitrary amount

of flux to ensure that one reaches N in all cases. In
fact, let T be the distance available for observation

Having established that the estimate A, ~=ST�/N
depends essentially only on the mfp lL, and N, and is
independent of detector size, one can subdivide a
data sample and consider A, *(g), with ri some vari-
able on which A, has a known theoretical depen-
dence. Likewise, using Eq. (3) one may construct
A~(71). In particular, rl may profitably be taken to
be the distance after the point of first observation of
a track as defined above; call this distance D. In
this case it is clear that a constant A, (or A) is in-
dependent of D, and hence (i(,*) should also be in-
dependent of D. One may thus consider SN and E
binned in distance intervals DJ &D&DJ+j, which
should give compatible results for A, ~ irrespective of
j. This method of examining A, *(D), and especially
A*(D) (for a fixed value of b), will be termed
method A'.

4. Pooling information from PF's
with different charges

To increase statistics (especially in method A')
one may choose to replace a set of A,z values, each
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measured at a given Z, by the best estimate for A
from this set.

As a consequence of the P distribution of h, Eq.
(8), we use the method of maximum likelihood to
estimate values of A and b in the power law approx-
imation A, =AZ from a set of A,z measurements,

say with N, stars each. First, we take the loga-
rithms of the probability density of the 7 distribu-
tion [Eq. (A14)]

lnf =ln( —, )—lnI'(N) + (N —1)ln(M z )

WX,Zb—N 1nA+Nb lnZ—
A

Equating the derivatives with respect to A and b to
zero, and letting S, =A, *(Z)N„one obtains A*,b*
as solutions of the following system of equations:

ps,z' ps,z'l~
Z z

g Nz g Nz1nZ
Z z

The cumulative distribution function (CDF) of this
distribution is

PF =P( (F)
NI N2

F N —1

8 N), N2

(15)

where 8 is the beta function. P~ is tabulated, e.g.,
in Ref. 22, and has the general property of CDF's,
namely that it is uniformly distributed between 0
and unity [or briefly PF is distributed U(0, 1)].
Hence, its expectation value is —, and its dispersion

is cr„—= (12) '~ . Consider a set of v values of Pr
that have been obtained from pairs of A,'I and A,z,
where it is only necessary that the nh, Eq. (13), be
true separately for each pair, i.e., A, may vary from
one pair to the next. Then one may build the sam-

ple mean of the P values

gs Z"'
z

(12b)

Pp= —g Pp; .
j=1

For large v (in practice for v & 10) the quantity
I

I'F ——
Pp=

u„/V v
(17)

5. Comparison of two estimated mfp's

In practice one is often confronted with the
necessity of comparing two values of A, *, say A, 1 and
A,2, supposedly pertaining to measurements of the
same physical process. This situation occurs either
when one deals with two independent measurements
or when one wishes to compare values of A,

* under
different physical conditions, which may be as-
sumed to have no influence on the value of A, . Let
A, ~ and A,2 be the expectation values of A, I and A,z,
respectively. The nh to be tested is then

(13)

It turns out that a convenient test quantity for this
nh is the ratio

p=
A2

(14)

As long as Eq. (13) is true, F obeys a well-known
distribution law, the so-called F, or variance ratio,
distribution (see subsection C of Appendix A), ir
respective of the concrete value of A, with 2N~ and
2N2 degrees of freedom (N~ and N2 are the sizes of
the samples from which A, ~ and A,z were derived):

is approximately a normal deviate of zero mean and
unit variance. An exact way of testing the nh, Eq.
(13), at finite v will be given below.

6. Comparison of many estimated mfp's

gi = —2111Psi2= (18)

obeys a X distribution with two degrees of freedom.
(3) Compute the sum

g'—= Xg'.
i=1

(19)

Because of the additivity of 7 variables, g is it-
self X distributed with 2v degrees of freedom and

Consider the case when a set of, say, v values
A, 1,A,z, . . . , A,

* have been measured, with N1,
N2, . . . , N, stars. Further, let A, &, A,2, . . . , A, be the
mfp's that we expect from physical considerations
(a special case could be A, I

——A,2. ——A,„=A,), which
occurs, e.g., in method A'). A convenient test statis-
tic can be constructed as follows: (1) Compute for
each A,

* the CDF of the SN distribution
Ps;(h

~

A,;,N;) [Eq. (A15)]. (2) Note that, because
each Ps; is distributed U(0, 1), its logarithm is ex-
ponentially distributed and hence the quantity
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can, hence, be used to test the consistency of the A,
~

values with their expectations.
Incidentally, the same statistical test can be used

to pool in an exact way the information from many
pairs of (A, i,Az) values, Eqs. (14) and (15). One has
just to replace the Ps; in Eq. (18) by the Pz; values

[Eq. (15)]; then g tests the hypothesis that all

(A, i;,A2;) pairs have the same expected A,;.

B. Method 8

—X/A,

Pi(X)=
1 —e

(21)

is distributed U(0, 1). Equations (20) and (21) are
useful in two ways, viz. ,

(i) the CDF Pi can be used to test the nh. From
a large number E of Pj; values one either tests

1
whether I'& is consistent with —, or one computes

g, Eq. (19), and performs the X test.
(ii) the product of N probability densities, Eq.

(20), is used to construct the logarithmic likelihood

Thus far the statistical analysis has been con-
cerned with both interacting and noninteracting
tracks. It is necessary to consider also the case
when only interacting tracks are used, for the addi-
tional insight we gain into the nature of the effect
and because certain types of information are simply
not available in any other way. To illustrate the
first reason, we remind one that if the nh is true,
methods A and B must yield consistent estimates
for A, , irrespective of detector geometry. If, howev-

er, the nh must be rejected, methods A and B be-
come dependent on the relative geometry of the
detector, and of the events, and their results will

disagree by amounts that depend on the abundance
and properties of the objects responsible for the
anomaly.

On the other hand, if, for example, one wishes to
compare some statistic concerning the mfp for
events tagged by a characteristic of their interaction
star (like, among others, its multiplicity), the infor-
mation can be derived from samples of interacting
tracks only.

I. The r-link chain topology

f ( )
(I/)()e

~
—T/A,

(20)

the CDF of which,

Let us begin with the simplest case, the observa-
tion of a single interacting track. If the nh is true,
there is a known single mfp A, . One measures two
quantities, the interaction distance, X, and the po-
tential path, T, which is the maximum distance
over which the individual track could have been ob-
served within the stack. (T is practically the same
for all beam tracks and changes with each individu-
al track for PF's. ) Starting from Eq. (5), we obtain
the probability density for X at a given potential
path T (Ref. 21)

L = N —+—ink, +in(1 —e ~ )
X —T/A, (22)

where

N
X=(l/N)g X~ .

The maximum likelihood estimate for A, is therefore
the solution of the transcendental equation

T
A, '=X+

e —1
(23)

The width of the likelihood curve and implicitly the
error assigned to A,

~ are functions of E and T/A,
and increase rapidly as T/A, approaches unity. '

For T/A, »1, Eq. (23) turns into Eq. (6) with the
error given by Eq. (10).

If each event has a different T value, Eqs. (22)
and (23) are easily generalized; see, e.g., Ref. 21.
We shall refer to all the above results as the one-
link case.

However, the single track is not the only topology
with which one must deal. Another common topol-
ogy is the r-link chain. This is the topology when
one has r (r &1) PF collisions in a row. Consider
the most frequently encountered case of r =2 on
which we have concentrated here, i.e., the two /ink-
chain topology. This topology is illustrated in Fig.
2, which is a microprojection drawing of a 1.882
GeV 5 Fe interaction (star) that leads to a two-link
chain, where the secondary PF, with mfp A,x, in-
teracts after a distance X from the vertex of the pri-
mary Fe interaction, and the tertiary, with mfp
A, r, interacts after a distance Y from the vertex of
the interaction of the secondary PF. The sum of
the path lengths of the PF's S=X+I'is indicated,
as is T, the potential path length available for the
secondary PF for interacting in the emulsion stack.

There are several different probability distribu-
tions one may construct from the X and F in a
two-link topology given the mfp's and T. One is
P2(X), another P2( Y), which uses the X and Y' in-
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formation from each link separately. On the other
hand, one may combine all the information into one
variable, S=I+F, the total length of the two-link
event chain, and consider P2(S

i
T,A,x, i,„) and the

likelihood derived from this CDF. Since the
charges Zz, Z~ are what one actually measures, and
one then assumes

A,g ——AZJ, A, y
——AZy

one may write

P2(S
I
T,Z~, Zr, A, b)

rrp(p )

n„(T„) '

wherep is eitherX, F, orS,

Tg ——Ts =—T, Ty ——T —X,
and the functions m„are the following:

(24)

and examine the likelihood as a function of one
parameter, e.g., A.

By solving the pertinent differential equations
(subsection E in Appendix A), the CDF's for X, Y,
and S can be written in the general form

x 1 'e
—X/Ag —( T/Ag )(p/p —1)—(1—p)e [1—e «], if Ax&A, r

(26)

and

—Y/A, y
wz ——1 —e, in both cases

ns ——1 —[pe —(1—p)e
—S/X —(S/A& )(p/p —1)], if A~QA, r

(27)

(28)

-s/~=1— 1+—e /, if Ax=Ar=A, ,

with

~X
P= (29)

C—:(Ml| —M22)/(M|2+M21) . (30)

Equation (30) will be applied to the data obtained

Note that all P2& are distributed U(0, 1) if the nh is
true and all the pertinent tests, especially the reduc-
tion to a X distribution, Eq. (19), apply implicitly.
Furthermore, it is noteworthy that P2(X) and P2( Y)
are statistically independent; hence, a scatter plot of
P2(X) vs P2( Y} should uniformly populate the unit
plane. One simple test for uniformity is to divide
this unit plane into quadrants by the lines
P2(X)= —,, P2(Y)= —, and test all possible asym-

metries between any two quadrant populations M;i
or of linear combinations thereof.

Assigning indices 1 and 2 to events with P2„(—,

and )—,, respectively, one can test for deviations
from zero of such asymmetry coefficients as, e.g.,

I

via method 8 in Sec. V B, to test P2(X) and P2( Y)
for statistical independence. The confidence lev'els

assigned to C come from the multinomial distribu-
tion of the M J.

Finally, let us consider a situation in which the
nh has been rejected by any or by all the tests men-
tioned hereto. If one is able to construct an alter-
nate hypothesis, it is necessary to estabhsh pro-
cedures for investigating its parameters. More
specifically, if one makes the simplest alternate hy-

pothesis (hereafter denoted by Hi) that only one
sort of quasistable (over at least a few cm of flight
path) anomalous projectile fragments (APF's) (Ref.
23} are responsible for the effect, we are interested
in their relative abundance and their (assumedly
unique) mfp A,

Most events are obviously individual interacting
PF's, which are one-link chains. Hence, one needs
to use a modified one-link formula to obtain P
values and likelihood functions. Assuming each
track has a probability a of being an APF with a
mpf A,„Eq.(21) can be generalized to

Pi(X
i
T Az a Aa)= (1—a)(1—e

(1—a)(1—e
—T/jLz —T/A,

(31)
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Differentiating Eq. (31), it is straightforward to cal-
culate the likelihood as the product of the densities

f(X}=

/Az 1 —I/A.
(1—a) e + e

Z 0

(1—a)(1—e )+a(1—e ')T/Az —T/A,

(32)

for each (X,T) pair given the charge Z of the track.

C. Monte Carlo simulations

All the analysis in this section has been restricted
to "exact" statistics, exact in quotations because the
results of the statistical treatment are exact under
assumptions valid only in a somewhat idealized
world. In all methods depending on the hypothesis
A,z ——AZ, both this form and the assumption that
the exponent b is the same for PF's as well as for
VOS occupants is an idealization. The F test (in-
dependent of A,), with the ratios F grouped as to lab-
oratory and measured charge, needs only an as-
sumption of relative homogeneity. This is our most
powerful tool. Furthermore, when applying method
A, one typically constructs S~ not according to its
rigorous definition (total path length up to, but not
beyond, N stars} but including all the path length
observed, including a track segment beyond the Nth
star. Although this correction is negligible in large
samples, it may conceivably matter in the much
smaller samples collected, e.g., at fixed charge, espe-
cially in the third or later generations. Finally, in
any concrete experiment the incident flux is really
finite.

How should one test whether or not these ideali-
zations have any physically significant effect on the
results? One possibility is to attempt ever improved
analytic approaches. Since the number of physical
effects one wishes to include may grow, this would
involve a growing complexity of the statistical
methods without any necessary gain in physical
understanding. Another possibility is to use the
methods based on idealized assumptions and
analyze the results of simulations (which incorpo-
rate violations of the idealizations) by these same
methods. In this subsection, the latter approach is
elected.

A Monte Carlo simulation computer program
was written. The output of this program was a data
set in the identical computer format as the actual
data of the experiment and hence could be analyzed

by the same programs that were used to obtain the
resuLts.

The basic component in the simulation is the gen-

eration of random interaction distances, assuming

that these come from the negative exponential dis-

tribution. These distances will be called simulated
interaction distances (SID). SID's clearly depend on

mfp, and the whole point of the simulation is to
select the mfp's (and topologies) from physical con-
siderations.

Since we want to simulate something as close to
the actual data set as possible, we used the primary
interaction distances and topologies (i.e., secondary
PF tracks) as actually observed. The interaction
distances alone will not generate tertiary and later
generations unless a topology is assigned at the in-

teraction vertex of a PF. To do this, all topologies
(actually observed in the experiment, e.g.,
0~8+ Li, Ca—+0+ C, Ca~0+ 2Li, etc.) were

stored in the computer grouped according to the
charge of the parent; given the charge of the in-

teracting PF, a topology was selected at random.
The topology PF~no further PF's (all Z &3) was

also allowed to occur at random with its measured
frequency. Through these procedures, simulated
events were generated.

A PF was deemed to have interacted whenever its
SID was less than its available potential path.
SID's were kept to machine accuracy but were writ-
ten on the simulated data file rounded off as the
original observations. Thus, any error induced by
rounding was incorporated. The only remaining
question is how to assign mfp's to individual tracks.

The known systematics were incorporated into
the simulation by modifying the mfp's from model
calculations. For each true Z, calculated mfp's
from a realistic geometrical model were used, ' not
AZ ". For each true Z, a true mfp was assigned,
incorporating isotopic noise; sometimes Z=8 was

given the mfp of ' 0, sometimes ' 0, etc. To get
the true Z from the observed Z (the charge on the
data file), an error was selected from the observed
Z-reproducibility distribution (Fig. 3) coupled with
a systematic bias if so chosen. Thus, both charge
misidentification and isotopic noise were included.
In fact, to keep the calculation robust against small

changes in A, the isotopic effects were even in-

creased by a factor of 2. If, e.g., isotope (Z,A'j was
predicted to have a 3%%uo change in mfp from the
VOS occupant (Z,A), a factor of 6% was actually
used.

Thus, many copies of the pseudodata were pro-
duced. Each copy was fed through the analysis

program package and pseudoresults generated. We
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briefiy present the result of analyzing all these pseu-
dodata put together, first for method A and then
method 8.

(1) Method A. We present in Fig. 5 the P(F) dis-
tribution for Monte Carlo events grouped according
to laboratory and charge and subjected to the same
distance cut as the experimental data, viz. , 2.5 cm.
The mean and rms deviations of this distribution
are P=0.50+0.02 and Dp ——0.296+0.012; both
values are consistent within errors with the expected
(P)= —, and DI ——o„. Similarly, results for A~

were observed not to depend on either distance from
the parent star or the generation of the PF, as ex-
pected if the nh were true.

(2) Method B. Here again, things are as expected
under the nh. For illustration, we examined the dis-
tribution of Pi(S) in the simulated two-link chains
and the pertaining likelihood curve. We find
Pq(S)=0.50+0.02; the likelihood curve averaged
over 100 Monte Carlo repeats is displayed in Fig. 6.
It peaks at A~=29.6, with rms deviations as illus-
trated.

In all cases, a normal simulation, using conven-
tional nuclear physics and the systematics of this
experiment, produces normal physics in the sense
that the numbers obtained from the simulation are
practically indistinguishable from the values expect-
ed from the idealized model underlying our equa-
tions. Hence, we are compelled to conclude that the
statistical methods presented in Secs. IV A and IV B
are valid for a physical understanding of the data.
The simulation gives results in contradiction with
our observations, as will be shown in Sec. V.

40

I

O
O

4J
hC

10-'-
CI
LLI

K
~10

10 20 30
A (cm)

40 50

FIG. 6. The normalized likelihood curve for the
parameter A, Eq. (3), based on repeated independent
Monte Carlo simulated two-link chains. The error bars
represent the observed deviations about the mean likeli-
hood curve.

V. RESULTS

A. Overview

We now proceed to apply the methods of analysis
described in Sec. IV to the results of our experi-
ment. An overview of the tests applied to our data
is given in Table II, which is also meant to illustrate
why each of the tests was necessary.

The first half of this table shows the checks of
our methods of analysis when applied to primary
(i.e., normal) beams. Its second half deals with
fraginents emerging from the primary interactions.
Here the different rows refer either to different sub-
sets of the data or to different groupings of a given
subset. We now discuss these tests in detail.

S. Method A

I

0.2
I

0.4
I I

0.8

FIG. 5. Histogram of the distribution of probabilities
P(F) for Monte Carlo generated events grouped accord-
ing to charge, laboratory, and subjected to the same

D ~ 2.5 cm cut as the data.

The first application of this method is presented
in Fig. 7, where the mfp A, ~ observed for primary
' 0 beam nuclei is plotted as a function of the dis-
tance from the scan line (pickup point) of the in-

cident beam. The data are well accounted for by a
constant value of A, ~, the straight-line fit to the data
at X"=11.9 cm having a Xi=7.3,12 DOF (degrees
of freedom) obtained through the procedure
described in subsection D of Appendix A. The ob-
servation that A,

*does not depend on D is typical of
the behavior of all mfp measurements of beam nu-
clei.

Figure 8 presents the mean-free-path parameter
A~ of all secondary and later generation PF's, plot-
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FIG. 7. Measurements of the primary 2.1A GeV ' 0
mfp as a function of the distance from the scan line.

ted as a function of distance D from the origin of
emission of the PF. The quantities A* are calculat-
ed under the assumption that A, =AZ with
b =0.44 for the I.BI. data and b =0.43 for the
NRC data. For simplicity of display, we have re-
normalized all data using a constant mean value of
Ab„——30.4. The error bars we have assigned to
the data points represent one standard deviation as-
suming the primary beam value for A. Thus, for ex-

ample, if A~=20 cm with 100 stars and Ab„——30
cm, then (in the approximation to which v N statis-
tics apply) A*=20+3 cm, not A* =20+2 cm This.
is because it is assumed at the outset that all PF's
should have the mfp parameter A as measured on
primary beams and that the A~ values are just fluc-
tuations around this value.

In contrast to both expectation and observation
on primary beams, the values for A~ are low for the
first several centimeters; they become compatible
with Ab„ for distance D ) 5 cm. The short mfp's
at small distances D imply that there is an excess in

the number of interactions at these distances.
This result can be visualized also by considering

the frequency distributions of interaction distances
N(X). For clarity, we have performed the analysis
at fixed potential path T&. To fix T&, we demanded
that each track could have gone at least T~ cm, even
if it interacted within T. The N(X) distributions
for T& ——3 and 9 cm, summed over all PF's, are
displayed as Fig. 9. Examine the T& ——3 cm result.
Here, with a total of 2386 tracks, we expect 504
stars assuming for the mfp's the results of the fits
to primary beams. In the data, there are actually
581 stars, a fluctuation expected to occur with a
probability 3 p 10 ". The curves in Fig. 9 are cal-
culated assuming the same mixture of PF's as used
in Fig. 8. They are obviously in good agreement
with the data.

To obtain some insight as to the nature of this ex-
cess of interactions of PF's at short distances, we
make the following simple assumption: In addition
to PF's with normal mfp's, there is present another
species of PF's, APF's, that are produced with
probability a, having a constant, "anomalously
short, " mfp A, We thereby assume that a and A,,
are independent of Z, which clearly may be an over-

simplification of the physical situation. In this
model the characteristic shape of the A* vs D curve
is due to the removal of APF's from the secondary
beam by nuclear collisions so that at infinity the
beam consists only of normal nuclei. By the pro-
cedure explained in Sec. IV B, we find that
a*=0.06 and X*,=2.5 cm. These results are illus-

36
TI

-" ) Gill

32
E

28

24

~beam
x

l00- T) = g QN

20
IQ l5

D {Cm}

20 25 30

FIG. 8. Estimates A* for the mfp parameter A at
different distances D from the origins of the PF's: full
circles, experiment; dashed line, prediction from Ab„,'
solid line, prediction assuming a 6% beam admixture of
PF's with A,,=2.5 cm.

x (cm)
FIG. 9. Distribution of interaction distances x for

events with potential paths T(T~,' dashed and solid
lines have the same meaning as in Fig. 8.
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trated in Fig. 10, where the normalized likelihood
contours for the parameters a and A,, are displayed
for 0&a&0.5 and 0.1&A,, &20 cm. Although the
maximum likelihood occurs at a=0.06, A.,=2.5
cm, the. data are compatible with a and X, several
times larger than the most likely values deduced
from this elementary model.

The smooth curves in Figs. 8 and 9 are calculated
assuming this model. In terms of the expectation
values of all variables, the value of (A) in the jth
interval (from DJ to DJ+&) is then

g4z, ,[(1 &—)pz, ~ ~z+ &a.,j~.)Z'
z

yez, l(1 &~PZ,—+&P,Jl
z

(33)

where Pz J. is the number of tracks of charge Z, in-

cident on segment j,

20

~z —Ab„z-",

pzJ ——e —e J+D. /A, z —D. , /A, z (33')

The calculated dependence of (A) on distance D
agrees well with the observations. The reason the
short mfp effect has been termed anomalous is
clearly seen here. If one attempts to increase A,, to,
say, 10 cm, there is no value of a that will repro-
duce the observations well. They seem to require
the existence of a component of the PF's produced
with a few percent probability, with mfp's outra-
geously shorter than any of the primary beams em-

ployed. A value of 10 cm is already ludicrous, con-
sidering that this implies a nucleus of charge in the
calcium range among PF's from oxygen. A 2.5 cm
component is probably a shorter mfp (i.e., a larger
cross section) than that of uranium.

If the short mfp is due to the cooperative effect
of a few baryons (a "damaged zone") bound to a
normal nuclear fragment, one could understand the
approximate independence of A,, from charge.

Suppose that "A," of the damaged zone were k~',
then

18— ~.=(l~~w+ l~~z) ' (34)

14—

12—

E
10

- - g.ool

0.0 I

00 O. l 0.2 0.3
(

0.4 0.5

FIG. 10. Normalized likelihood contours for the
parameters A,, and u, Eq. (32), from all 1460 one-link
chains. The cross indicates the position of the max-
imum likelihood.

If we take A, ~——3.5 cm, for example, and A,z F6=7
cm, then A,,=2.3 cm; on the other hand, for
Az 3 —18 cm and the same A, ~, A,,=2.9 cm.
Thus, for nuclides from Fe to Li, the equivalent
APF mfp A,, would change only from 2.3 cm to 2.9
cm, a difference that is undetectable with the
present statistical accuracy of data. While the as-
sumption of a damaged zone and of one anomalous
component is probably too crude in every detail, it
does reproduce the overall observations.

We now ask the question: Is the appearance of
the anomalously short mean free paths for PF's an
artifact caused by the use in our analysis of the
power law fit, Eq. (3), andior by the intermixing of
data from the ' 0 and Fe experiments? To ad-

dress this question we shall examine separately the
mfp data from each laboratory at a fixed fragment
charge Z. Each group of data was then subdivided
into two subgroups: (i) D &2.5 cm, yielding A, ~,
with N& stars and (ii) D &2.5 cm, yielding A, z, with

N~ stars. We thus obtain a pair of A,
~ values for

each charge Z, labeled by NRC or LBL, evaluated

for distances D~2.5 cm. The distance 2.5 cm is

taken to be equal to k*„ the mfp of the APF com-
ponent given by the previously described maximum
likelihood fit to the data.
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For each pair of A,
~ values take the ratio

P =A,
~ /A2. Given the number of stars N~ and N2,

we compute the probabilities PF for the measured
ratios I' under the assumption that A, ~ and A,2 are
from the same population [Sec. IV, Eq. (15)]. The
individual mfp values recorded for each charge,
separately for each primary beam, are shown in
Table III along with the raw data from which they
were derived. The CDF values P ( &g ), which test
the compatibility of the observed mfp's with those
predicted from Eq. (3), and with measurements on
primary beams, are given for illustration purposes

only, since Eq. (3) is known to be only approximate-
ly valid. The weight of the argument rests on the
last two columns, which give E and P(E) for each
individual charge and are hence free of the above-
mentioned approximations. The histogram of the
resulting P(F) values is shown in Fig. 11(a). Recall
that if the values of A,

&
and X2 were from the same

population, the probabilities I' must be distributed
U(0, 1). The cross-hatched area represents the six
charges from NRC, and the remaining area the 24
charges from LBL. It is immediately visible that
the observed distribution has an excess of low P

TABLE III. Detailed experimental information used in the F test for the comparison of estimated mean free paths
at small and at large distances D from the origin of the projectile fragments. For each primary beam and for each
fragment charge the table lists the numbers of tracks incident on the segment under consideration, the number of in-

teractions occurring in the segment, the estimated mean free path, and the cumulative probability for this value to
occur as a fluctuation assuming the null hypothesis as well as the parametrization A, z ——AZ to be valid. The last two
columns give the value of the ratio F of the two estimates as well as the cumulative probability for F to lie below the
observed value (without any assumption about the parametrization of A,z).

Laboratory
and

beam

PF
charge D&2.5 cm Dg2. 5 cm

16'

z
3
4
5

6
7
8

Tracks

148
93

157
278
193
133

Stars A,z
27 12.6
23 87
28 12 6
50 12.6
40 10.7
29 9.9

~ (&I')
0.040
0.004
0.236
0.320
0.162
0.185

Tracks Stars

119 79
69 46

127 78
227 144
150 110
103 71

Az

13.2
13.9
14.8
15.3
10.9
11.6

~ ( &X')
0.004
0.172
0.535
0.936
0.072
0.401

F
0.960
0.623
0.853
0.823
0.978
0.860

I' ( &F)
0.443
0.039
0.250
0.127
0.463
0.261

LBL

56Fe

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

116
123
128
139
119
109
72
76
64
69
64
55
42
58
44
38
25
27
30
30
20
26
20
20

18
21
18
20
20
18
26
13
15
21
11
17
8

17
10
11
6
9
9
8

8
12
11
10

14.5
13.1
15.8
15.8
13.1
13.4
5.5

12.9
9.5
6.7

12.9
6.3

11.5
7.2
9.6
7.2
8.6
6.4
6.4
8.4
5.1

3.9
3.4
3.2

0.132
0.131
0.556
0.689
0.485
0.620
0.0002
0.689
0.312
0.029
0.812
0.049
0.737
0.164
0.596
0.280
0.534
0.236
0.261
0.582
0.140
0.017
0.010
0.011

89
95

105
111
90
83
45
59
47
45
50
35
32
40
33
26
19
18
20
21
12
13
9

10

20
32
32
31
24
27
17
14
12
18
19
14
17
21
15
14
12
5

9
8

11
8
6

22.7
13.8
15.0
16.5
16.5
15.0
14.0
18.7
18.3
9.9
9.0

10.6
7.6
8.5
9.0
7.0
5.6

20.4
10.3
11.9
5.6
5.3
3.2
7.5

0.783
0.130
0.433
0.801
0.864
0.829
0.764
0.980
0.977
0.409
0.312
0.632
0.196
0.345
0.513
0.210
0.090
0.992
0.779
0.893
0.199
0.124
0.021
0.546

0.637
0.946
1.056
0.955
0.796
0.893
0.388
0.687
0.520
0.678
1.435
0.594
1.512
0.848
1.059
1.037
1.532
0.313
0.623
0.709
0.910
0.734
1.042
0.423

0.087
0.429
0.584
0.445
0.230
0.364
0.001
0.170
0.045
0.113
0.839
0.074
0.848
0.313
0.566
0;542
0.820
0.016
0.162
0.250
0.426
0.229
0.525
0.043
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~ ~ I
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0.2 0.4 0,6 0.8

P ( Fgen)

I.O

FIG. 11. Experimental frequency distribution of
P(F): (a) FD, comparison by distance from the emission

point; (b) F~, comparison by generation. The dashed
line is the expected U(0, 1) distribution. The points
with error bars are the experimental means P, to be
compared to their expectation (P) = —,. The shaded

area refers to the results from NRC. Compare with
Monte Carlo result from the nh shown in Fig. 5.

values; the values of P have been calculated such
that this corresponds to A, ~ & A,2. As a statistic, the
mean probability P, Eq. (16), has the value 0.323,
calculated from the unbinned P values. Here and
hereafter deviations of any P value from its expecta-
tion P = —, will be expressed through the value yz,
Eq. (17), i.e., in terms of equivalent standard devia-
tions along with the corresponding one-sided proba-
bilities for such a deviation to occur as a random
fluctuation. In the present case yz ———3.4, a devia-

tion expected to be exceeded by fluctuations about
three times in 10 trials.

In other words, there are fewer than three
chances in 10 that the A,

&
values, taken charge by

charge and laboratory by laboratory, come from the
same population as the A,z values. We therefore
conclude that the mfp's of PF's are significantly
shorter at small distances (i.e., D &2.5 cm) from
their points of emission, than at greater distances,
and that the low values of A~ at short D are not an
artifact. More important for its physical implica-
tions, this result is independent of many systematic
problems that potentially plague other methods. It
only assumes relative homogeneity of the mfp's of
the PF's at fixed Z. Traditional isotopic effects
should by no means cause such an observation.

Thus, we are compelled to conclude that there is
something abnormal about the mfp's of PF's within
the first few cm after their emission.

In addition to a comparison of A,
* at different

distances after emission, one can also compare the
mfp's of PF's from different generations. Primary
beam nuclei do not have a short mfp component,
while their progeny seem to evidence one. Is this
effect independent of generation (starting with the
second) or does it change with different PF genera-
tions? For example, as soon as APF's are assumed
to be present, the use of method A for estimating A.

fails in the sense that its results are no longer in-
dependent of detector geometry. The reason for
this failure is that the relative population of APF's
among interacting tracks increases as the potential
path decreases. Because the potential paths de-
crease, on the average, with increasing generations
(which occur at increasing depths in the target), it
follows that, even without any further effects,
shorter overall mfp's or PF's in the later generations
are to be expected. It is also evident that if some
conserved quantity is associated with the APF's
(e.g., a damaged zone}, the anomaly might persist
through more than one generation, further decreas-
ing the average mfp in later generations.

To test whether the mfp's change from genera-
tion to generation, we shall compare the mfp's of
secondary PF's with those of tertiary and later gen-
eration PF's. Following the same procedure as
above we compute

Fgen ~III~~II ~ (14')

The F~,„values, recorded separately for each PF
charge and each primary beam, are given in Table
IV along with the raw data from which they were
derived (the structure of Table IV is otherwise iden-
tical to that of Table III). The histogram of the
values of P(Fg,„) is given in Fig. 11(b). There are
six charges from NRC and 23 from LBL (there
were not enough tertiary tracks of Z =21 to obtain
any interactions). The one SD confidence interval
about (P) = —, is +cr„(29) '~; the observed mean

is P =-0.387, which has yp ———2.11, Eq. (17). How-
ever, we note that the highest P value recorded is
0.778. The probability to observe zero events in the
uniform distribution, out of 29 attempts, with the
binomial distribution parameter p =0.778, is
7&&10 . Hence, the mere absence of any value of
P(Fg,„}&0.778 is unusual, as one would expect
about six counts in this interval.

This also appears to some extent in the values of
A* for different generations. Secondaries have
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TABLE IV. Detailed experimental information used in the F test for the comparison of estimated mean free paths
in the second and in later generation of projectile fragments. Except for the definition of F, the variables displayed are
the same as in Table III.

Laboratory
and

beam
PF

charge Secondaries
Third and

later generations

NRC

16p

z
3
4
5
6
7
8

Tracks Stars

117 87
64 51

104 73
228 158
178 140
128 96

Az

13.3
12.4
15.2
15.3
11.0
11.2

P (&X')
0.003
0.042
0.645
0.949
0.062
0.284

Tracks Stars

31 19
29 18
53 33
50 36
15 10
5 4

z
11.7
11.4
11.8
11.3
8.4
7.6

P (&X')
0.042
0.093
0.129
0.165
0.133
0.249

F
0.880
0.916
0.775
0.740
0.758
0.673

P (&F)
0.329
0.392
0.122
0.062
0.237
0.285

LBL

56Fe

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

82
87
95
98
79
74
57
49
44
51
51
41
35
53
34
31
22
23
27
23
17
25
19
19

27
41
40
41
34
33
36
18
17
30
25
24
22
36
21
20
16
10
18
13
14
22
18
15

20.7
14.1

15.4
15.4
14.8
15.0
9.1

16.3
16.7
8.4

10.2
8.4
9.1

8.0
8.9
7.8
6.8

15.2
7.7

10.0
5.2
4.5
3.4
5.1

0.647
0.124
0.482
0.689
0.731
0.845
0.057
0.950
0.972
0.115
0.512
0.221
0.425
0.182
0.480
0.295
0.193
0.983
0.456
0.797
0.073
0.010
0.001
0.085

34
36
33
41
40
35
15
27
20
18
13
14
7
5

10
7
3
4
3
7
3
1

1

1

11
12
10
10
10
12
7
9

10
9
5

3
2
4
5

2
4
0
3
2
1

1

1

14.3
11.5
15.0
19.6
15.6
12.7
7.7

15.0
7.7
7.5

11.6
8.0
7.0
6.5

11.0
4.3
4.7
1.8

11.0
6.7
5.3
2.1

0.8

0.192
0.113
0.492
0.871
0.716
0.542
0.164
0.827
0.167
0.190
0.664
0.332
0.371
0.405
0.705
0.097
0.289
0.011

0.767
0.494
0.492
0.240
0.097

0.692
0.811
0.975
1.272
1.051
0.852
0.849
0.921
0.461
0.895
1,136
0.956
0.768
0.820
1.232
0.555
0.683
0.120

1.103
1.293
1.191
0.629
0.153

0.172
0.287
0.500
0.778
0.580
0.340
0.385
0.440
0.035
0.414
0.645
0.490
0.401
0.484
0.695
0.160
0.391
0.002

0.613
0.703
0.686
0.461
0.141

A&q
——28.8 cm, 1196 stars, while later generations

have Aq~q
——25.2 cm, 264 stars. This has a probabili-

ty of about 0.03 to occur. At face value, A&qq& Aqq,

a result that is indicative of a larger admixture of
APF's in later generations. We shall return to this
topic in subsection V B.

Another technique we have used to examine the
mfp data is to pool them within charge bins
3 & Z & 8 (where PF's from both ' 0 and Fe pri-
maries contribute), 9 &Z & 16, and 17 &Z & 26
(where only PF's from Fe contribute), and to
evaluate A, ~ and A,2 without use of the length-
weighting factor Z . The results are tabulated in
Table V. For comparison, the prediction from
A,z ——30.4Z cm, weighted by the actual distri-

3—8

9—16
17—26

X~ (D &2.5 cm}
(cm)

12.4+0.7
8.3+0.7
6.0+0.6

X"(D&2.5 cm)
(cm)

14.0+0.5
11.6+ 1.0
8.0+0.8

()I, )
(cm)

14.6
10.6
8.4

A* (a&2.5 cm)
(cm)

A" (D&2.5 cm) (A)
(cm) (cm)

3—26 25.0+1.1 30.0+1.0 30.4

TABLE V. Estimates for the charge averaged mean
free path A, and for the parameter A at different dis-

tances D from the origins of PF's for grouped charges.
Expected values assuming Eq. (3) are given in the last
column.
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FIG. 14. The normalized likelihood curve for the
parameter A, from the NRC primary ' 0 data treated as
one-link chains. The value of the method A estimator,
A,&

——11.9 cm, is shown and is equal to the position of
the maximum value of the likelihood curve.

in the third and later generations are more heavily
"infested" by APF's because of their shorter aver-

age potential paths. However, if one plots Pz(X)
against P2( Y), i.e., if one looks for possible correla-
tions between the links in two-link chains, an in-

teresting observation emerges.
As they have been defined in Sec. IV, the quanti-

ties P2(X) and P2(Y) are independent and each
should obey a uniform distribution from 0 to 1 if

20

the nh is true; hence, a scatter path of P2(X) vs

P2(Y) should uniformly populate the unit plane.
The result is shown in Table UI, where we have.
binned the data in two intervals of I', viz. , 0 to —,

1

and —, to 1, on both axes. The asymmetry coeffi-
cient C, Eq. (30), has the value

(75 —46)/(47+47) =0.3;
this is to be compared with the expectation
(C) =0+0.1. In terms of probability, the observed
value deviates by 3 SD's (standard deviations) from
its expectation.

We demonstrate in Table VI that a low value of
Pz(X) gives rise to a low value of P2( Y). Because a
low I' value corresporids to a short interaction dis-
tance (corrected for potential path), it follows that
this result can be interpreted as a clear hint of
"memory, "

by which we mean a "short" PF parent
gives rise on the average to a short PF progeny.
This property of memory would follow naturally if
conserved quantum numbers are involved in the in-
teractions of the hypothetical APF's. Further im-
plications of the numbers in Table VI are discussed
in Appendix C.

VI. DISCUSSION OF RESULTS

A. Statistical fluctuations

10

IO
C)
O
X

IO

O
LLI

N
10

K
O

I04-

IO

l

I

I

IO 20 50
A. (cm)

40 50

FIG. 15. The normalized likelihood curves for the
parameter A from the experimental X, Y, and S of two-

link chains. The dashed line is the result from the X
distribution, the dotted line is the result from the Y dis-
tribution, and the solid line is the S distribution [com-
pare to Fig. 6, where the (S distribution) Monte Carlo
simulation likelihood curve is displayed]. The curves
have been slightly displaced vertically at the peak for
clarity.

The first objection to the reality of the effects dis-
cussed in the current paper is that they are the re-
sults of statistical fluctuations. We summarize here
the different (though not completely independent)
tests that show that this would be a very unusual
fluctuation indeed:

(1) Using method A and the power-law approxi-
mation for A,z there are fewer than five chances in
10 that all PF's would have had the same A as the
primary beams.

(2) Using method 8 (i.e., the subset of interacting
tracks only) and the same power law, both the incan
of Pt (one-link chains) and the corresponding likeli-
hood curve strengthen this conclusion.

(3) We believe that, because of its freedom from
assumptions about A,(Z), the F test performed at

P2( Y))—
P&(Y) & —,

P2(X) & —,

47

75

P2(X) &—

46

47

TABLE VI. Two-by-two table of the P2(Y) vs P2(X)
scatte'- plot for two-link chains.
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fixed charge gives the strongest evidence for the fact
that the mfp is shorter immediately after emission
of a PF than at large distances. The chances for a
statistical fluctuation are in this case about three in
&0'.

These highly implausible probability levels could
be raised to quite acceptable values if we abandon
the nh and assume that our PF's are infested by ob-
jects with an unexpectedly high reaction cross sec-
tion. As was shown in Sec. V, one can fit on the
data by assuming that 94%%uo of PF's have A,z as
given by the fit on primary beams and that 6%%uo of
PF's have A,,=2.5 cm, independent of Z. This A,,
corresponds to a conventional nuclear reaction cross
section on the order of, or larger than, uranium.

Taken literally, the results imply the existence of
a new state of multibaryonic matter with a hadronic
reaction cross section two to ten times larger than
the normal VOS nuclide of the same charge. How-
ever, before drawing such a far-reaching conclusion,
we must exhaust all other avenues of interpretation.

B. Possible systematic effects
and conventional explanations

The obvious suspicion is that the interpretation of
this experiment may be influenced by systematic er-
rors, by unappreciated conventional effects, or even

combinations of these. We survey here those sys-
tematic and conventional effects that seem to us to
be crucial for assessing the implications of our ob-

servations.

1. Measurement of distance

A trivial systematic, such as the incorrect assign-
ment of interaction distances or potential paths, has
been ruled out by internal checks and by remeasure-
ments. Likewise, we have checked the data stream
against the scanner's original notes and scan sheets.
In every case, all computed quantities (such as

Sz/N) were stable to at least four significant digits.
The Monte Carlo simulation also incorporated the
rounding of position coordinates to 100 pm units,
as actually done at LBL, without pathological
consequences.

also be examined. The emulsion stacks used at LBL
and NRC were manufactured at Ilford, Ltd. , at dif-
ferent times; that both could be identically defective
is unrealistic. Such gross defects would induce vari-
ations in sensitivity and affect the reproducibility of
charge measurements, and especially the primary
mfp. None of these effects were observed. More-
over, such effects would correlate with absolute po-
sitions in the plates, rather than relative distances
after a star; this also was not seen.

3. Charge

An important question to address is whether or
not a systematic error in the charge measurements
would have affected the interpretation of the re-
sults. Obviously, this would systematically assign
the measured mfp to the wrong charge Z; however,
it would do so at all distances from the origin of the
PF. We have made observational checks and Monte
Carlo simulations to investigate the possible influ-
ence of such systematic effects on our conclusions.
First, we observe that the charge measurements do
not depend on distance from the emission point of a
PF. Second, by Monte Carlo procedures, we intro-
duced systematic shifts of 1, 2, and 3 charge units
into the data. Although these shifts in charge do
affect the absolute predicted mfp values for all
charges, they indeed have no significant effect on
the relative values of the measured mfp's.

For track lengths on the order of 1 mm or larger,
the statistical error of 1 charge unit that was at-
tained appears quite adequate for the requirements
of this experiment on the basis of the Monte Carlo
calculations. For shorter distances, the charge bal-
ance method was used, which requires detection of
all relativistic singly charged tracks and correction
for both meson production and charge exchange.
Although the accuracy of charge measurements for
distances & 1 mm is not known, one has the option
to discard all track lengths (interacting or not) less
than some cutoff distance from an interaction and
examine the significance of the results after this cut.
We have done this by selecting cutoff distances up
to 5 mm and have found no changes in the con-
clusions from either the method A or 8 type of
analysis.

2. Inhomogeneities in the emulsion 4. Energy spectrum ofPF's

The possibility of gross defects or inhomo-
geneities in the emulsion composition itself must

Because the total reaction cross sections are
remarkably constant for beam energies 0.87—



1512 E. M. FRIEDI,ANDER et al. 27

2.1A GeV, ' the inclusion of PF's with energies as
low as 0.5A GeV, for example, would have little ef-
fect on the measured mfp's. If anything, inclusion
of low energy PF's would bias the data against a
short mfp effect. Noting that the beam kinetic en-

ergy is -2A GeV, the energy-loss rates are at their
minimum values. Hence, PF's with energies (2A
GeV would necessarily have higher specific ioniza-
tion and, as a result, would be assigned larger ap-
parent charges. Such PF's would therefore be
presumed to have mfp's shorter than their actual
values. However, these considerations may not be
of practical concern since ionization (charge) mea-
surements made at various points along the tracks
of PF's gave no evidence for a significant back-
ground of midrapidity PF's, as would be revealed

by their increasing ionization rates with path
length.

5. Differential scanning efficiencies

Another concern is the effect of a possible dif-
ferential scanning efficiency. In this scenario, a
short mfp could come about if an observer detects
events more efficiently at short distances rather
than at larger distances from a star. We note that
in this experiment the "correct" mfp, i.e., the beam
value, is observed at large distances and that an ex-
cess number of interactions is seen at short dis-

tances.
Any bias that is capable of reproducing Figs. 8

and 9 or Table III must be given serious considera-
tion. One such obvious systematic is scanning bias,
particularly a detection efficiency that is distance
dependent.

Consider again the defining equation of the mfp

As mentioned earlier, LBL rescanned all events
in which, on the initial scan, the primary Fe was
observed to give rise to a secondary PF of charge)3. At NRC, tracks were reexamined by charge
measurement; a "missed" interaction was located, in
this method, whenever a new vertex with visible
hadron emission was found by "backscanning"
from the point where the change in charge of the
PF was first detected.

We summarize the findings of the rescan in Table
VII. Here, we give the values of A* before the re-
scan and after the rescan for each laboratory as a
function of the interaction distance of the PF, viz. ,
within the first 2.5 cm after emission and at longer
distances. The value of e~, the efficiency, is just the
ratio of the A* values before and after the rescan
values. In the presence of a differential efficiency,
we would have expected that the values of e"be dis-
tance dependent; as can be seen by inspection, they
are not. LBL was -90% efficient for a single scan,
and NRC was -97%%uo efficient, normalized to the
ultimate values obtained for each laboratory
separately.

6. Distance of confusion

Owing to the high multiplicities of PF's within
the forward fragmentation cone, it is conceivable
that the interaction of PF's that occur at short dis-
tances from an interaction vertex actually occur be-
fore the ionization tracks of the PF's are visually
resolved from each other. Under such cir-
cumstances charge measurements would be in error,
as would the resultant estimates of A,z.

We have defined the confusion distance of a par-
ticular event to be the distance downstream from

dN/dx = N/A, . — (35)

dN/dx = N(&/&)— (36)

If one imagines some small interval b,x in which
one has incident N tracks, a perfect observer would

detect 5N =N(hx/A)interactions, . An observer
whose efficiency is e (0&a&1) would only observe
bN'=EN(bx/A, ) interactions. Thus, in the pres-
ence of inefficiency, Eq. (35) is replaced by

D&2.5 cm
Laboratory Scan A* N e*

Dg2. 5 cm
A* N e*

TABLE VII. Observations on the number of interac-
tions X and estimated value A* on the first scan (indi-
cated by 1 in the column headed Scan) and after the res-
can (indicated by 2) for each laboratory in the two dis-
tance intervals. e~ is the estimated scanning efficiency.

This, of course, is identical to Eq. (35) with
A,

' =A, /e Hence, all .the analysis of Sec IV.
proceeds through with this new A, '. This implies
that a useful estimate of e is e* =A,~ /A, *, where A, ~

is the value obtained on the first scan, and A,z is the
value on the identical events after completing the
res can.

NRC

1 28.66 286
2 25.58 364

1 23.92 183
2 23.87 197

0.893

0.998

36.08 364
32.67 397

29.04 485
28.00 528

0.905

0.964
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FIG. 16. Experimental integral distribution of the
distance of confusion. The straight line corresponds to
an exponential distribution with a mean distance of con-
fusion of 100 pm.

the interaction vertex beyond which all tracks emit-
ted from the interaction are completely resolved. In
emulsion, two particle tracks are visually resolved
when separated by 1 —2 pm, depending on the
charges of the particles. Figure 16 presents the dis-
tribution of confusion distances of PF's from a ran-
dom sample of 1.88M GeV Fe interactions. The
distribution shows an exponential decrease at dis-
tances up to -300 pm, with a negative logarithmic
slope of about 100 pm as illustrated. The max-
imum confusion distance in this sample was -1
mm, attributable to a pair of Z =2 PF's, quite pos-
sibly an example of the decay of a Be fragment.
We note that a confusion distance of -1 mm is
equal to the path length in emulsion necessary for
colinear PF's at beam rigidity R =6 GV to separate
by —1 pm through multiple Coulomb scattering
alone.

We conclude that beyond 3—500 pm, and cer-
tainly within 1 mm, virtually all PF's are effectively
resolved, with charges and secondary interactions
identifiable. These distances are 1 to 2 orders of
magnitude less than A,-2. 5 cm that characterizes
the short mfp component deduced from this experi-
ment. As was done previously to reveal possible
systematic errors in charge measurements, the elim-
ination of all tracks of PF's (interacting or not) less

than 5 mm in length should also suffice to eliminate
the short mfp effect if it were attributable to non-
resolved tracks. As mentioned above, we found no
changes in the con.clusions of our analysis before
and after such path-length cutoffs were invoked.

7. Background stars

The sources of background stars are those attri-
butable to random background from radioactive
contamination (a decay), neutrons, and charged
particles and to background correlated with the par-
ticular event under examination, from neutrons or,
possibly, minimum ionizing tracks. A background
event is one in which the path of a primary or PF
track under investigation passes within -2 pm
from the vertex of a background star.

Such candidate background events would appear
as stars with no noticeable change in charge and/or
direction of the incident track. A direct estimate of
the number of background events is made as fol-
lows: The typical density of all background stars in
our emulsions exposed to Fe in a volume
(10&& 1.2&&0.6 mme) centered on the primary track
and located immediately downstream from primary
interactions is -1 star/mm . Taking the cross sec-
tional area of an average ionization track to be -4
pm, the total number of background events expect-
ed within the first cm of the primary Fe interactions
(for -3000 PF tracks) is about 0.1 events, about
one-half of which would be recognized as due to
natural radioactive a-decay chains by their charac-
teristic ranges and be eliminated by the scanner. A
background of events one order of magnitude
greater than this estimate would still have a negligi-
ble effect on the conclusions of the experiment.

We may also test for the presence of background
stars by a direct reference to our measurements on
PF's. Consider the two-link topology. We define
the charge change b,Z to be the change in charge
from the secondary to the tertiary at the
secondary-tertiary vertex; e.g. , if a secondary of
charge 6 gives rise to a tertiary of charge 4, AZ =2.
A background interaction as defined above must ap-
pear as a charge change AZ =0 or 1, the value 1

coming from our measured charge reproducibility,
Fig. 3. As the maximum charge change in the
NRC data used in this experiment was 8 —3=5, we
restrict consideration of the LBL data to this same

range of AZ as well. After this restriction, we
divide the data into two classes: (i) 0&5,Z(1 and

(ii) 2 & hZ & 5. We compute the ratio R of the ob-

served number of two-link chains to the number ex-
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pected from the nh for class (i) and (ii). If we had a
background-star problem, we would expect 8 for
the two classes to differ and that R for class (ii), a
class of events that is void of background, to have a
value consistent with unity. However, we observe
that R for class (i) equals 1.25+0.09, while for class
(ii) R =1.29+0.10. The fact that these two values
are compatible and that neither is well accommo-
dated if the nh is true (combining them, one has
X = 16.5, 2 DOF, which has a probability
equivalent to 3.5 SD), allows us to conclude, as
above, that we have no significant background con-
tamination.

8. Decays in flight: hyperfragrnents

Perhaps the most obvious candidates to simulate
nuclear interactions of PF's are decays in flight.
Hyperfragment decay in flight is particularly ap-
pealing in that c~=3 cm is comparable to hypernu-
clear decay lengths. We address the question of de-

cays in flight from the data directly. Contributors
to decay-in-flight topologies include hyperfrag-
rnents and P-delayed proton emitters, as well as nu-

clear absorption of a m captured from an atomic
orbit about the PF. In each of these cases, "decay
products" have low velocities in the rest frame of
the decaying object. Because @=3, all decay prod-
ucts must be relativistic in the laboratory frame;
and since no target interactions are involved,
"decay-in-flight" stars will in fact appear as
projectile-fragmentation reactions with no associat-
ed target-related prongs, the so-called SI, ——0 events.
Noting that about 12% of primary beam interac-
tions are of the E~ ——0 type,

" we may enquire
whether or not there is an excess of Nt, ——0 stars
among the PF's significantly above that expected
for primary beam interactions. Such an excess
could then be attributed to decays in flight.

Figure 17 is a microprojection drawing of the
secondary and tertiary interactions initiated by an

' Fe primary (schematically indicated) when path
interactions are of the N~ ——0 type. The kinematics
of the decay of a hyperfragment at @=3.0 are such
that any emitted proton (pion) is restricted to a for-
ward cone in the laboratory frame of 12' (16'); the
minimum velocity of the proton (pion) emitted at
180' in the c.m. is P;„=0.83 (0.78), which in this
limiting case would be observed as a shower particle
at 0' with grain density of 1.2 (1.3)g;„. Conse-
quently, all

~
Z

~

= 1 products of hyperfragment de-
cay in flight will appear as shower particles. Thus
hyperfragment decay events at @=3 would be re-
stricted to the E~ ——0 class of interactions, kinemat-
ically unable to simulate an interaction that involves
the emission of low-energy target fragments.

To search for possible evidence within our data
for excessive contributions due to decays in flight,
we divided our data on the distribution of target-
prong numbers Nr, for PF interactions into two
groups, Nh ——0 and XI, & 1 populated by n,o and n j
stars, respectively. We then examined the ratios
r =no/n~ for the cases when the interaction dis-
tances are D &2.5 and D ~ 2.5 cm. Based on a sub-
sample of 1189PF stars, we observe the ratios

r (D &2.5)=0.13+0.02

r (D) 2.5)=0.16+0.02 .

The mean value of r for C, N, and 0 primary
beams at 2A GeV is 0.15.

In the interval D &2.5 cm the number of PF in-
teractions of all potential paths we observed is 590,
70 greater than expected for normal nuclei (i.e., the
nh). Thus, if all this excess of events was hy-
pothesized to be decays in flight (Ni, ——0 events),
then the ratio r we would have expected to observe
is r =0.30.

The values of r for D &2.5 cm are both in con-
tradiction to the hypothesis of decays in flight, but
are compatible with the value for primary beams.
The conclusion we arrive at, then, is that the excess

( p.64 cm )

~, 4o4& s
~w

~ 4 's+ feCaw~f
gl ~

I QA'

(2.49 cm)

/I I II I

j 50pm

FIG. 17. Microprojection drawing of an "Fe interaction (schematically shown) that gives rise to secondary and terti-
ary PF interactions, both of which are of the Nq ——0 type.
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of interactions we see at distances D (2.5 cm is not
attributable to X~ ——0 events; hence this excludes the
hypothesis of significant contributions to our data
by hyperfragment (and other) decays in flight.

We have also estimated the abundance of rela-
tivistic hyperfragments in our data sample of PF's
by referring to Refs. 25 and 26 for the measured, al-
beit approximate, production cross sections for free
and bound A"s in nuclear collisions. Based on most
conservative approximations, we conclude that the
fraction of PF's that could be hyperfragments is
(10 . The number of hyperfragment decays in

flight contributing to the data is thus (3—5, a
number that, again, cannot account for the experi-
mental observations.

9. Conventional nuclei

Last, as a conventional explanation of the ap-
parent shortening of the mean free path, we consid-
er isotopes and isomers with decay lengths c~-1
cm.

(a) Isotopes in the ground state. We have already
shown by means of the Monte Carlo simulation
(Sec. IV C) that the predicted deviations of the iso-

topic cross sections from those at the VOS could
not produce our effects.

(b) Isomers. Such nuclei might be assumed to
have a larger reaction cross section; they would de-

cay to the ground state either by channels that are
very difficult to observe or would have decay-in-

flight topologies that we have been able to exclude
above (Sec. VIB8). To estimate the increase in
cross section, we calculated the rms radii in the next
shell model orbital excitation and then integrated
the resulting density of nuclear matter to get rela-
tive excited state cross sections; we find that the
changes in cross sections are generally less than
10%.

In contrast, the results of this experiment would

require that =100% of all PF's be produced with
reaction cross sections & 20% larger than the VOS
nuclide of the same charge. ' These cross sections
must then return to VOS values with a mean decay
length c~=3 cm to reproduce Fig. 8. Even this ex-
treme assumption, unlikely as it is, fails to account
for the memory effect (Sec. V.).

We now summarize this section:
(a) The comparison of mean free paths of projec-

tile fragments at small and at large distances from
the emission point (Figs. 11 and 8) rules out a
homogeneous sample.

(b) Conventional explanations fail to account for

our observations on the correlations between short
tertiary links and short secondary links in two-link
chains (Table VI), as well as for the results shown in
Fig. 11.

(c) Systematic and background effects can be
essentially eliminated by the observations them-
selves, e.g., normal mfp's observed at large distances
from the emission point and no anomaly in the
decay-in-flight topology at short distances.

10. Implications

We are thus left in a predicament. Conventional
nuclear physics as well as systematics fail to explain
the observations. The probability of a statistical
fluctuation in this experiment is & 5 &(10

In view of the fact that now two independent

groups have reached essentially the same con-
clusions as we, "' with comparable levels of confi-
dence, the combined probability that the short mfp
effect is a fluctuation becomes vanishingly small.
The existence of at least one new type of mul-

ticharged, presumably multibaryon, state with a
hadronic reaction cross section between two and ten
times that of a VOS ground state nuclide of the
same charge would explain the observations.

This simple model, involving one single kind of
APF, quasistable over the distances observed here,
is evidently not the only possible explanation. All
or part of the A*(D) curve (Fig. 8), could, e.g., be
due not only to removal of APF's by nuclear col-
lisions with an enormous cross section, but also to
removal by visually unobservable decay processes
leading to a normal ground state nuclide.

Numerically, the following difficulties arise in
such an alternative interpretation:

(i) A cross section "only" twice normal could be
accommodated by the data, assuming, however, that
al/ PF's are born as APF's (a= 1) and that their
mean decay length cr is of the order of A,

(ii) If the extreme assumption a = 1 is abandoned,

any u (0.5 will require again very large cross sec-
tions, which would produce a fast rise of the A*(D)
curve even if c~&&A,

Recently, several speculative models suggesting
new states of hadronic matter exhibiting properties
akin to those of our hypothetical APF's have ap-
peared in the literature. To date, none of these
models have yielded quantitative predictions for
comparison with this experiment. New investiga-
tion addressing the obvious questions as to life-
times, production, and interaction mechanism of
the presumed APF component are in progress in
our laboratories.
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A. Distribution of the total path length

Given the probability density for one track length
X~ in an infinite detector

(Al)

N

S~ —=gx(, (A2)

i.e., the N-fold convolution of densities given by Eq.
(Al). This is by definition

we seek the probability density for the sum of N
such X values

N dX; pref(S )=f 8(X, ) f 8(X )8(S )5 S —g X~
i=1 i =1

(A3)

Here the 0 functions ensure that all lengths are pos-
itive and the 5 function represents the constraint
(A2). Thus, e.g., for N =2 one obtains by elementa-

ry integration

I

The mgf fory is then

Gz (t) = e~e 2dy 1
3'g p 2 1 —2t

] S2 -span
(A4)

Replacing Sz, Eq. (A2) by

For the general case the folding is most easily per-
formed by means of moment generating functions
(mgf) G„(t), where u is either X; or Sz. By defini-
tion

G» (t) = f e 'f, (X, )dX, = (A5)

For a folding of N independent variables one has

N

Gs (t)=g G»;(t)=
(1—A,t)

(A6)

since all X~ have the same probability density (Al)
and hence the same mgf (A5).

Taking the inverse Laplace transform of Eq. (A6)
we obtain Eq. (7).

A = 2SN
(A9)

we obtain the mgf for h

1

(1—2t)
(A10)

1
Z.2 1/2J (1—2t)

and that of any sum of v such squares

(Al 1)

X'=—g Z, '
j=1

The meaning of h becomes evident if we invoke
the properties of normal deviates. Let ZJ be a nor-
mal deviate of zero mean and unit variance. The
mgf for the square ofZJ is then

B. Conversion of path-lengths S into g2 variates

Let

1S

(A13)

2X
yi=— (A7) Identifying Eqs. (A10) and (A13) we see that h,

i.e., 2SN/A, , is indeed a X variate; since N =v/2,
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2SN/A, is X distributed with 2N degrees of free-

dom, Q.E.D.
An advantage of the change of variables from S~

to h lies in the fact that the probability density

12 v22

~(F)= ~ 2 . F~ ~
—~~~2( F)

—
~ ~+

&28 2'2
Pr(Q 2) [2NI'(N)] —1($2)N —le —h /2 (A14) (A17)

and its CDF
h2

Ps(h') = J W(h)dh (A15)

are well tabulated and adequate algorithms for com-
puters are available (see, e.g., Ref. 22).

C. Distribution of the ratio E

S~,/Ng

2SN, 2SN2 N2

Another important consequence of the X2 distri-
bution of 2S&/A, is the possibility to reduce the
comparison of two A,

*values to a well-known distri-
bution law. Indeed, the ratio F can be rewritten as
follows (in obvious notation):

where 8 is the beta function. Identifying the num-

bers of degrees of freedom v~ and v2 with 2N~ and

2Nz, respectively, we obtain the integral probability
(CDF) of F given in Eq. (15).

Figure 18 shows an example of the F distribution,
for the case of Z =11 secondaries in the LBL sam-

ple, where 15 interactions were recorded before
D =2.S cm, and 12 beyond.

The expected mean value of F is N2/(N2 1); th—e
mode of the distribution lies at

N2(N ] —I )/N $ (N2+ 1)

Both values are indicated on the graph along with
the median value computed from Eq. (15) [setting
P(&F)=—,]. The observed value of F, F,b„ is
shown together with (the shaded area) the integral
P ( &F,b, ).

2Ni 2N2 D. Chi-squared test in method A'

(A16)

As is well known (see, e.g., Ref. 22), the ratio of two
deviates, each divided by their number of degrees

of freedom (v, and vq) obeys the so-called F (or vari-
ance ratio) distribution, commonly used in variance
analysis. Its probability density is

We construct a goodness of fit test for comparing
a set of mfp values using the "traditional" concept
of the 7 test. Let SN with N stars be the total sam-
ple, so that A, =SN/N. Let the sample be divided
into M subsamples, say s; and n;, i =1 to M. For
each value s;, construct Z;:—2s;/A, , which is distri-

I I I l ( J ( / / j / / I I

I.O—

0.8—

o 06-

—0~- P( «

o.z- ~~
= 0.04

0
Q.5 I.O 1.5 2.0 2.5

FIG. 18. Shape and characteristic values of a typical I' distribution expected for the case of Z =11 PF s in the LBL
(' Fe) sample.
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buted X with 2n; DOF. We calculate then the in-

tegral probability p; of the Z; distribution, Eq.
(A15). For each p; we compute that value of a nor-
mal deviate g; that has the same one-sided integral
probability p;. Now let

Assuming the values s;,n; to come from a popula-
tion with the same mfp A, , q is distributed like X
with I—1 DOF. This is what we did, for exam-

ple, when we reported in Sec. VA that the NRC
primary ' 0 measurements of the mfp, plotted as a
function of distance after pickup (Fig. 7), are fit by
a constant mfp A,. We point out that the properties
of the X distribution were used by us in two other
contexts in Secs. IV A and 8 and subsections A and
B of Appendix A.

stant fraction p of events with a mfp A,,h (the
theoretical unnormalized mfp), the observed mfp
A, =A,,h/( I —P) and the measured X values will again
obey an exponential law.

To simulate this situation, a value of p = —, was

actually assumed, i.e., emulsion was considered only
50%%uo efficient. After having the program assign a
mfp as explained above (including charge assign-
ment and isotopic effects), this value was divided by
two and then an SID was generated. If this dis-
tance were within the stack, another random num-
ber was generated. If it were less than 0.5, a "visu-
ally detected" interaction was assumed to have oc-
curred; if not, another random interaction distance
using the same A, !2was generated and the program
proceeded in like fashion until the track suffered a
detected interaction or left the stack.

E. Differential equations governing
the two-link chain topology

APPENDIX C

A. Further implications
of the two-Hnk chain topology

F2
dZ

—N2 N)

~y ~X
(A18)

where Xi is the number of tracks of generation i
and Xz is the number of tracks of generation i +1,
e.g., N& and N2 refer to secondary and tertiary
tracks, respectively.

APPENDIX B

A. Monte Carlo simulation of detector response

One other feature was incorporated into the
Monte Carlo simulation that deserves mention. If
one calculates a priori expected mfp's based on
geometrical cross sections iri emulsion, without nor-
malizing to any observed emulsion mfp, one soon
discovers that the predicted mfp's are much shorter
than the observed ones, including the observations
on primary VOS beams. This is due mainly to
detector inefficiencies and in part also observer inef-
ficiencies for certain channels, particularly quasi-
elastic reactions at low momentum transfer. One
can prove mathematically that if one misses a con-

We give here the explicit differential equations
that can be integrated to give the probability densi-
ties used in Sec. IVB.

dE)
dZ XX

We now examine the P2(X) vs P2( Y) unit plane
in further detail by referring to Figs. 19(a) and (b).
In Fig. 19(a), we have divided the P2( Y) sample into
two parts, the first for which P2(X) & —, [area (a)]
and the other for which P2(X) & —, [area (b)]. Simi-

larly, we have divided the P2(X) sample into two
parts for which P2( Y) & —, [area (d)] and P2( Y) & —,

(a)
I.O

I

I

( ) I (b)
I

I

0.5— 0.509 WE 0.438
I

122 I 95
I

0 I

I.O
(b)
4

0.502

05

0
0

0.435
Vi
0.5

122

I.O

Pz (X)

FIG. 19. Asymmetry plots on the P2(X) vs P2(F)
unit plane.

(a}P2( Y} selected by P2(X).
(b) P2(X) selected by P2( Y).
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[area (c)], Fig. 19(b). Because Pz( Y) is independent
of P2(X},and vice versa, under the nh we expect the

1

means of all the samples of P2 to be —,.
Taken at face value, the interpretation of the data

as presented in Figs. 19(a) and (b) leads to several
qualitative conclusions. For mnemonic as well as
for physical reasons, we shall denote P & —, as short

and I' & —, as normal. This notation alludes to the
fact that short X or Y values correspond to events
enriched in APF's, whereas the normal X or Y
values are depleted in APF's, and hence should
behave more like a beam of normal nuclei.

First, let us consider areas (a} and (d), where we
note the following:

(i) if P2(X) & —, (short), then P2(Y)=0.438 (122
stars);

(ii) if P2( Y) & —, (short), then P2(X)=0.435 (122
stars).

In these cases, the selection of events having a
short X (Y} link results in a short Y (X) link, in

that both the Pz(Y) and Pz(X) values are

Item (i} is a restatement of the result from Sec. V B
that a short PF parent gives rise to a short PF pro-

geny (memory). Second, consider areas (b) and (c),
where we see that

(iii) if Pz(X) & —, (normal), then P2(Y) =0 5.09 (93
stars);

(iv) if P2( Y) & 2 (normal), then P2(X)=0.502 (93
stars).

In other words, the selection of events with a nor-
mal X( Y) link leads to normal P2( Y) and P2(X)=—,

values. We have therefore extracted a subsample of
the . two-link chain data that exhibit normal
behavior. This result speaks against isotopic and re-
lated conventional nuclear physics effects, for if
these were the root cause of the short-mfp effect
one would expect that P2+0.5 in both instances.
Too, even though the fit of beam mfp's to a power-
law expression cannot be exact, the PF data do not
categorically reject such a fit, as one symptom of a
rejection would be Pi+ —,.

A third observation is that for case (iii), the fact
that P2( Y)=0.509 does not differ significantly from

1 1

indicates that the seemingly normal P2(X) & —,

secondary population does not seem to produce
anomalous tertiaries as copiously as do normal pri-
maries [where P, (X)=0.469; Fig. 12]. If this is not
simply a statistical fluctuation (see Table VI), one
possible explanation for this observation would be
the existence of an energy threshold for APF pro-
duction. A similar energy dependence is also sug-
gested by Judek's cosmic-ray observations.
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